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Abstract: For discontinuous switched linear systems, even when they are built by
composing stable systems, examples of unstable systems are known. Here, three-
dimensional homogeneous continuous piecewise linear systems composed by two
linear systems sharing a boundary plane are considered. If the two linearization
matrices are non-singular, then the only equilibrium point is at the origin, which
is in the separation plane of the linear regions. For the important case where both
matrices have complex eigenvalues and their whole spectra are in the open-left
half of the complex plane, the possible counter-intuitive instability of the origin is
analytically proved. Thus, in this paper, examples of unstable continuous switched
linear system with just two stable components are shown. Copyright c©2005 IFAC.

Keywords: Piecewise linear systems, switched systems, stability

1. INTRODUCTION AND MAIN RESULTS

The stability issue is a problem of outstanding
relevance in nonlinear control and has deserved a
lot of attention in the past. Nevertheless, even for
the seemingly simple case of continuous piecewise
linear systems, several questions remain unsolved.
In particular, for the class of switched linear
systems with only two components, namely

ẋ = Aσx, (1)

where x ∈ Rn and σ : [0,∞) → {1, 2} is a piece-
wise constant function of time, called a switching
signal, several stability approaches have been re-
cently proposed (Agrachev and Liberzon, 2001),
(Boscain, 2002), (Liberzon and Morse, 1999),
(Shorten et al., 2003), (Shorten and Narendra,
2003), (King and Nathanson, 2004).

1 Authors are partially supported by spanish Ministerio
de Ciencia y Tecnoloǵıa under Grant BFM2003-00336

The value of the switching law σ at a given time
s might just depend on s or x(s), or both, or may
be generated using more sophisticated techniques.
In this paper, particular attention is paid to
the case of continuous switched systems, that is,
switched systems with the additional constraint
that the vector fields of the different subsystems
coincide at the switching times, and furthermore
the switching law is autonomous, only depending
on the state x(·). Thus, the resulting vector field is
a piecewise linear system, changing continuously
from one linear subsystem to the other when the
state x(·) hits certain boundary surface.

To be more specific, let us start with a rather ele-
mentary example. Consider the stability issue for
the planar continuous piecewise linear (CPWL)
system

ẋ =
{

A+x, if x > 0,
A−x, if x < 0,

(2)



where x = (x, y)T ∈ R2, the dot denotes deriva-
tives respect to the time s, and

A+ =
(

t+ −1
d+ 0

)
, A− =

(
t− −1
d− 0

)
.

Consider for instance the case t+ = t− = −1,
d+ = 1, d− = 25, and let us look for a Lya-
punov function. A first approach is to investigate
the existence of a common quadratic Lyapunov
function (CQLF) for such system. Then, in order
to apply the version of Shorten-Narendra theorem
given in (King and Nathanson, 2004), a simple
computation shows that

A+ ·A− =
(−24 −1

−1 −1

)
,

and this matrix has real negative eigenvalues.
Then it is concluded that the system has no
CQLFs. So, for the given parameter values, in
order to show the stability of system (2), more
general Lyapunov functions should be used. See,
for instance (Johansson and Rantzer, 1998).

On the other hand, the use of a Lie-algebraic
approach (Agrachev and Liberzon, 2001) cannot
be successful. Effectively, when such approach as-
sures the stability of a switched linear system, it
does so under all the possible switching signals
and it can be shown that there exists some switch-
ing signal for which the modified system (2) is
unstable, namely

ẋ =
{

A+x, if xy(x2 − y2) > 0,
A−x, if xy(x2 − y2) < 0.

(3)

Note that here the spirit of Example 2.1 in
(Branicky, 1998) is followed and that system (3)
is not continuous any longer.

However, by means of a thorough study of the
flow, as done in (Freire et al., 1998), it can be rig-
orously proved that planar CPWL systems with
two zones, Hurwitz matrices and a equilibrium
point in the separation line are always globally
asymptotically stable, and so system (2) with the
given parameter values is indeed stable.

Then, a quite natural question is whether higher
dimensional CPWL systems with Hurwitz matri-
ces are also globally asymptotically stable. As it
will be seen, the question has already a negative
answer for dimension three.

Thus, let us consider homogeneous CPWL sys-
tems in R3 with a separation plane, written in the
form

ẋ =
{

A+x, if x > 0,
A−x, if x < 0,

(4)

where x = (x, y, z)T ∈ R3, the dot denotes
derivatives respect to the time s, and

A+ =




t+ −1 0
m+ 0 −1
d+ 0 0


 , A− =




t− −1 0
m− 0 −1
d− 0 0


 .
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Fig. 1. The Poincaré half maps P− and P+ defined
for the section x = 0.

In Proposition 16 of (Carmona et al., 2002), it
is shown that, under generic conditions, every
CPWL system with two zones, can be written,
by means of a linear change of variables, in the
form (4). Such form, called generalized Liénard
canonical form, is strongly related to the classical
observability canonical form.

Note that the origin is always an equilibrium point
for system (4), and it will be the only one when
matrices A+ and A− are non-singular. Also, hav-
ing in mind the previous planar example, it will
not be useful to resort either to CQLF methods
or to Lie-algebraic criteria to characterize its sta-
bility. Instead, a direct study of the flow behavior
via Poincaré maps will be done.

In the following, our attention will be focussed on
system (4) when the eigenvalues of its matrices are
λ±, α±+ iβ± and α±− iβ± with β± > 0, that is,
both matrices have a pair of complex eigenvalues.
In this case, the following two parameters

γ+ =
α+ − λ+

β+
and γ− =

α− − λ−

β−
,

which are crucial for the analysis to be made in
the sequel, will be assumed to be positive along
the paper.

By means of the flow of system ẋ = A−x with
x 6 0, some points p = (0, y0, z0) with y0 > 0 can
be transformed into points q = (0, y1, z1) with
y1 < 0, so a left Poincaré half map P− can be
defined as (y1, z1) = P− (y0, z0). Analogously, a
right Poincaré half map P+ can be defined in some
region of the half plane x = 0, y < 0, with range in
the half plane x = 0, y > 0, so that the composed
Poincaré map P = P+ ◦ P− can be defined from
a subset of the half plane (y, z) with y > 0 into
itself, see Fig. 1.

Since if x(s) is a solution of system (4), then
µx(s) for µ > 0 is also a solution, it can be easily
deduced that both Poincaré half maps transform
half straight lines contained in the plane x = 0



and passing through the origin into half straight
lines contained in the plane x = 0 that also pass
through the origin, see Fig. 1 again.

A manifold C will be said a cone if for all x ∈
C one has that µx ∈ C for every µ > 0. Thus,
if there exists an invariant half straight line for
the Poincaré map P , then it will be said that the
system has a two-zonal invariant cone. Obviously,
an invariant cone can degenerate into a plane.

The most interesting results of this work concern
the dynamics of these systems in case of having
one non-smooth invariant cone, which behaves in
a similar way to the center manifold for non-
hyperbolic differentiable systems. But it should be
remarked that the determination of the dynamics
on such manifold is here a non-local problem due
to the lack of smoothness, which is a source of
difficulties.

In Proposition 10 of (Carmona et al., 2005a),
a result about the stability of the origin in ab-
sence of invariant cones was given; namely, under
the previous assumption of existence of complex
eigenvalues for both matrices, if system (4) has no
invariant cones, then the origin is an asymptoti-
cally stable equilibrium point if and only if λ+ < 0
and λ− < 0. Nevertheless, as far as the authors
know, results about stability of the origin in pres-
ence of invariant cones have not been given yet.
In this direction, the following theorem explains
the difficulty in giving such kind of results.

Theorem 1. Assume that both matrices in system
(4) are Hurwitz and have a pair of complex
eigenvalues, in such way that γ+ > 0 and γ− > 0.
The following statements hold.

(a) The origin has a one-dimensional stable man-
ifold and a two-dimensional invariant manifold
which is an attractive two-zonal cone. Generi-
cally, both manifolds are non-smooth.

(b) The dynamics on the invariant cone is either
of stable focus type, or a center, or of unstable
focus type, and there exist specific systems for
the three cases.

Note that the above theorem assures that one can
have a saddle-focus dynamics for the origin even
when the vector field is composed by continuously
matching two linear Hurwitz systems. It must be
also remarked that without additional knowledge
about parameter values it is not possible to dis-
criminate the three cases of statement (b). The
three possible situations described in the above
theorem are sketched in Figure 2.

The mechanism which is responsible for the in-
stability of the origin in the corresponding case
of statement (b) of Theorem 1 can be elucidated
by using Figure 3. In the figure, besides the plane

O

(b) (c)(a)

O O

Fig. 2. The three situations predicted by Theorem
1. (a) The dynamics on the invariant cone
is of stable focus type. (b) The center case.
(c) Unstable focus dynamics on the invariant
cone, what leads to a saddle-focus dynamics
in a neighborhood of the origin.

x = 0, two half-planes Π± appear. They are the
portions of focal planes of matrices A± in each
half-space. In the figure, it also appears the cone
C which is invariant for the flow and intersects the
plane x = 0 at the lines containing the segments
OA and OB. The orbit from the point A to point
B, which is on the cone, uses the flow with x < 0
and it continues from B to C, also on the cone,
using the flow with x > 0.

The key point to understand the non intuitive
behavior predicted by statement (b) is to see
how the composition of two flows defined by
Hurwitzian matrices can cause that the point C
be farther from the origin than the starting point
A. This can happen because each piece (AB and
BC) of the orbit AC goes towards the origin by
spiraling on the cone and approaching its focal
plane, but the position of these planes are very
different.

The rest of the paper is outlined as follows. In
Section 2 Poincaré half maps and slope transition
maps are given and its main properties are shown.
In Section 3, the proof of Theorem 1 is sketched.
From the ideas in the proof, it is immediate to
build numerical examples corresponding to the
two generic cases of Theorem 1 (obviously, the
center case must be excluded). For more technical
details, see (Carmona et al., 2005b).

2. POINCARÉ HALF MAPS.

Since the flow of system (4) is made up by match-
ing two linear flows, each Poincaré half map will
be studied separately as a first step to compute
the complete Poincaré map. In the following, the
auxiliary function

ϕγ(τ) = 1− eγτ (cos τ − γ sin τ),

introduced in (Andronov et al., 1966) to study pla-
nar piecewise linear systems, will be extensively
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Fig. 3. Geometric sketch of an orbit on the invari-
ant cone that, starting at the point A and
spiraling towards the origin, approaches the
half-plane Π− up to the point B, and then
goes into the region x > 0 approaching the
half-plane Π+ up to the point C. Counter-
intuitively, the point C can be farther from
the origin than point A.
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Fig. 4. The graph of the function ϕγ(τ) for γ > 0.

used, see Fig. 4. Note that this function satisfies
ϕ−γ(τ) = ϕγ(−τ) and when γ > 0, a value τ̂
∈ (π, 2π) exists such that ϕγ(τ̂) = 0.

To compute the left Poincaré half map P−, the
matrix A− must be used. Starting from (0, y0, z0)
at s = 0, a direct integration of system (4) leads to
the expression of x(s). Imposing that x(τ/β−) =
(0, y1, z1), the initial and final coordinate ratios
can be parameterized as follows,

u0(τ) =
z0

y0
= λ− + β−

[
(γ−)2 + 1

] eγ−τ sin(τ)
ϕγ−(τ)

u1(τ) =
z1

y1
= λ− − β−

[
(γ−)2 + 1

] e−γ−τ sin(τ)
ϕ−γ−(τ)

.

(5)
Furthermore,

y1

y0
= −ϕ−γ−(τ)

ϕγ−(τ)
e
(γ−+ α−

β− )τ
. (6)

In the above expressions, y0 > 0, y1 < 0, and
τ ∈ (0, τ̂−), where τ̂− is the first positive solution
of ϕγ−(τ) = 0, see Fig.4. In the sequel, the
parameter τ in (5) and (6) will be called the left
phase.

Relations (5) allow to define in parametric form
a map u1 = S−(u0), to be called as left slope
transition map. It transforms the slope u0 of the
half straight line x = 0, z = u0y, with y > 0,
which passes through the point (y0, z0) with y0 >
0, into the slope u1 of its corresponding image by
means of map P−. This image is defined by x = 0,
z = u1y with y < 0, and passes through the point
(y1, z1) = P− (y0, z0) with y1 < 0.

In the next lemma, whose proof is direct, some
properties of the functions u0(τ) and u1(τ) are
shown.

Lemma 2. For the functions u0(τ) and u1(τ) de-
fined in (5), the following statements hold.

(a) The function u0(τ) satisfies u0(π) = λ−,

lim
τ→τ̂−

u0(τ) = ∞, and
du0

dτ
< 0, for all τ ∈ (0, τ̂−).

(b) The function u1(τ) satisfies u1(π) = λ−,

lim
τ→0

u1(τ) = −∞, and
du1

dτ
> 0 for all τ ∈ (0, τ̂−).

(c) If γ− > 0, then

lim
τ→τ̂−

u0(τ) = −∞,

lim
τ→τ̂−

u1(τ) = u−H = α− − β− cot τ̂−.

The left focal half plane Π− of system (4) is given
by the equation

(λ−)2x− λ−y + z = 0,

and is invariant for system ẋ = A−x. Then, every
point (0, y0, z0) in the domain of P− and located
above the plane Π−, i.e. z0 > λ−y0, is transformed
by the flow into the point (0, y1, z1), which is also
located above Π−, i.e. z1 > λ−y1. Analogously,
when z0 < λ−y0, one has z1 < λ−y1.

Several properties of the map S− that follow from
Lemma 2 and from Proposition 15 in (Carmona
et al., 2005a) are gathered in the next result.

Proposition 3. For the slope transition map S−

the following statements are true, see Fig. 5.

(a) The map S− is decreasing with S−(λ−) =
λ−, and has the straight line u1 = −u0 +2t−/3
as an oblique asymptote when u0 → +∞.

(b) The interval [λ−,∞) is mapped by S− onto
the interval (−∞, λ−] . The parametric repre-
sentation (5) for these points is defined for
τ ∈ (0, π] .
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Fig. 5. The function u1 = S−(u0) for λ− < 0,
α− < 0, and γ− > 0.

(c) If γ− = 0, then S−(u0) = −u0 + 2t−/3 =
−u0 + 2λ− and the map has an affine graph.

(d) If γ− > 0, then S′′(u0) < 0 for all u0,
and the image by S− of the interval (−∞, λ−]
is the interval

(
u−H , λ−

]
, where u−H is defined

in Lemma 2. For these points, the parametric
representation of S− verifies τ ∈ [π, τ̂−) .

By considering now the system ẋ = A+x and
integrating from x(0) = (0, y1, z1), after impos-
ing that x(τ/β+) = (0, y2, z2), one obtains the
parametric representation

u1(τ) =
z1

y1
= λ+ + β+

[
(γ+)2 + 1

] eγ+τ sin(τ)
ϕγ+(τ)

u2(τ) =
z2

y2
= λ+ − β+

[
(γ+)2 + 1

] e−γ+τ sin(τ)
ϕ−γ+(τ)

(7)
and

y2

y1
= −ϕ−γ+(τ)

ϕγ+(τ)
e
(γ++ α+

β+ )τ (8)

where y1 < 0, y2 > 0, and now τ ∈ (0, τ̂+), being
τ̂+ the first positive solution of ϕγ+(τ) = 0.

By changing the superscript − to +, functions
u1 and u2 defined in (7) satisfy the properties
shown in Lemma 2 for u0 and u1 respectively. The
parameter τ in (7) and (8) will be called as the
right phase.

Equations (7) are a parametric representation of
the right slope transition map u2 = S+(u1),
defined in a similar way to map S−, which also
satisfies Proposition 3. Now, the image of points
(0, y1, z1) in the domain of P+ located above
(respectively, below) the right focal half plane Π+

are above (respectively, below) Π+.

Remark 4. If there exists ū such that S+ [S− (ū)] =
ū, then the existence of an invariant half straight
line, or equivalently, of a two-zonal invariant cone
is concluded. The existence of such fixed points in
the composed map S = S+ ◦S− corresponds with

the existence of solutions for the equations

u0(τ−) = u2(τ+),
u1(τ−) = u1(τ+),

or, what amounts the same, with the existence
of solutions for S− (u) = (S+)−1 (u). When λ+ =
λ− = λ, both focal half planes are contained in the
plane Π ≡ λ2x−λy+z = 0, and so, the plane Π is
a planar invariant cone. Then the above system of
equations has trivially the solution τ− = τ+ = π.

Clearly, the ratio of distances from the origin for
two consecutive impact points into the half plane
x = 0, y > 0, satisfies

r2
2

r2
0

=
y2
2 + z2

2

y2
0 + z2

0

=
y2
2

y2
0

1 + u2
2

1 + u2
0

, (9)

what in the case of being on an invariant cone
(u2 = u0) reduces to

r2

r0
=

y2

y0
. (10)

3. PROOF OF THEOREM 1.

Let us begin this section by considering an aux-
iliary lemma related to the ratios given in (6)
and (8), which will play a key role in determining
the asymptotic behavior of the orbits on possible
invariant cones.

Lemma 5. Assume that λ < α < 0, and let τ̂ be
the first positive zero of ϕγ(τ) = 0. Then, the
continuous function

Ψ(τ) =





ϕ−γ(τ)
ϕγ(τ)

e(γ+ α
β )τ , if 0 < τ < τ̂ ,

1, if τ = 0,

satisfies e
λ
β π < Ψ(τ) < 1 for 0 < τ < π,

Ψ(π) = e
α
β π, and lim

τ→τ̂
Ψ(τ) = ∞. Furthermore,

there exists a unique value τ∗ ∈ (π, τ̂) such that
Ψ(τ∗) = 1, and Ψ(τ) > 1 for τ∗ < τ < τ̂ .

Now, under the hypotheses of Theorem 1, it is
immediate to show that the vectors[

1, α±,
(
α±

)2 +
(
β±

)2
]

are the eigenvectors associated to the real eigen-
values. Then, the one-dimensional stable manifold
of the origin is the union of two half straight lines.
Obviously, this manifold is non-smooth apart from
the case α+ = α−, β+ = β−.

Since γ+ > 0 and γ− > 0, by using statement (d)
of Proposition 3, it can be concluded that there
exists only one value ū such that S+ [S− (ū)] = ū,
and so there is only one two-zonal invariant cone.
In fact, it is easy to show that the derivatives of
S± belong to the interval (−1, 0), and then the
attractiveness of the fixed point ū follows.
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Fig. 6. Existence of one invariant cone when γ+ >
0 and γ− > 0. Note that τ+ ∈ (π, τ̂+) and
τ− ∈ (0, π) .

Regarding statement (b) of the theorem, the three
cases are related to the value of the quotient (10),
so that there is a stable focus behavior if y2 < y0,
there is a center when y2 = y0, and a unstable
focus when y2 > y0. To verify that the three
cases are possible, let us begin by considering
the degenerate case λ+ = λ−. Here, from the
last assertion of Remark 4, on the corresponding
planar invariant cone it turns out that τ− = τ+ =
π. Then, by using (6), (8), and (10)

r2

r0
=

y2

y1

y1

y0
= e

(
α+

β+ + α−
β−

)
π

< 1,

where Lemma 5 has been taken into account. In
this case, the dynamics on the planar invariant
cone is of stable focus type. By perturbing this
situation, it is immediate to get a similar dynam-
ics on a non-planar invariant cone.

To show the existence of unstable dynamics on the
invariant cone, let us choose−β− = λ− < α− < 0,
and λ− < λ+ < α+ < 0. Then from Proposition
3, the phases of Poincaré half maps S− and S+

in the fixed point ū satisfy 0 < τ− < π, and
π < τ+ < τ̂+; see Fig. 6.

Keeping α+, λ+, β+ and α− fixed, and putting
λ− = −β− = λ+ − k, by increasing k, the fixed
point ū moves towards u+

H while S−(ū) tends to
−∞. Then, the right phase τ+ goes towards τ̂+, so
that from Lemma 5 it turns out that |y2/y1| → ∞,
while the left phase τ− remains in the interval
0 < τ− < π. Thus, again from Lemma 5, one
obtains ∣∣∣∣

y1

y0

∣∣∣∣ > e
λ−π

β− = e−π.

Hence, for a value of k sufficiently large, from (10)
it follows that

r2

r0
=

y2

y1

y1

y0
> 1.

Therefore, the orbits contained in the invariant
cone move away from the origin like in an unstable
focus.

Finally, by considering the case k = 0, which
corresponds with the already analyzed case λ+ =
λ−, and using the continuity, there also exists a
certain value k∗ such that r2 = r0, and then the
dynamics on the cone is of center type.
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