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Abstract:

An optimal experiment design problem invoked by the CeasRao Inequality is applied to

the problem of quantum state tomography. The optimization problem is integer-combinatorial
and we use an established relaxation which results in a convex programming problem whose
solution can be used to guide a more efficient experiment.
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1. INTRODUCTION In this paper we address the related problem of exper-
iment design so as to secure an estimate of the best

The estimation of the quantum state of a system from quality. The approach presented relies on minimizing
available measurements is generally referred to asthe Cramer-Rao lower bound where the design param-
quantum state tomography. The more encompassing eters are the number of experiments to be performed
procedure ofsystem identification has been referred  while the system is in a specified configuration. We
to asquantum process tomography. There are many  solve the optimal experiment design problem using a
papers in the literature on the subject of quantum statestandard relaxation method which results in a convex
and process tomograplesg., to name a few, (Nielsen  optimization problem. A more extensive treatment of
and Chuang 2000), (Jamesal. 2001), (Grice and  this subject is in (Kosut, Walmsley, and Rabitz 2005).
Walmsley 1996), (Parigt al. 2001), (Verstraetest A completely data-based approach using learning con-
al. 2001), (Walmsley and Waxer 1998). As shown trolis presentedin (Phan and Rabitz 1997); this is very
originally in (Pariset al. 2001), maximum likelihood valuable for quantum chemistry where models are not
estimation (MLE) is directly applicable to quantum available.
state tomography of a quantum system with non-
continuing discrete measuremeritg,, data is taken
from repeated identical experiments at a finite number 2. QUANTUM STATE TOMOGRAPHY
of (discrete) sample times. It is shown there that the
MLE of the density matrix can be cast as a convex Consider a quantum system which has,, distinct
optimization problem. For continuous measurements outcomes, labeled by the index;, a = 1,...,nous,
a general formulation is presented in (Verstragte and which can be externally manipulated iniQeg
al. 2001). In (Kosut, Rabitz, and Walmsley 2003) distinctconfigurations, labeled by the index, v =
MLE is used as the identification step for adaptive 1,...,7cs. Configurations can include wave-plate an-
control design. gles for photon counting, sample times at which mea-
surements are made, and settings of any experimental
“knobs” such as external control variables., laser
L Supported by the DARPA QUIST Program wave shape parameters, magnetic field strengths, and




so on. Although not discussed here, for quantum pro- Z Moy =1,, My, >0 @)
cess tomography or Hamiltonian parameter estima- = K ’ T =
tion, configurations can also include a set of prepared

initial states. anda(p) is the reduced density output state of the

The problem addressed in this paper is to determine @-system model. A general (model) representation

the minimum number of experiments per configura- of & quantum system is th&raus operator-sum-

tion in order to obtain a state estimate of a specified representation (OSR) (Nielsen and Chuang 2000).

quality, i.e, what is the tradeoff between number of Specifically, in configuration, the system model can

experiments per configuration and estimation quality. be parametrized by the set iéfaus matrices, { K-}

The method used to solve this problem is based onas follows:

minimizing the size of the Craer‘Rao lower bound Koy Koy

on the estimation error (Craan1946). o.,(p) = Z Kvkpqu, Z K;kak =1,(8)
k=1 k=1

2.1 Data Collection with k., < n?.

The data is collected by recording measurement out-

comes from identical experiments repeatedtimes System in the model st We make the following

in each configuration. Letn - denote the number of  assumption throughotthe true systemisin the model
times outcomex is obtained from thé, experiments.  set. This means that,

Thus,
true true true
Pay’ = Pay(p™) = Tr Oayp 9)
5 Nary = Ly, Lexpt = E l, (1) K ! !
a ¥

This is always a questionable assumption and in most
where /e, is the total number of experiments. The engineering practice is never true. The case when the

data set consists of all the outcome counts, system igot in the model set will not be explored any
further here except for the effect of measurement noise
D= {nM a=1...nout } 2) which is discussed next. It is important to emphasize
Y=1 ety that in order to produce an accurate unbiased estimate

] . o ] of the true density it is necessary to know the noise
The design variables used to optimize the experimentglements (as described next) which is a consequence
are the non-negative integefé, } represented by the o assumption (9).

vector,

— T . .
=1l lny] ©) Noisy measurements  Sensor noise can engender more
e N . noisy outcomes than noise-free outcomes. Consider,
Let p;\'¢ denote the true probability of obtaining out- oy example, a photon detection device with two

comea when the system is in configurationwith photon-counting detectors. If both are noise-free,
1 rue . .

unknown true state inpyt™™*. Thus, meaning, perfect efficiency and no dark count prob-

E o, = Zypg}yle (4) ability, then, provided one photon is always present

at the input of the device, there are only two possi-
ble outcomes{10, 01}. If, however, each detector is
noisy, then either or both detectors can misfire or fire
even with a photon always present at the input. Thus
We pose the followingnodel of the system? in the noisy case there afeur possible outcomes:

pas(p) = Tt Mar s (p) 5) {10, 01, 11, 00}.

Let{ My, | =1,...,n04 }denotethe noisy POVM

wherep, (p) is the outcome probability of measuring and let{ M., |a =1,..., T, } denote the noise-
a when the system is in configurationwith input free POVM withng,y > Tious Where,

statep belonging to the set of density matrices,

where the expectatioR(-) taken with respect to the
underlying quantum probability distributions.

{pecnxn|p20, Trp:]-} (6) Ma’yzz Vaﬁ'yMB’y (10)
B=1
{M,.} are the POVM elements of the measurement
apparatus, and thus, for=1,.. ., ncg, The {v,s-} represents the noise in the measurement,
specifically, the conditional probability thatis mea-
) ) ) ) sured given the noise-free outcomievith the system
The notation here follows (Nielsen and Chuang 2GX),which

provides an overview of the postulates of quantum mechanics. In conflgura.uony. S_mce Ea VO‘,BV =1 ‘v’,é’,’y, it .
3 Positive Operator Valued Measure — a generalization of the quan-follows that if the noise-free set is a POVM then so is

tum measurement process (Nielsen and Chuang ZQ026). the noisy set.




2.2 Maximum Likelihood State Estimation and most likely not convex. And finally, the solution
depends op'™te, the very state to be estimated. For-
The Maximum Likelihood (ML) approach to quantum tunately all these issues can be alleviated or circum-
state estimation presented in this section, as well asvented.
observing that the estimation is convex, can be found
in (Pariset al. 2001), (Verstraetet al. 2001) and the
references therein. Using convex programming meth-
ods, such as an interior-point algorithm for computa-
tion, was not exploited in these references. State estimation variance lower bound

We first eliminate the dependence on the estimation
method. The following result can be established using
the Cramér-Rao Inequality (Crangr 1946).

If the experiments are independent, then the proba- Suppose the system generating the data is in the
bility of obtaining the data (2) is a product of the model set used for estimation, i.e., (9) holds. For ¢ =
individual model probabilities (5). Consequently, for [¢, --- £, ] experiments per configuration, suppose
anassumed initial statep, the model predicts that the p(¢) is a density matrix and an unbiased estimate of
probability of obtaining the data set (2) is given by, prue e, p(f) > 0, Tr p(¢) = 1,and E p(£) = ptrue,
Under these conditions, the estimation error variance
Prob {D, p} = [ par(p)™" (11)  satisfies,
o,y
E [|5(0) = p"™llfcn > V(€,p"™)  (15)
The data is thus captured in the outcome co{ints, }
whereas the model terms havepalependence. The ~Where

maximum likelihood estimate (MLE) of p is obtained V(L p™e) = Tr G(¢, p'™e)
by finding ap in the set (6) which maximizes the
log-likelihood function, or equivalently, minimizes the G(L, ptue) = Z 0,GA(p™) € R -1xn’~1
negative log-likelihood function, S
L(D,p) == naylogTr Oarp  (12) Gy = 3 Gonas,
@, P = o (ptrue)
! K - Dar (P™1€)

Specifically,

o Aoy = CTvec Oq~ € c’
minimize L(D, p)

subjecttop >0, Trp=1 (13)

andC € R™"*"*~1 jspart of the unitary matrix W =

) N ) [cC] e R"”*"” in the singular value decomposition,
L(D,p) is a positively weighted sum of log-convex

functions ofp, and hence, is a log-convex function of vecl, =W { Vi ] cR" (16)
p. The constraint thap is a density matrix forms a On2_1
convex set irp. Hence, (13) is in a category of a class

of well studied log-convex optimization problems, In general itis difficult to determine if any estimate
eg., (Boyd and Vandenberghe 2004). will achieve the Crarer-Rao lower bound. Under the

conditions stated, the ML estimatg}"(¢), the so-

lution to (13), approaches'™ ¢ with probability one,
2.3 Experiment Design for State Estimation asymptotically ad.xpt, increases, and the asymptotic

distribution becomes Gaussian with covariance given

In this section we describe the experiment design by the Cranef-Rao bound.
problem for quantum state estimation. We would like pe experiment design problem can be expressed by

to select the number of experiments per configuration, i, following optimization problem in the vector of
the elements of the vectér= [¢; - - - £, ]7 € R"",

S ) integer<’:
S0 as to minimize the error between the state estimate, o e
p(¢), and the true statgt™ . Specifically, we would minimize V (¢, p*"™*°)
like to solve for¢ from: subject toz ly = loxpy (17)

minimize E ||5(¢) — p™¢| 2.,

.
integer/, > 0
subject 0 £, = Llexp (14) o=
- wherelq,, is the desired number of total experiments.
integert, > 0 The good news is that the objectivE(Z, pt°), is
convex inf (Boyd and Vandenburgh 20047.5). Un-
whereley,; is the desired number of total experiments. fortunately, there are still two impediments: (i) re-
This is a difficult, if not insoluble problem for several  stricting ¢ to a vector of integers makes the problem
reasons. First, the solution depends on the estimation
method which producg®¢). Secondly, the problem is

integer combinatoric becaugééds a vector of integers 4 Proofs are eliminated to save space and are available upon re-
quest.




combinatorial; (i) the lower-bound functidi(, p*°)
depends on the true valugt™e. All of these diffi-

the problem no longer depends 68.,¢, A°°* can be
viewed as a distribution of experiments per configu-

culties can be alleviated to some extent. For (i) we ration.> There is also no guaranty thét,,iA°Pt is
can use the convex relaxation described in (Boyd and a vector of integer multiples of /£c.p. A practical

Vandenburgh 2004§7,5). For (ii) we can solve the

choice for obtaining a vector of integer multiples of

relaxed experiment design problem with either a set 1/lcypy IS,

of “what-if” estimates as surrogates fpi™¢, or use

nominal values to start and then “bootstrap” to more
precise values by iterating between state estimation
and experiment design. We now explain how to per-

form these steps.

Relaxed experiment design for state estimation Fol-
lowing the procedure in (Boyd and Vandenburgh
2004), introduce the variables, = (. /lexpt, €ach
of which is the fraction of the total number of exper-
iments performed in configuration Since all the/,,
and /..,y are non-negative integers, eakh is non-
negative andational, specifically an integer multiple
0f 1/lexpt, @nd in additionz7 A, = 1. Letpdenote a
surrogate fop'™¢, e.g., an estimate or candidate value
of ptrue, Using (15) gives,

V(l = loxpt\, p) =

Ve (18)

expt

and,

Tr G\, p) !

Z Ay Gy (p)

V(A 5)
A P) (19)

Hence, the objective functioi(¢, p) can be replaced
with V' (), p) and the experiment design problem (17)
is equivalent to.
minimize V (A, p)
subjectto ~ A, =1, A, >0 (20)

S
Ay —integer multiple ofl /£ expe
The objective is now a convex function of the, but

it is is still a combinatorial problem because theare
constrained to each be an integer multipld Hf expt.-

round
Zexpt

=round {Zexpt)\‘)pt} (22)
If £°Pt is the (unknown) integer vector solution to (17),
then we have the relations:

V(s p) 2 V(P 5) 2 V (bexpe A, 5)(23)

The gap within which falls the optimal solution can
be no worse than the difference betwdéffzoud, 5)
and V (Lexpt A°PY, p), which can be computed solely
from A\°Pt, If the gap is sufficiently small then for
all practical purposes the “optimal” solution APt.
From now on we will refer to\°P* as the optimal

solution rather than the relaxed optimal.

Bootstraping A standard approach used to circum-
vent not knowing the true state needed to optimize
the experiment design is to procede adaptively, or by
“bootstraping.” The idea is to use the current estimate
of the initial state found from (13), then solve (21), and
then repeat. The algorithm at tleth iteration looks
like this:

~

k) = argminV({(k— 1), )

AP () = argmin V(A p = 5(K)  (24)

(k) = round {fex, APt (k) }

The initial distribution?(o) could be chosen as uni-
form, e.g., the same for a not too large number of
configurations. The algorithm could also start by first
solving for a distribution from an initial state surro-
gate. In each iteration we could also veliy,. Al-
though each optimization is convex, the joint problem
may not be. Conditions for convergence would need to

If >\ is only otherwise constrained to the non- negauve be |nVest|gated as well as eStab|IShIng that this method
reals then this has the effect of relaxing the constraint is efficient,i.e,, reduces the number of trials. We will

that the /, are integers. As phrased in (Boyd and
Vandenburgh 2004), theelaxed experiment design
problemis:

minimize V' (), p) Z AGL(p)
subjectto ~ A, =1 (21)

-~
Ay >0

The objective is convex, the equality constraint is lin-

ear, and the inequality constrains are convex, hence

this is a convex optimization problem ik € R ™<=,
Let \°P* denote the optimal solution to (21). Since

not pursue this any further here.

2.4 Example: Experiment Design for Sate Estimation

A schematic of an apparatus for state tomography of a
photon specified by the quantum state (density matrix)
pis shown in figure 1.

5 Caveat emptor: The relaxed optimal experiment design distribu-
tion, A\°Pt, is optimal with respect to the initial stae a surrogate

for ptTue. Thus, A\°Pt is not optimal with respect tgt ™. This

should be no surprise because the underlying goal is to find a good
estimate ofptrue,
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Fig. 1. Detection apparatus for single-photon tomog-
raphy

The set up has two photon-counting detectors, A, B.
There are two continuous variable settings for the
guarter-wave plate and half-wave plate angjea.

The objective is to determine the optimal settings

of these parameters and number of experiments per

setting for estimation of the state using as data
the photon counts from the two detectors. For these
type of optical experiments there is significant cost
(in time) associated with changing wave plate angles
and very little cost (in time) for an experiment. As a
result, although a uniform distribution can produce a
good quality estimate, it is gery costly in terms of
changing wave plate angles.

Suppose the wave plate settings are,

{h’y, q7|’7:1,"'7n0fg} (25)

Assume also that the incoming stadbvays is one
photon, never none. Hencg, € C?2*2. Assuming
each detector has efficiengy < 1 and a non-zero
dark count probability), then there are four possible
outcomes at detectors A,B denoted by the outcome
indicesa. € {10, 01, 00, 11}. Following (Grice and
Walmsley 1996, Walmsley and Waxer 1998) the prob-
ability of a dark count is denoted by the conditional
probability,

1/1‘0 =4 (26)

wherel|0 means the detector has fired “1” given that
no photon is present at the detector “0.” As shown
in (Grice and Walmsley 1996), it therefore follows

that the probability that the detector does not fire “0”
although a photon is present at the detector “1” is
given by,

Vo1 = (1=n)(1-9) (27)

Herel—n is the probability of no detection arid-4 is
the probability of no dark count. The remaining con-
ditional probabilities are, by definition, constrained to
obey:

[y

Vijo + Yojo
vipn+ Vo

(28)

The probabilities for the firing patterns in are thus
given by (5) with the following observabled .

_ 10 01

Ml[),’y = 1/1‘11/0|0.Z\4',Y + u1‘0V0|1M7
_ 10 01

MOL'Y = Vo‘ll/llOM'y + VO‘UylllM'y

(29)

M, = o1 Volo M0 + vy MO
00,y — Vo|1Poloi~ ojoPo|1 M~
— 10 01

M1177 = Vl‘ll/llOM'y + Vl‘UylllM'y

where{) %} are the noise-free observables. Simula-
tions were performed for two input state cases:

1
Ppure = 5

11

pure state: 11

|

0.6 —0.2¢
0.2: 0.4

(30)
mixed state pmixg = [

|

For each input state case we compuiédt with and

without “noise:”

detector efficiency 7 =1
dark count probabilityy = 0
detector efficiency 71 =0.75
dark count probabilityy = 0.05

no noise{
yes noise{

For all cases and noise conditions we used the wave
plate settings:

hi=0G—1)(5°),i=1,...,10
G=(G-13),i=1,..10 G
Both angles are set frofhto 45° in 5° increments.
This yields a total ofi.¢; = 10? = 100 configurations
corresponding to all the wave plate combinations. The
optmal distribution,\°?*, was obtained by solving
(21) using a Barrier method (Boyd and Vandenburgh
2004, Ch.10).

Figure 2 shows the optimal distributions?! versus
configurationsy = 1,..., 100 for all four test cases:
two input states with and without noise. Observe that
the optimal distributions areot uniform but are con-
centrated near the same particular wave plate settings.
These settings are very close to those established in
(Jameset al. 2001).

To check the gap between the relaxed optimufht
and the unknown integer optimum we appeal to (22)-
(23). Table 1 confirms that these distributions are
good approximation to the unknown optimal integer
solution for even not so largé.,: for the two state
cases with no noise.

Table 1. Gap between sub-optimal and re-
laxed solutions.

t T
V (LexptApure Ppure) V (Lexpt A% 1 Pmixd)

I
P VI (ppure) ppure) V(2T (pmixd) Praixd)
100 9797 7761
1000 19950 9735

10000 19989 9954




Table 2 compares the distributions for optimal and uni-
form distributions at all 100 angles by examining the
minimum number of experiments required to obtain
an RMS estimation error of no more than 0.01.

Table 2. Comparison of optimal and uni-
form distributions.

optimal uniform
input state round {fexpiAP* ) (1/100) 1(A°PY)
Negg = 100 Negg = 100
Ppure, NO NOise 20308 29274
Ppure, YES NOise 37775 52825
Pmixd, NO Noise 41890 64780
Pmixd, YES Noise 61049 94385

Although the uniform distribution at all 100 angles
does not require a significant increase in the number
of experiments, as already mentioned it isgy costly
approach in terms of the time required to change the
wave plate angles. From figure 2 it is clear that many
of the wave-plate angles can be eliminated thereby
leading a suboptimal experiment design with only a
few settings. Although not shown, these suboptimal
settings do not require a significant increase in the

number of experiments required to achieve the desired **

estimation accuracy of 0.01.

3. CONCLUDING REMARKS

The results presented show that an efficient numeri-
cal method based on convex programming can opti-
mize the experiment for quantum state tomography.
In addition, the estimation of the state and/or process
using data from non-continuing measurements is co-
pasetic with Maximum Likelihood Estimation. Both

the experiment design and estimation work naturally
together and both can be solved using convex opti-

Ppure, NO NOISE

03

025

60 8 100 10

Ppure; YES NOiSe
015

0.0

60 8 100 10

Pmixd,» NO NOISe

0

0 2 8 100 10

Pmixd, YES NOise

015
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Fig. 2. Optimal distributions

mization methods. The same methods can be used

for quantum process tomography and Hamiltonian pa-
rameter estimation (Kosut al. 2005).
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