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Abstract:
An optimal experiment design problem invoked by the Cram´er-Rao Inequality is applied to
the problem of quantum state tomography. The optimization problem is integer-combinatorial
and we use an established relaxation which results in a convex programming problem whose
solution can be used to guide a more efficient experiment.
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1. INTRODUCTION

The estimation of the quantum state of a system from
available measurements is generally referred to as
quantum state tomography. The more encompassing
procedure ofsystem identification has been referred
to asquantum process tomography. There are many
papers in the literature on the subject of quantum state
and process tomography,e.g., to name a few, (Nielsen
and Chuang 2000), (Jameset al. 2001), (Grice and
Walmsley 1996), (Pariset al. 2001), (Verstraeteet
al. 2001), (Walmsley and Waxer 1998). As shown
originally in (Pariset al. 2001),maximum likelihood
estimation (MLE) is directly applicable to quantum
state tomography of a quantum system with non-
continuing discrete measurements,i.e., data is taken
from repeated identical experiments at a finite number
of (discrete) sample times. It is shown there that the
MLE of the density matrix can be cast as a convex
optimization problem. For continuous measurements
a general formulation is presented in (Verstraeteet
al. 2001). In (Kosut, Rabitz, and Walmsley 2003)
MLE is used as the identification step for adaptive
control design.
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In this paper we address the related problem of exper-
iment design so as to secure an estimate of the best
quality. The approach presented relies on minimizing
the Cramer-Rao lower bound where the design param-
eters are the number of experiments to be performed
while the system is in a specified configuration. We
solve the optimal experiment design problem using a
standard relaxation method which results in a convex
optimization problem. A more extensive treatment of
this subject is in (Kosut, Walmsley, and Rabitz 2005).
A completely data-based approach using learning con-
trol is presented in (Phan and Rabitz 1997); this is very
valuable for quantum chemistry where models are not
available.

2. QUANTUM STATE TOMOGRAPHY

Consider a quantum system which has���� distinct
outcomes, labeled by the index�� � � �� � � � � ����,
and which can be externally manipulated into����

distinct configurations, labeled by the index�� � �
�� � � � � ����. Configurations can include wave-plate an-
gles for photon counting, sample times at which mea-
surements are made, and settings of any experimental
“knobs” such as external control variables,e.g., laser
wave shape parameters, magnetic field strengths, and



so on. Although not discussed here, for quantum pro-
cess tomography or Hamiltonian parameter estima-
tion, configurations can also include a set of prepared
initial states.

The problem addressed in this paper is to determine
the minimum number of experiments per configura-
tion in order to obtain a state estimate of a specified
quality, i.e., what is the tradeoff between number of
experiments per configuration and estimation quality.
The method used to solve this problem is based on
minimizing the size of the Cram´er-Rao lower bound
on the estimation error (Cram´er 1946).

2.1 Data Collection

The data is collected by recording measurement out-
comes from identical experiments repeated�� times
in each configuration�. Let��� denote the number of
times outcome� is obtained from the�� experiments.
Thus, �

�

��� � �� � ��	
� �
�
�

�� (1)

where��	
� is the total number of experiments. The
data set consists of all the outcome counts,

� �

�
���

���� � � �� � � � � ����
� � �� � � � � ����

�
(2)

The design variables used to optimize the experiment
are the non-negative integers���� represented by the
vector,

� � ��� � � � ����� �� (3)

Let ������� denote the true probability of obtaining out-
come� when the system is in configuration� with
unknown true state input	����. Thus,

� ��� � ���
����
�� (4)

where the expectation���� taken with respect to the
underlying quantum probability distributions.

We pose the followingmodel of the system,�

����	� � ��
�����	� (5)

where����	� is the outcome probability of measuring
� when the system is in configuration� with input
state	 belonging to the set of density matrices,�

	 � ���� � 	 � 	� �� 	 � �
�

(6)

�
��� are the POVM elements of the measurement
apparatus, and thus, for� � �� � � � � ����,

� The notation here follows (Nielsen and Chuang 2000,�2) which
provides an overview of the postulates of quantum mechanics.
� Positive Operator Valued Measure – a generalization of the quan-
tum measurement process (Nielsen and Chuang 2000,�2.26).

�
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and���	� is the reduced density output state of the
�-system model. A general (model) representation
of a quantum system is theKraus operator-sum-
representation (OSR) (Nielsen and Chuang 2000).
Specifically, in configuration�, the system model can
be parametrized by the set ofKraus matrices, ����
as follows:

���	� �

���
���

��	
�
���

���
���

�
���� � �� (8)

with �� 	 ��.

System in the model set We make the following
assumption throughout:the true system is in the model
set. This means that,

������� � ����	
����� � �� ���	

���� (9)

This is always a questionable assumption and in most
engineering practice is never true. The case when the
system isnot in the model set will not be explored any
further here except for the effect of measurement noise
which is discussed next. It is important to emphasize
that in order to produce an accurate unbiased estimate
of the true density it is necessary to know the noise
elements (as described next) which is a consequence
of assumption (9).

Noisy measurements Sensor noise can engender more
noisy outcomes than noise-free outcomes. Consider,
for example, a photon detection device with two
photon-counting detectors. If both are noise-free,
meaning, perfect efficiency and no dark count prob-
ability, then, provided one photon is always present
at the input of the device, there are only two possi-
ble outcomes:��	� 	��. If, however, each detector is
noisy, then either or both detectors can misfire or fire
even with a photon always present at the input. Thus
in the noisy case there arefour possible outcomes:
��	� 	�� ��� 		�.
Let�
�� �� � �� � � � � ���� � denote the noisy POVM
and let

�

�� �� � �� � � � � ����

�
denote the noise-

free POVM with���� � ���� where,


�� �

�����
���

���� 
�� (10)

The������ represents the noise in the measurement,
specifically, the conditional probability that� is mea-
sured given the noise-free outcome� with the system
in configuration�. Since

�
� ���� � �� 
�� �, it

follows that if the noise-free set is a POVM then so is
the noisy set.



2.2 Maximum Likelihood State Estimation

The Maximum Likelihood (ML) approach to quantum
state estimation presented in this section, as well as
observing that the estimation is convex, can be found
in (Pariset al. 2001), (Verstraeteet al. 2001) and the
references therein. Using convex programming meth-
ods, such as an interior-point algorithm for computa-
tion, was not exploited in these references.

If the experiments are independent, then the proba-
bility of obtaining the data (2) is a product of the
individual model probabilities (5). Consequently, for
anassumed initial state	, the model predicts that the
probability of obtaining the data set (2) is given by,

���� ��� 	� �
�
���

����	�
��� (11)

The data is thus captured in the outcome counts�����
whereas the model terms have a	-dependence. The
maximum likelihood estimate (MLE) of 	 is obtained
by finding a 	 in the set (6) which maximizes the
log-likelihood function, or equivalently, minimizes the
negative log-likelihood function,

���� 	� � �
�
���

��� 
���� ���	 (12)

Specifically,

minimize ���� 	�
subject to	 � 	� �� 	 � �

(13)

���� 	� is a positively weighted sum of log-convex
functions of	, and hence, is a log-convex function of
	. The constraint that	 is a density matrix forms a
convex set in	. Hence, (13) is in a category of a class
of well studied log-convex optimization problems,
e.g., (Boyd and Vandenberghe 2004).

2.3 Experiment Design for State Estimation

In this section we describe the experiment design
problem for quantum state estimation. We would like
to select the number of experiments per configuration,
the elements of the vector� � ��� � � � ����� �� � ����� ,
so as to minimize the error between the state estimate,		���, and the true state	����. Specifically, we would
like to solve for� from:

minimize � �		���� 	����������
subject to

�
�

�� � ��	
�

integer�� � 	

(14)

where��	
� is the desired number of total experiments.
This is a difficult, if not insoluble problem for several
reasons. First, the solution depends on the estimation
method which produces		���. Secondly, the problem is
integer combinatoric because� is a vector of integers,

and most likely not convex. And finally, the solution
depends on	����, the very state to be estimated. For-
tunately all these issues can be alleviated or circum-
vented.

We first eliminate the dependence on the estimation
method. The following result can be established using
theCramér-Rao Inequality (Cramér 1946).�

State estimation variance lower bound

Suppose the system generating the data is in the
model set used for estimation, i.e., (9) holds. For � �
��� � � � ����� � experiments per configuration, suppose		��� is a density matrix and an unbiased estimate of
	����, i.e., 		��� � 	, �� 		��� � �, and � 		��� � 	����.
Under these conditions, the estimation error variance
satisfies,

� �		���� 	���������� � � ��� 	����� (15)

where
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and� � �������� is part of the unitary matrix� �
�� �� � ������ in the singular value decomposition,

�	
 �� � �
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	����

�
�� ��� (16)

In general it is difficult to determine if any estimate
will achieve the Cram´er-Rao lower bound. Under the
conditions stated, the ML estimate,	�����, the so-
lution to (13), approaches	���� with probability one,
asymptotically as��	
� increases, and the asymptotic
distribution becomes Gaussian with covariance given
by the Cram´er-Rao bound.

The experiment design problem can be expressed by
the following optimization problem in the vector of
integers�:

minimize � ��� 	�����

subject to
�
�

�� � ��	
�

integer�� � 	

(17)

where��	
� is the desired number of total experiments.
The good news is that the objective,� ��� 	�����, is
convex in� (Boyd and Vandenburgh 2004,�7.5). Un-
fortunately, there are still two impediments: (i) re-
stricting � to a vector of integers makes the problem

� Proofs are eliminated to save space and are available upon re-
quest.



combinatorial; (ii) the lower-bound function� ��� 	 �����
depends on the true value,	����. All of these diffi-
culties can be alleviated to some extent. For (i) we
can use the convex relaxation described in (Boyd and
Vandenburgh 2004,�7,5). For (ii) we can solve the
relaxed experiment design problem with either a set
of “what-if” estimates as surrogates for	����, or use
nominal values to start and then “bootstrap” to more
precise values by iterating between state estimation
and experiment design. We now explain how to per-
form these steps.

Relaxed experiment design for state estimation Fol-
lowing the procedure in (Boyd and Vandenburgh
2004), introduce the variables�� � �����	
�, each
of which is the fraction of the total number of exper-
iments performed in configuration�. Since all the��
and��	
� are non-negative integers, each�� is non-
negative andrational, specifically an integer multiple
of ����	
�, and in addition,

�
� �� � �. Let 		 denote a

surrogate for	����, e.g., an estimate or candidate value
of 	����. Using (15) gives,

� �� � ��	
��� 		� � �

��	
�
� ��� 		� (18)

and,

� ��� 		� � �� ���� 		���
���� 		� �

�
�

�����		� (19)

Hence, the objective function� ��� 		� can be replaced
with � ��� 		� and the experiment design problem (17)
is equivalent to.

minimize � ��� 		�
subject to

�
�

�� � �� �� � 	

�� – integer multiple of����	
�

(20)

The objective is now a convex function of the�� , but
it is is still a combinatorial problem because the�� are
constrained to each be an integer multiple of����	
�.

If �� is only otherwise constrained to the non-negative
reals, then this has the effect of relaxing the constraint
that the �� are integers. As phrased in (Boyd and
Vandenburgh 2004), therelaxed experiment design
problem is:

minimize � ��� 		� � ��
��

�

�����		���
subject to

�
�

�� � �

�� � 	

(21)

The objective is convex, the equality constraint is lin-
ear, and the inequality constrains are convex, hence,
this is a convex optimization problem in� � �

���� .
Let ��
� denote the optimal solution to (21). Since

the problem no longer depends on��	
�, ��
� can be
viewed as a distribution of experiments per configu-
ration.� There is also no guaranty that��	
���
� is
a vector of integer multiples of����	
�. A practical
choice for obtaining a vector of integer multiples of
����	
� is,

�������	
� � ����
�
��	
��

�
�
�

(22)

If ��
� is the (unknown) integer vector solution to (17),
then we have the relations:

� ��������	
� � 		� � � ���
�� 		� � � ���	
��
�
�� 		�(23)

The gap within which falls the optimal solution can
be no worse than the difference between� �� ������	
� � 		�
and� ���	
��

�
�� 		�, which can be computed solely
from ��
�. If the gap is sufficiently small then for
all practical purposes the “optimal” solution is��
�.
From now on we will refer to��
� as the optimal
solution rather than the relaxed optimal.

Bootstraping A standard approach used to circum-
vent not knowing the true state needed to optimize
the experiment design is to procede adaptively, or by
“bootstraping.” The idea is to use the current estimate
of the initial state found from (13), then solve (21), and
then repeat. The algorithm at the�-th iteration looks
like this:
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(24)

The initial distribution	��	� could be chosen as uni-
form, e.g., the same for a not too large number of
configurations. The algorithm could also start by first
solving for a distribution from an initial state surro-
gate. In each iteration we could also vary��	
�. Al-
though each optimization is convex, the joint problem
may not be. Conditions for convergence would need to
be investigated as well as establishing that this method
is efficient,i.e., reduces the number of trials. We will
not pursue this any further here.

2.4 Example: Experiment Design for State Estimation

A schematic of an apparatus for state tomography of a
photon specified by the quantum state (density matrix)
	 is shown in figure 1.

� Caveat emptor: The relaxed optimal experiment design distribu-
tion, ����, is optimal with respect to the initial state	�, a surrogate
for ��	
�. Thus,���� is not optimal with respect to��	
�. This
should be no surprise because the underlying goal is to find a good
estimate of��	
�.



	 �� � �� � �� beam
splitter

�� A

�� B

Fig. 1. Detection apparatus for single-photon tomog-
raphy

The set up has two photon-counting detectors, A, B.
There are two continuous variable settings for the
quarter-wave plate and half-wave plate angles�� �.
The objective is to determine the optimal settings
of these parameters and number of experiments per
setting for estimation of the state	 using as data
the photon counts from the two detectors. For these
type of optical experiments there is significant cost
(in time) associated with changing wave plate angles
and very little cost (in time) for an experiment. As a
result, although a uniform distribution can produce a
good quality estimate, it is avery costly in terms of
changing wave plate angles.

Suppose the wave plate settings are,

��� � �� � � � �� � � � � ���� � (25)

Assume also that the incoming statealways is one
photon, never none. Hence,	 � �

���. Assuming
each detector has efficiency� 	 � and a non-zero
dark count probabilityÆ, then there are four possible
outcomes at detectors A,B denoted by the outcome
indices� � ��	� 	�� 		� ���. Following (Grice and
Walmsley 1996, Walmsley and Waxer 1998) the prob-
ability of a dark count is denoted by the conditional
probability,

���� � Æ (26)

where��	 means the detector has fired “1” given that
no photon is present at the detector “0.” As shown
in (Grice and Walmsley 1996), it therefore follows
that the probability that the detector does not fire “0”
although a photon is present at the detector “1” is
given by,

���� � ��� ����� Æ� (27)

Here��� is the probability of no detection and��Æ is
the probability of no dark count. The remaining con-
ditional probabilities are, by definition, constrained to
obey:

���� � ���� � �
���� � ���� � �

(28)

The probabilities for the firing patterns in are thus
given by (5) with the following observables
�� :


���� � ��������
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where
�

�

�

�
are the noise-free observables. Simula-

tions were performed for two input state cases:

pure state: 	
��� �
�

�



� �
� �

�

mixed state: 	��	� �



	�� �	���
	��� 	��

� (30)

For each input state case we computed��
� with and
without “noise:”

no noise

�
detector efficiency � � �
dark count probabilityÆ � 	

yes noise

�
detector efficiency � � 	���
dark count probabilityÆ � 	�	�

For all cases and noise conditions we used the wave
plate settings:

�� � ��� ����Æ�� � � �� � � � � �	
�� � ��� ����Æ�� � � �� � � � � �	

(31)

Both angles are set from	 to ��Æ in �Æ increments.
This yields a total of���� � �	� � �		 configurations
corresponding to all the wave plate combinations. The
optmal distribution,��
�, was obtained by solving
(21) using a Barrier method (Boyd and Vandenburgh
2004, Ch.10).

Figure 2 shows the optimal distributions��
� versus
configurations� � �� � � � � �		 for all four test cases:
two input states with and without noise. Observe that
the optimal distributions arenot uniform but are con-
centrated near the same particular wave plate settings.
These settings are very close to those established in
(Jameset al. 2001).

To check the gap between the relaxed optimum��
�

and the unknown integer optimum we appeal to (22)-
(23). Table 1 confirms that these distributions are
good approximation to the unknown optimal integer
solution for even not so large��	
� for the two state
cases with no noise.

Table 1. Gap between sub-optimal and re-
laxed solutions.

�����
� ��	
��

�
�

�����
����

� �����
�	
�

�
������
����

� ��	
��
�
�

��	
����	�

� �����
�	
�

���	�����	�

100 .9797 .7761
1000 .9950 .9735
10000 .9989 .9954



Table 2 compares the distributions for optimal and uni-
form distributions at all 100 angles by examining the
minimum number of experiments required to obtain
an RMS estimation error of no more than 0.01.

Table 2. Comparison of optimal and uni-
form distributions.

input state
optimal

�����

�
������

���
�

���� � ���

uniform
������� �������

���� � ���

��
	�, no noise 20308 29274
��
	�, yes noise 37775 52825
�����, no noise 41890 64780
�����, yes noise 61049 94385

Although the uniform distribution at all 100 angles
does not require a significant increase in the number
of experiments, as already mentioned it is avery costly
approach in terms of the time required to change the
wave plate angles. From figure 2 it is clear that many
of the wave-plate angles can be eliminated thereby
leading a suboptimal experiment design with only a
few settings. Although not shown, these suboptimal
settings do not require a significant increase in the
number of experiments required to achieve the desired
estimation accuracy of 0.01.

3. CONCLUDING REMARKS

The results presented show that an efficient numeri-
cal method based on convex programming can opti-
mize the experiment for quantum state tomography.
In addition, the estimation of the state and/or process
using data from non-continuing measurements is co-
pasetic with Maximum Likelihood Estimation. Both
the experiment design and estimation work naturally
together and both can be solved using convex opti-
mization methods. The same methods can be used
for quantum process tomography and Hamiltonian pa-
rameter estimation (Kosutet al. 2005).
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