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Abstract: This paper is concerned with modeling and control of a class of bilinear 
systems. They are described by infinite number of ODEs. After introduction of model 
applications, the methodology of analysis of such models, based on system 
decomposition, is presented. The model description is transformed into a vector 
integro-differential equation, which makes it possible to analyze its behavior and 
address a particular optimization problem arising in the given model application. The 
optimization problem is stated and necessary conditions of optimal control are 
derived. Subsequently, the gradient method for finding optimal control is shown, 
illustrated by an example. Finally, some remarks on the model applicability are 
presented. Copyright © 2005 IFAC 
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1. INTRODUCTION 

Despite long history of research and rich literature 
devoted to problems of modeling and control of 
infinite dimensional systems, almost all efficient 
methods developed to deal with them present 
approaches suitable for PDE models. Optimization 
tasks, on the other hand, are often limited to LQ 
problems. More general solutions, involving abstract 
differential equations (Curtain and Zwart, 1995), 
lead, in turn, to theoretical results, which 
applicability is arguable. 

Models based on infinite number of state equations 
may be applied to a variety of systems. They may 
describe e.g. RC ladders, which are approximation of 
long transmission lines, models of drug resistance 
evolution caused by gene amplification (Kimmel and 
Axelrod, 1990, Polanski et al., 1997), or some 
queuing systems (Kleinrock, 1976). Usually, 
additional assumptions are made, resulting in 
tridiagonal system matrices. Analysis of such models 
is often limited to their finite-dimensional 
approximation. However, in that case, some 
dynamical properties may be neglected. Other 
approaches consist in diffusion approximation.  

Yet another approach, used in modeling of queuing 
systems, is based on analysis of linearized models 
and mean probabilities instead of state variables.  

It should be stressed that, as shown in our previous 
papers, (e.g. Swierniak et al., 1998), work on infinite 
dimensional models in the form of ODEs may lead to 
compact results, convenient in further analysis, which 
would be impossible or very difficult to obtain when 
using other methods. Moreover, the models dealt 
with in this paper are nonlinear one and base on state 
space description. 

The main applications of the work seem to be in the 
fields of biomathematics and controlled queuing 
systems. The first domain includes, among others, 
modeling of evolution of cancer cells and design of 
optimal chemotherapy protocols. The latter may 
cover applications in computer or telecommunication 
systems. The examples from both areas are presented 
in the following sections. 

The main contribution of this paper is in presenting a 
coherent methodology that makes it possible to 
effectively analyze the introduced class of dynamical 
systems. Though it bases on our previous works (e.g. 



Smieja et al. 2002), the model hitherto presented is 
much more general than those studied in the past. 
Moreover, the biomedical model that serves as an 
example here, has been corrected here (in comparison 
to (Smieja et al., 2003)) to more closely follow the 
behavior of a biological system. 

2. A MODEL OF CONTROLLED QUEUING 
SYSTEM. 

Let us suppose that in the analyzed queuing system 
intensity of service can be controlled. It can be 
achieved, for example by directing incoming requests 
to different stations that have different performance 
(with cost of use or leasing them increasing with 
growing efficiency). It is justifiable to assume that 
the difference in the efficiency will be visible only 
for small length of the queue. If Pi(t) denotes the 
probability that the length of the queue at the time 
instant t is equal to i, the resulting set of equations 
describing such system can be presented in the 
following way: 
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  (1) 
where λ, λi, µ  and µi are model parameters, 
0 ≤ u(t) ≤ umax represents control effect on the service 
intensity.  

The aim is to minimize probability of a very long 
queue, simultaneously taking into account the 
cumulative cost of the control, i.e. 
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3. BIOMATHEMATICAL MODELS 

In this section certain model of cell population with 
evolving drug resistance caused by gene 
amplification or other mechanisms is presented. The 
model, based on results of (Harnevo and Agur, 1993, 
Axelrod et al., 1994), is general enough to 
accommodate different interpretations and its 
properties has been thoroughly discussed in our 
previous works (see e.g. Smieja at al., 2000, Smieja 
and Swierniak, 2003). 

We consider a population of neoplastic cells stratified 
into subpopulations of cells of different types, labeled 

by numbers i = 0,1,2, … . If the biological process 
considered is gene amplification, then cells of 
different types are identified with different numbers 
of copies of the drug resistance gene and differing 
levels of resistance. Cells of type 0, with no copies of 
the gene, are sensitive to the cytostatic agent. Due to 
the mutational event the sensitive cell can acquire a 
copy of gene that makes it resistant to the agent. 
Likewise, the division of resistant cells can result in 
the change of the number of gene copies but the 
probability of mutational event in a sensitive cell is of 
several orders smaller than the probability of the 
change in number of gene copies in a resistant cell. 
Since we do not limit the number of gene copies per 
cell, the number of different cell types is 
denumerably infinite. Depending on the assumptions 
about model parameters and chemotherapy 
properties, its dynamics can be differently presented. 
Two examples are given below, in which Ni(t) 
denotes the expected number of cells of type i at time 
t. 

3.1. A model taking into account partial sensitivity of 
the resistant subpopulation 

In this case, it is assumed that the resistant 
subpopulation consists of two parts – one, which is 
partially sensitive to the drug, and another one, 
completely drug-resistant. Then the following set of 
equations is obtained: 
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  (3) 
where 0 ≤ µi ≤ 1 µi are “efficiency factors”, 
determining the effectiveness of the drug in relation 
to particular type of cell. Due to general assumptions 
about the model, presented at the beginning of this 
section, these factors satisfy the following relations: 
 0 ≤ µi ≤ µi−1 ≤ 1, i = 1,2,...,l−1. (4) 

3.2. Phase-specific chemotherapy 

The cell cycle is composed of a sequence of phases, 
traversed by each cell from its birth to division. 
These phases are: G1, or the growth phase; S, or the 
DNA synthesis phase; G2, or the preparation for 
division phase; and M, or the division phase. After 
division, the two daughter cells usually re-enter G1. It 
may however happen, that one or both daughters 
deviate from this path and become dormant or 



resting, or in other words, they enter the quiescent G0 
phase. From there after a variable and usually rather 
long time cells may reenter the cell cycle in G1 
(Baserga, 1985). 

The subpopulation sensitive to the cytostatic agent 
will consist of three types of cells: type i = 0, being in 
the phase G1 i = 1, being in the phase S and i = 2 
being in the phase G2M. The cells of type i ≥ 3 are 
assumed to be completely drug resistant and therefore 
no cell cycle phases are explicitly distinguished in 
them. If Ni(t) denotes the average number of cells of 
type i at the time t, then the system is described by 
the following set of equations: 
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  (5) 
Due to the interpretation of the control variables u 
and v 

 0 ≤ u(t), v(t) ≤ 1 (6) 
The goal is to find the optimal control, which 
minimises the performance index: 
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where r1, r ≥ 0 are weighing factors.  

The idea on which such optimisation is based is to 
minimise the resistant cancer subpopulation at the 
end of therapy with simultaneous minimisation of 
negative cumulative effect of the drug represented by 
the integral component. 

4. ANALYSIS OF A GENERAL MODEL  

Although more examples could be given, all of them 
form a class of infinite dimensional, bilinear systems 
that can be described by following state equation: 
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u(t) – m-dimensional control vector 
u = [u0 u1 u2 ... um–1 ]T, 01, 02, 03– zero matrices of 
dimensions l x ∞ , ∞ x l–1 and ∞ x ∞,  respectively, 
l > m. 

It is important to note that model parameters satisfy 
the following relations: a3 > a1 > 0, and a2 < 0. 
However, full problem analysis can be done in other 
possible cases (e.g. when no additional conditions are 
to be satisfied by parameters a1, a3), using exactly the 
same line of reasoning. 

The performance index to be minimised is given by 
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To make analysis of such models possible it is 
convenient to present it in the form of a block 
diagram shown in Fig.1, effectively decomposing the 
model into two parts The first one, of finite 
dimension, does not require parameters to meet any 
particular assumptions. The second subsystem is 
infinite dimensional, with tridiagonal system matrix, 
and does not include terms containing control 
variables and non-zero initial conditions. 

It has been shown in our previous works devoted to 
biomedical modeling (Smieja and Swierniak, 2003, 
Swierniak et al. 1999), that for initial condition 
xi(0) = δik (Kronecker delta), i.e. xk(0) = 1, xi(0) = 0 
for i ≠ k, following relations hold true: 
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where )(sxk
l , )(sx k

Σ  - Laplace transforms of )(txk
l  

and ∑
≥

Σ=
1

)()(
i

kk
i txtx , respectively (superscript k is 

introduced to underscore the index of the state 
variable with non-zero initial condition). Now, let us 
assume that k = l. Then, after calculating inverse 
Laplace transform the following formulae are 
obtained: 
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  (14) 
where Ik(t) – modified Bessel function of the k-th 
order. 

Taking into account the meaning of the impulse 
response and transfer function it can be easily proved 
that the following relation holds true: 
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This makes it possible to analyze stability of the 
closed-loop system (Smieja et al. 2002). 

Let us now assume the initial conditions xi(0) = 0 for 
i ≥ l-1. The assumption does not constrain 
applicability of the model, since it is justified in most 
cases. Moreover, unless there is non-zero initial 
condition on infinite number of state variables it is 

always possible to decompose the model in such way 
that the condition is satisfied.  

Then, the last equation in the first subsystem, 
influenced directly by control, as presented on Fig. 1, 
can be transformed into an integro-differential form: 
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where k1(t) is the inverse Laplace transform of K1(s), 
given by (13) multiplied by a3. 

If we denote  
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then the system (8) of infinite number of differential 
equations can be transformed into the set of l-1 
differential and one  integro-differential equations 
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where (...)
~

(..), fh - respective l–dimensional vector 
functions 
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Furthermore, 
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Figure 1. Decomposition of the general system model 
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and )(tx l
Σ is defined by (14). 

It should be emphasized that the transformation of 
the system description from (8) to (18) does not 
require any additional conditions. Moreover, the 
methodology can be further extended to systems, 
whose first subsystem can take any form – not 
necessarily linear. The only constraining assumption 
is the form of the second, infinite-dimensional 
subsystem, which must be given exactly in the form 
presented here. However, in more general case, in 
which the function hk( ) is not constrained by the 
form given by (18), though the transformation of 
system description is possible, it does not yield a 
specific solution to the optimization problem unless 
the class to which this function belongs, is defined. 

This description can be used for model simulation. 
Indeed, in most applications even though the full 
state is infinite-dimensional, only the first state 
variables are of interest (e.g. the probability that the 
length of a queue is relatively low, i.e. below given 
l). What should be stressed is that the formulae 
obtained by model decomposition, at least in some 
cases are much simpler than those found in literature. 
For example, the relation describing probability in 
M/M/1 system includes terms containing infinite 
series of Bessel function (Kleinrock, 1976) 
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For the sake of modeling, the description presented in 
this paper is clearly much more convenient. 

5. SOLVING THE OPTIMAL CONTROL 
PROBLEM 

The optimization problem is defined by the system 
(19), performance index (10) and constraints on 
control 
 0 ≤ uk(t) ≤ 1  
A number of formulations of necessary conditions for 
the optimization problem for dynamical systems 
governed by integro-differential equations can be 
found in literature. However, they usually either are 
too general to be efficiently applied in such particular 
problem or have too strong constraints for example 
smoothness of the control function. Nevertheless, 
following the line of reasoning presented in (Bate 
1969), it is possible to derive the necessary 
conditions for optimal control (Smieja and Swierniak, 
2003): 
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 pi(T ) = 1, i = 0,1,...,l−1 (27) 
p(t) – adjoint vector. 

Taking into account constraints on control variable 
and bilinear form of (19), it can be proved that, in 
order to satisfy (24), the optimal control must be of 
bang-bang type, under condition of nonexistence of 
singular arcs. Then, to find optimal number of 
switches and switching times, a gradient method can 
be developed, following the line of reasoning 
presented in (Smieja et al. 2000) that was developed 
for a scalar control. One must remember, however, 
that in the case of infinite dimensional model and 
bang-bang control, finding the optimal number of 
switches is almost impossible. Therefore our 
algorithm will find optimal switching times for 
arbitrarily chosen number of switches. Of course, it 
should be afterwards modified to analyse the effect of 
this number on the performance index, nevertheless 
the conclusions regarding the global minimum are a 
very delicate matter. 

Let us denote the switching times for control 
variables uk by k

k

u
jτ . 
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The change of the switching time required to 
minimize value of the performance index J is given 
by the following relation:  
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 jk = 1,2, …,Mk, κj - positive number 

Taking this into account the following algorithm can 
be applied: 
1. Assume number of switches for control variables u 
and v, as well as initial switching times for those 
controls. 
2. Solve the equation describing the system (18) for 
bang-bang control with assumed switching times. 
3. Compute p(t) from the adjoint equation (25) 
integrating it backward in time. 
4. Calculate values of k

k

u
jδτ   from (29). 

5. Compute new switching times. 
6. Repeat steps 2-5 until stop condition is satisfied. 



The gradient method has been applied to the 
biomedical model given by (5) and the results are 
shown in the Fig.2. Their main implication is that the 
two drugs should be administered in alternate 
fashion, which confirms the currently used medical 
procedures 

Though the concept of choosing arbitrary number of 
switches may seem arguable, at best, one must 
remember that the maximum number of switches is 
limited by what can realistically be done during 
chemotherapy and therefore it is possible to test 
solutions for all admissible number of switches. 

6. CONCLUSIONS 

This paper is concerned with an infinite dimensional 
bilinear dynamical model with a variety of 
applications. Basing on model decomposition, it is 
possible to analyze analytically some of dynamical 
properties of the model. The transformation of 
system description into one integro-differential 
equation allows both effective simulation and solving 
an optimal control problem with the performance 
index defined in l1 space of summable sequences. 

Though it must be acknowledged that the solution to 
the optimization problem presented here is only in 
the open-loop control form, the biological application 
justifies that approach, since it is not possible in this 
case, at least for the time being, to build a closed loop 
control system, preferred in standard control 
applications. Nevertheless, such theoretical approach 
is currently under investigation in hope that advances 

in experimental biomedicine will make it applicable 
in the future. 
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Figure 2. Results for the biomathematical model
(5): a) N0(t), b) N1(t), c) N2(t), d) N3(t), 
e) NΣ(t), f) u(t) (upper part) and v(t). 


