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1. INTRODUCTION

We consider the problem of global stabilization by output
feedback for a family of single-input single-output, uncer-
tain nonlinear systems described by equations of the form

ẋ1 = x2 + φ1(t, x, u)

ẋ2 = x3 + φ2(t, x, u)

...

ẋn = u + φn(t, x, u)

y = x1 (1)

where x = (x1, · · · , xn)T ∈ IRn, u ∈ IR and y ∈ IR
are the system state, input and output, respectively. The
functions φi : IR × IRn × IR → IR, i = 1, · · · , n, are
continuous with respect to all the variables. They represent
the system uncertainty and need not to be precisely known.
Throughout this paper, we focus our attention on a sub-
family of uncertain nonlinear systems (1) characterized by
the following linear growth condition.
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Assumption 1.1. For i = 1, · · · , n, there is an unknown

constant c ≥ 0 such that

|φi(t, x, u)| ≤ c(|x1| + · · · + |xi|). (2)

In the case when the growth rate c is known, Assumption
1.1 reduces to the condition introduced in (Tsinias , 1991),
where a linear state feedback control law was designed
achieving global exponential stabilization of (1). Under
the exactly same condition, it was shown in (Qian and
Lin, 2002) that global exponential stabilization of a family
of uncertain nonlinear systems (1) is also possible by a lin-
ear dynamic output compensator. The linear output feed-
back controller was constructed by using the traditional
high-gain observer (Khalil and Saberi, 1987; Gauthier et

al., 1992) together with a coupled observer-controller de-
sign method (Qian and Lin, 2002), which is not based
on the separation principle. A nice feature of such an
output feedback design is that no precise knowledge of the
system uncertainty is required. What really needed is the
information of the bounding system. That is, the growth
rate c in Assumption 1.1 must be a known constant.

When the parameter c in (2) is an unknown constant,
global output feedback control of the uncertain system (1)
becomes much more involved due to the lack of effective
adaptive observer design techniques. In the existing litera-
ture, important questions such as how to design nonlinear
adaptive observers and how to achieve global adaptive sta-
bilization via output feedback have been investigated, for



instance, in (Krstić et al., 1995; Marino and Tomei, 1995)
as well as the references therein. Unfortunately, most of
the results are only applicable to a class of uncertain
nonlinear systems in the parametric output feedback form
(Krstić et al., 1995; Marino and Tomei, 1995)(i.e., the
system uncertainty φi(t, x, u) in (1) is dominated by cb(y),
where b(y) is a known smooth function but c > 0 is an
unknown constant). They cannot, however, be employed
to control nonlinear systems with unknown parameters
beyond the parametric output feedback form, such as
the uncertain system (1) satisfying Assumption 1.1, in
which the unknown parameters appear not only in the
front of the system output but also in the front of the
unmeasurable states (x2, · · · , xn). The latter prevents one
to design a conventional observer (Isidori, 1995; Krener
and Respondek, 1985; Xia and Gao, 1989) that is often
composed of a copy of the original system. Indeed, such an

observer contains the system uncertainty and hence is not
implementable. The essential difficulty of this kind makes
global adaptive stabilization of the uncertain system (1) by
output feedback non-trivial, even under the linear growth
condition (2).

To control the uncertain system (1) satisfying (2) by
output feedback, we first proposed in the work (Qian
and Lin, 2003) a time-varying linear output feedback
control scheme. The key idea behind (Qian and Lin, 2003)

was to employ a linear observer with time-varying gains,
integrated with a time-varying state feedback controller,
so that the unknown parameter of (1) that is related
to the unmeasurable states can be dominated. Moreover,
global state regulation of (1) and global boundedness of the
closed-loop system can be achieved. Although the result
presented in (Qian and Lin, 2003) is mathematically sound,
it is, however, not easy to be implemented from a practical
point of view, due to the use of time-varying gains in
both the observer and controller (Qian and Lin, 2003).
Therefore, a theoretically sound and practically feasible
output feedback control strategy yet needs to be developed
for the uncertain system (1) under Assumption 1.1.

This issue will be addressed in this paper. The main con-
tribution of the paper is to provide a new output feedback
control scheme which is time-invariant in nature. Instead
of using a time-varying strategy (Qian and Lin, 2003) to
handle the unknown parameter c in (2), we shall design a
universal-type, adaptive output feedback controller which
globally regulates the states of the uncertain system (1)
while keeping boundedness of all the signals.

To be precise, we shall show that under the linear growth
condition (2) with the unknown growth rate c, there exists
a smooth dynamic output compensator of the form

ż = f(z, L, y)

L̇ = h(z, L, y)

u = g(z, L, y) (3)

such that all the solutions of the closed-loop system (1)-
(3) are well-defined and globally bounded on [0,+∞).
Moreover,

lim
t→+∞

(x(t), z(t)) = (0, 0), lim
t→+∞

L(t) = L̄ ∈ R+.

For the sake of convenience, we refer such an adaptive
control problem, with a bit abuse of terminology, as global

adaptive regulation by output feedback.

In the next section, an adaptive output feedback con-
troller of the form (3) that does the job will be explic-
itly constructed, using a synthesis of ideas and techniques
drawn from the theory of universal control (Willems and
Byrnes, 1984) and from the non-separation principle based
output feedback control scheme (Qian and Lin, 2002; Qian

and Lin, 2003). There are two new ingredients in the pro-
posed universal-like output feedback controller. The first
one is the use of a dynamic gain, rather than a time-varying
gain (Qian and Lin, 2003), in the linear high-gain observer.
The observer gain is updated, in a “universal” manner
(Willems and Byrnes, 1984), by an error signal between
the system output and its estimate. This gain update
law bears a strong resemblance to the adapted high-gain
controller which is commonly employed in the literature of
universal control (Willems and Byrnes, 1984). It turns out,
as one might expect, that the introduction of a dynamic
gain makes our universal-type output feedback controller
capable of handling the entire family of nonlinear systems
(1) characterized by Assumption 1.1, without knowing the
growth rate c. The other ingredient is the development
of a simpler output feedback design method than the one
in (Qian and Lin, 2002), which needs not to go through

the recursive design procedure as suggested in (Qian and
Lin, 2002). The new output feedback control algorithm
simplifies significantly the analysis and synthesis of the
universal adaptive output feedback controller as well as
the resulted closed-loop system.

2. UNIVERSAL OUTPUT FEEDBACK CONTROL

In this section, we prove that without knowing the growth

rate c in (2), it is still possible to globally regulate the
whole family of uncertain systems (1) by a universal-type
output feedback controller. Formally, the main result of
this paper can be summarized in the following statement.

Theorem 2.1. Under Assumption 1.1, the problem of
global adaptive regulation for the uncertain nonlinear
system (1) is solvable by a universal output feedback
controller of the form (3).

Proof. Motivated by the work (Qian and Lin, 2002; Qian
and Lin, 2003), we begin by designing a high-gain observer
(Khalil and Saberi, 1987; Gauthier et al., 1992) for the
uncertain nonlinear system (1) (regardless of the uncertain
terms φi(t, x, u), 1 ≤ i ≤ n)

˙̂x1 = x̂2 + La1(x1 − x̂1)

˙̂x2 = x̂3 + L2a2(x1 − x̂1)

...

˙̂xn = u + Lnan(x1 − x̂1) (4)

where L ≥ 1 is a dynamic gain to be determined later on,
and ai > 0, i = 1, · · · , n are the coefficients of the Hurwitz
polynomial sn + a1sn−1 + · · · + an−1s + an.

Let ei = xi − x̂i be the estimate error. Then, the error
dynamics is given by

ė1 = e2 − La1e1 + φ1(t, x, u)

ė2 = e3 − L2a2e1 + φ2(t, x, u)

..

.

ėn = −Lnane1 + φn(t, x, u). (5)

To simplify the analysis and design, we introduce the
following rescaling transformation (i = 1, · · · , n)

εi =
ei

Li
, zi =

x̂i

Li
and v =

u

Ln+1
. (6)

With the help of (6), it is easy to see that the composite
system (4)-(5) can be represented in a compact form:

ε̇ = LAε + Φ(t, x, u, L) − L̇

L
Dε

ż = L(A0z + b0v) + Laε1 − L̇

L
Dz (7)



where

ε =









ε1

ε2

...
εn









, z =









z1

z2

...
zn









, D =









1 0 · · · 0
0 2 · · · 0
...

...
. . .

...
0 0 · · · n









Φ(·) =



















1

L
φ1(t, x, u)

1

L2
φ2(t, x, u)

.

..
1

Ln
φn(t, x, u)



















, A =









−a1 1 · · · 0
...

...
. . .

...
−an−1 0 · · · 1
−an 0 · · · 0









and

A0 =









0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0









, b0 =









0
...
0
1









, a =









a1

...
an−1

an









Since the pair (A0, b0) is controllable, there exists a real
constant matrix K = −[k1 k2 · · · kn] such that all the
eigenvalues of the matrix B := A0 + b0K are located on
the open left-half plane.

In view of the discussion above, it is deduced from (7) that
the linear feedback control law

v = Kz = −[k1z1 + k2z2 + · · · + knzn]

or, equivalently, the controller

u = −Ln+1[k1z1 + k2z2 + · · · + knzn] (8)

results in the closed-loop system

ε̇ = LAε + Φ(t, x, u, L) − L̇

L
Dε

ż = LBz + Laε1 − L̇

L
Dz. (9)

By construction, both A and B are Hurwitz matrices.
According to (Krishnamurthy and Khorrami, 2002), there
exist P = P T and Q = QT , which are positive definite,
such that

AT P + PA ≤ −I and DP + PD ≥ 0,

BT Q + QB ≤ −2I and DQ + QD ≥ 0. (10)

With this in mind, we choose the Lyapunov function

V (ε, z) = (m1 + 1)V1(ε) + V2(z) (11)

for the closed-loop system (9), where m1 = ||Q||2||a||2 and

V1(ε) = εT Pε and V2(z) = zT Qz. (12)

Then, a simple calculation yields

V̇ ≤ −L(m1 + 1)||ε||2 − (m1 + 1)
L̇

L
εT (DP + PD)ε

−2L||z||2 − L̇

L
zT (DQ + QD)z

+2(m1 + 1)εT PΦ(·) + 2Lε1zT Qa.

Inspired by the design of universal controllers (Willems and
Byrnes, 1984), we design the following gain update law

L̇ = ε2
1 =

(x1 − x̂1)2

L2
with L(0) = 1. (13)

Using the inequality (10) and the fact that L(t) ≥ 1 ∀t ≥ 0,
we immediately arrive at

V̇ ≤−L(m1 + 1)||ε||2 − 2L||z||2

+2(m1 + 1)εT PΦ(·) + 2Lε1zT Qa. (14)

Next, we estimate the last two terms on the right-hand side
of the inequality above. It is not difficult to prove that

|2Lε1zT Qa| ≤ L||z||2 + L||Q||2||a||2ε2
1. (15)

|2(m1 + 1)εT PΦ| ≤ c m(m1 + 1)(||z||2 + ||ε||2) (16)

where m = 3n‖P‖.

Substituting the estimations (15) and (16) into (14), we
have

V̇ ≤ −
[

L − cm(m1 + 1)

](

||ε||2 + ||z||2
)

. (17)

With the aid of (17), it is not difficult to prove that
Theorem 2.1 holds. That is, starting from any initial
condition (ε(0), z(0)) ∈ IRn × IRn and L(0) = 1, the closed-
loop system (9)-(13) has the properties:

(i) All the states of (9)-(13) are well defined and globally
bounded on [0, +∞);

(ii) Moreover,

lim
t→+∞

(z(t), ε(t)) = (0, 0), lim
t→+∞

L(t) = L̄ ∈ R+.

In what follows, we shall prove the conclusions (i) and (ii)
via a contradiction argument.

To begin with, we suppose the closed-loop system (9)-
(13) has a solution (L(t), ε(t), z(t)) that is not well defined
nor globally bounded on [0,+∞). Then, there exists a
maximal time interval [0, T ) on which (L(t), ε(t), z(t)) are
well defined. Furthermore,

lim
t→T

||(L(t), ε(t), z(t))T || = +∞.

In other words, T > 0 is a finite escape time of the closed-
loop system (9)-(13).

We first claim that L(t) cannot escape at t = T . To
prove this claim, suppose that limt→T L(t) = +∞. Since
L̇ = ε2

1
≥ 0, L(t) is a monotone nondecreasing function.

Thus, there exists a finite time t∗ > 0, such that

L(t) ≥ c m(m1 + 1) + 1, when t∗ ≤ t < T.

From (17) it follows that

V̇ (η(t)) ≤ −||η(t)||2, ∀t ∈ [t∗, T )

where η(t) = (ε(t), z(t))T .

As a consequence,

T
∫

t∗

ε2
1dt ≤

T
∫

t∗

||η(t)||2dt ≤ V (η(t∗)) = constant. (18)

Using (18), one has

+∞ = L(T ) − L(t∗) =

T
∫

t∗

L̇(t)dt =

T
∫

t∗

ε2
1(t)dt

≤ V (η(t∗)) = constant,

which leads to a contradiction. Therefore, the dynamic gain
L(t) is well defined and bounded on [0, T ]. From L̇ = ε2

1
,

it is concluded that
∫ T

0
ε2
1
dt is bounded as well.

Next, we claim that z(t) is well defined and bounded on the
interval [0, T ]. To see why, consider the Lyapunov function
V2(z) = zT Qz for the z-dynamic system of (9). Clearly, a
direct computation gives



V̇2(z) ≤ −L||z||2 + m1Lε2
1 ≤ −||z||2 + m1LL̇

This, in turn, leads to

λmin(Q)||z(t)||2 − z(0)T Qz(0) ≤ V2(z(t)) − V2(z(0))

≤ −

t
∫

0

||z(t)||2dt +
m1

2
[L2(t) − 1], (19)

from which it follows that

||z(t)||2 ≤ 1

λmin(Q)

(

z(0)T Qz(0) +
m1

2
[L2(t) − 1]

)

.

Since L(t) is bounded on [0, T ], the inequality above implies

boundedness of z(t) over [0, T ]. Consequently,
∫ t

0
||z(t)||2dt

is also bounded ∀t ∈ [0, T ].

Finally, we prove that ε(t) is bounded on [0, T ]. To this
end, we introduce the change of coordinates

ξi =
ei

(L∗)i
, i = 1, 2, · · · , n (20)

where L∗ is a constant satisfying

L∗ ≥ max {L(T ), 3cn||P ||+ 3}.
Then, the error dynamics (5) is transformed into

ξ̇1 = L∗ξ2 − L∗a1ξ1 + L∗a1ξ1 − La1ξ1 +
φ1(·)
L∗

ξ̇2 = L∗ξ3 − L∗a2ξ1 + L∗a2ξ1 − L
L

L∗

a2ξ1 +
φ2(·)
(L∗)2

...

ξ̇n = −L∗anξ1 + L∗anξ1 − L(
L

L∗

)n−1anξ1 +
φn(·)
(L∗)n

which can be written in the following compact form

ξ̇ = L∗Aξ + L∗aξ1 − LΓaξ1 + Φ∗(·) (21)

where

Γ =













1 0 · · · 0

0
L

L∗

· · · 0

..

.
..
.

. . .
..
.

0 0 · · · (
L

L∗

)n−1













, Φ∗(·) =





















φ1(t, x, u)

L∗

φ2(t, x, u)

(L∗)2

...
φn(t, x, u)

(L∗)n





















.

Now, consider the Lyapunov function V3(ξ) = ξT Pξ for
system (21). A straightforward calculation shows that
along the trajectories of (21),

V̇3 ≤ −L∗||ξ||2 + 2ξ1L∗aT Pξ − 2ξ1LaT ΓPξ + 2Φ∗T (·)Pξ.

Observe that
∣

∣2ξ1L∗aT Pξ
∣

∣ ≤ L∗2||aT P ||2ξ2
1 + ||ξ||2

∣

∣2ξ1LaT ΓPξ
∣

∣ ≤ L2||aT ΓP ||2ξ2
1 + ||ξ||2.

Moreover, using (6), (20) and Assumption 1.1 yields
∣

∣

φi(·)
(L∗)i

∣

∣ ≤ c
√

n(||z|| + ||ξ||)
∣

∣2Φ∗T (·)Pξ
∣

∣ ≤ 3cn||P ||(||z||2 + ||ξ||2).

In view of the estimations above, we have

V̇3 ≤−(L∗ − 3cn||P || − 2)||ξ||2 + 3cn||P || · ||z||2

+

(

(L∗)2||aT P ||2 + L2||aT ΓP ||2
)

ξ2
1

≤−||ξ||2 + µ||z||2 + µε2
1 (22)

where µ > 0 is a suitable constant depending on the
unknown parameter c.

From (22) it follows that

λmin(P )||ξ(t)||2 − ξ(0)T Pξ(0)

≤ V3(ξ(t)) − V3(ξ(0)) (23)

≤−

t
∫

0

||ξ(t)||2dt + µ

t
∫

0

||z||2dt + µ

t
∫

0

ε2
1dt.

Since
∫ T

0
||z||2dt and

∫ T

0
ε2
1
dt are bounded, it is concluded

immediately from (23) that both
∫ t

0
||ξ||2dt and ξ(t) are

bounded on [0, T ]. This, in view of (20) and (6), results in

the boundedness of
∫ t

0
||ε||2dt and ε(t) ∀t ∈ [0, T ].

In summary, we have shown that L(t), ε(t) and z(t)
are well-defined and all bounded on [0, T ]. The conclu-
sion is certainly contradictory to the assumption that
limt→T ||(L(t), ε(t), z(t))T || = +∞. Therefore, all the
states of the closed-loop system must be well defined on
the time interval [0,+∞) and globally bounded.

Using the boundedness of
∫

∞

0
||z||2dt,

∫

∞

0
||ε||2dt and

(L(t), ε(t), z(t)) on [0,+∞), it is straightforward to deduce
that ε ∈ L2, ε̇ ∈ L∞ and z ∈ L2, ż ∈ L∞. By the well-
known Barbalat’s Lemma,

lim
t→+∞

z(t) = 0 and lim
t→+∞

ε(t) = 0.

We conclude this section with two examples that illustrate
how Theorem 2.1 can be employed to solve the problem of
global regulation by output feedback for a class of nonlinear
systems with the unknown linear growth rate.

Example 2.2. Consider the SISO nonlinearly parameter-
ized system

ẋ1 = x2 +
x1

(1 − c1x2)2 + x2
2

ẋ2 = u + ln(1 + (x2
2)c2 )

y = x1 (24)

where c1 and c2 ≥ 1 are unknown constants.

It is worth pointing out that (24) is neither in a triangular
form nor in the parametric output feedback form. Thus, the

problem of global adaptive regulation by output feedback is
not solvable by existing design methods. However, a simple
analysis indicates that the uncertain system (24) does
satisfy Assumption 1.1. As a matter of fact, the following
estimations

∣

∣

∣

∣

x1

(1 − c1x2)2 + x2
2

∣

∣

∣

∣

≤ (1 + c21)|x1|
∣

∣ln(1 + (x2
2)c2 )

∣

∣ ≤ (2c2 − 1)|x2|

can be easily obtained. Hence, Assumption 1.1 holds with
c = max{2c2−1, 1+c2

1
}, where c is an unknown constant.

By Theorem 2.1, there exists a universal output feedback
controller of the form (4)-(6)-(8)-(13) such that all the
states of the nonlinearly parameterized system (24) are
globally regulated.

Following the design procedure in the last section, one can
find that the universal output feedback controller (4), (8)
and (13) with (a1, a2) = (1, 1), (k1, k2) = (1, 1) does the
job.

A numerical simulation is given in Fig. 1, illustrating the
effectiveness of the universal output feedback controller.
The simulation was carried out with the system parameters
c1 = 1 and c2 = 2. The initial condition is (x1(0), x2(0)) =
(1, 5) and (x̂1(0), x̂2(0)) = (−10,−2).
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Fig. 1. The transient responses of the closed-loop system
(24)-(4)-(8)-(13)

Example 2.3. A single-link robot arm system can be
modelled by (see, for instance, (Isidori, 1995) and (Marino
and Tomei, 1995))

ż1 = z2

ż2 =
K

J2N
z3 − F2(t)

J2

z2 − K

J2

z1 − mgd

J2

cos z1

ż3 = z4

ż4 =
1

J1

u +
K

J1N
z1 − K

J2N
z3 − F1(t)

J1

z4

y = z1 (25)

where J1, J2, K, N, m, g, d are known parameters, while
F1(t) and F2(t) are viscous friction coefficients that are
not precisely known. Suppose F1(t) and F2(t) are bounded
by an unknown constant, say C > 0. Our control goal
is to adaptively stabilize the equilibrium (z1, z2, z3, z4) =
(0, 0, mgdN

K
, 0) by output feedback, i.e., using only the

output signal z1, which represents the link displacement
of system (25).

To design an adaptive output feedback controller, we first
introduce the change of coordinates

x1 = z1, x2 = z2, x3 =
K

J2N
z3 − mgd

J2

, x4 =
K

J2N
z4,

and the pre-feedback

v =
K

J2N
(

1

J1

u − mgd

J2

),

which transform (25) into

ẋ1 = x2

ẋ2 = x3 − F2(t)

J2

x2 − K

J2

x1 − mgd

J2

(cos x1 − 1)

ẋ3 = x4

ẋ4 = v +
K2

J1J2N2
x1 − K

J2N
x3 − F1(t)

J1

x4

y = x1. (26)

The robot arm system is in a lower-triangular form but
not in the so-called parametric output feedback form. As
a result, most of the adaptive output feedback control
algorithms, including those proposed in (Krstić et al., 1995;
Marino and Tomei, 1995; Krishnamurthy and Khorrami,
2002) cannot be applied to (26).

On the other hand, it is easy to see that

| cos x1 − 1| ≤ |x1|,
∣

∣

∣

F2(t)

J2

x2

∣

∣

∣

≤ c|x2|,
∣

∣

∣

F1(t)

J1

x4

∣

∣

∣

≤ c|x4|

where c = max{ C
J2

, C
J1

} is an unknown constant. Hence,

system (26) satisfies Assumption 1.1. Using Theorem 2.1,
one can design a universal output feedback controller of the
form (4)-(6)-(8)-(13), achieving global adaptive regulation
for the single-link robot arm system (26) in the presence
of the unknown bound c.

The simulation result shown in Fig. 2 for the robot arm
system (25) was obtained under the following system
parameters: K/J2 = 5, mgd/J2 = 4, K2/(J1J2N2) =
2, K/(J2N) = 3. The initial conditions of the whole sys-
tem are (x1(0), x2(0), x3(0), x4(0)) = (−5,−1, 4, 2) and
(x̂1(0), x̂2(0), x̂3(0), x̂4(0)) = (5, 3,−1,−4). The universal
controller used in the simulation is composed of the high-
gain observer (4) with a = [4 6 4 1]T , the adap-
tive updated law (13) and the controller (8) with K =
−[40 78 49 12].
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Fig. 2. Transient response of the robot arm system when c = 10

3. A FURTHER EXTENSION

So far, we have investigated the problem of globally reg-
ulating all the states of systems (1) via output feedback
under Assumption 1.1. The purpose of this section is to
discuss briefly how Theorem 2.1 can be generalized to a
wider class of nonlinear systems with unknown parameters
under a weaker condition than Assumption 1.1.

In the recent papers (Yang and Lin, 2004; Krishnamurthy
and Khorrami, 2004), it has been shown that global stabi-
lization of system (1) by output feedback is still possible
even if c in Assumption 1.1 is replaced by a continuous
function C(y) ≥ 0, while in (Praly and Jiang, 2004) it
was shown that under an extra requirement that C(y)
be a polynomial function of y with a fixed order, global
stabilization of (1) can even be achieved by a linear-like
output feedback controller.

In what follows, we shall show that by taking advantage
of the linear structure of the output feedback controller
proposed in (Praly and Jiang, 2004), it is possible to extend
Theorem 2.1 to a class of nonlinear systems characterized
by the following condition.

Assumption 3.1. For i = 1, · · · , n, there is an unknown

constant c ≥ 0 and a known integer p, such that

|φi(t, x, u)| ≤ c(1 + |x1|p)(|x1| + · · · + |xi|). (27)

Assumption 3.1 requires that the bounding system of (1)
be linear in its unmeasurable states x2, · · · , xn but can be a
polynomial function of y, whose coefficients are unknown
and bounded by an unknown constant c ≥ 0. The main



result of this section is the following theorem that provides
an explicit design of universal output feedback controllers
for the uncertain system (1).

Theorem 3.2. Under Assumption 3.1, the problem of
global adaptive stabilization of the uncertain nonlinear
system (1) is solvable by a universal output feedback
controller of the form

˙̂x1 = x̂2 + LMa1(x1 − x̂1)

˙̂x2 = x̂3 + (LM)2a2(x1 − x̂1)

..

.

˙̂xn = u + (LM)nan(x1 − x̂1) (28)

u = −[(LM)nk1x̂1 + · · · + LMknx̂n] (29)

with the gain update law

Ṁ = −αM + ∆(y) with M(0) = 1

L̇ = M1−2r (x1 − x̂1)2

L2r
with L(0) = 1 (30)

where ai and ki, i = 1, · · · , n are the coefficients of the
Hurwitz matrices A and B, respectively (defined in section
2), α > 0 is a suitable constant, ∆(y) ≥ α is a suitable
continuous function that can be explicitly constructed, and
r is a constant satisfying 0 < r < 1

2p
.

Due to the limit of the space, the proof of Theorem 3.2 is
omitted here. The reader is referred to the paper (Lei and
Lin, 2005) for further technical details.

We conclude this section by using an example from
(Krishnamurthy and Khorrami, 2004), which was listed as
an unsolved problem, to demonstrate the significance of
Theorem 3.2.

Example 3.3. Consider the adaptive output feedback
stabilization of the uncertain nonlinear system

ẋ1 = x2

ẋ2 = x3

ẋ3 = u + θx2
1x3

y = x1. (31)

where θ is an unknown constant.

As mentioned in (Krishnamurthy and Khorrami, 2004),
adaptive control of (31) by output feedback cannot be
solved by the existing methods in the literature. This
problem can now be solved by Theorem 3.2. In fact, it
is easy to check that Assumption 3.1 holds with p = 2.
Thus, a universal output feedback controller of the form
(28)-(29)-(30) can be constructed achieving global state
regulation of system (31). The details and simulations can
be found in (Lei and Lin, 2005).

4. CONCLUSION

By integrating the idea of universal control (Willems and
Byrnes, 1984) and the robust output feedback design
method (Qian and Lin, 2002; Qian and Lin, 2003), we
have explicitly constructed a universal-type output feed-
back controller that achieves global state regulation, for a
family of uncertain nonlinear systems whose global adap-
tive stabilization problem by output feedback has remained
unsolved until now. Our universal output feedback control

law would simultaneously regulate a whole family of non-
linear systems with unknown parameters, as long as they
are dominated by a linearly growing triangular system (As-

sumption 1.1) or by a bounding system that depends on the
unmeasured state linearly and the output polynominally
(Assumption 3.1), with an unknown growth rate. It was
demonstrated, by means of examples and simulation, that
the proposed adaptive output feedback controller can be
easily designed and implemented.
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