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Abstract: In this paper a new algorithm for estimating the rotor resistance of
current-fed induction motors is presented. The proposed method does not require
persistent excitation and achieves asymptotic convergence even in the case of zero
rotor speed and/or low torque. However, it does require measurement of the rotor
speed and flux. To make the scheme practically feasible, a method for estimating
the rotor flux is devised. The proposed estimator is combined with an indirect
field-oriented control law to achieve torque/speed regulation in the absence of
rotor resistance and load torque information. The efficacy of the resulting adaptive
output feedback control scheme is tested via simulations. Copyright c© 2005 IFAC
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1. INTRODUCTION

The problem of estimating the rotor winding
resistance of induction motors has received a lot
of attention recently due to its significance in
improving the performance of control algorithms,
as well as its application in fault detection, see e.g.

(Marino et al., 1995; Marino et al., 1998; Pavlov
and Zaremba, 2001) and references therein. It
is well-known that the variation of the rotor
resistance, which may be significant during the
operation of the induction motor, can affect the
performance of the controller and even lead to
instability. This is particularly true for indirect

field-oriented control (IFOC) schemes, which are
widely considered as the industry standard, see
e.g. (Leonhard, 1985; De Wit et al., 1996; Bodson
and Chiasson, 1998; Peresada et al., 1999).

In this paper we develop a new method for esti-
mating the rotor resistance of current-fed induc-
tion motors (Leonhard, 1985; Dawson et al., 1998)
using measurements of the rotor speed, the elec-

tromagnetic torque and the rotor flux norm. The
proposed method does not require persistence of
excitation and achieves asymptotic convergence
even in the case of zero rotor speed and/or low
torque. Moreover, it provides an asymptotic esti-
mate of the unknown load torque. Further, the
problem of torque/speed regulation by means
of output feedback is addressed by combining
the proposed estimator with the standard IFOC
scheme.

The paper is organized as follows. Section 2 de-
scribes the dynamical model of an IFOC-driven
current-fed induction motor. In Section 3 an es-
timator for the unknown rotor resistance and the
unknown load torque is designed based on mea-
surements of the rotor flux norm and the gener-
ated electromagnetic torque. Section 4 combines
the proposed estimator with the standard IFOC
to obtain an adaptive output feedback controller.
Simulations of the resulting scheme are carried out
in Section 5 and some conclusions are given in
Section 6.



2. PROBLEM FORMULATION

The dynamical model of an induction motor in
the stator reference frame (also known as a-b
or two-phase equivalent model) is given by the
equations (Leonhard, 1985)

λ̇ab =−

(

Rr

Lr

I − npωJ

)

λab +
MRr

Lr

iab (1)

ω̇ =
npM

mLr

iTabJλab −
τL

m
(2)

i̇ab =
M

σLsLr

(

Rr

Lr

I − npωJ

)

λab

−

(

Rs

σLs

+
M2Rr

σLsL2
r

)

iab +
1

σLs

vab , (3)

where λab = [λa, λb]
T

∈ R
2 is the rotor flux

vector, iab = [ia, ib]
T

∈ R
2 is the stator current

vector, vab = [va, vb]
T

∈ R
2 is the stator input

voltage, ω is the rotor speed, Rr, Lr, M , np,
m, Rs and Ls are positive constants representing
the rotor resistance, rotor inductance, mutual
inductance, number of pole pairs, moment of
inertia, stator resistance and stator inductance,
respectively, σ = 1 − M2/ (LsLr) is the leakage
parameter, τL is the load torque and

I =

[

1 0
0 1

]

, J =

[

0 −1
1 0

]

.

The dynamical model of the current-fed induction
motor is obtained from the above equations by
taking the stator current vector iab as the con-
trol input, i.e. by neglecting the electromagnetic
dynamics in the stator circuit. This is justified in
practice by the use of high-gain current control
loops. Defining the rotation matrix

e−Jnpq =

[

cos(npq) sin(npq)

− sin(npq) cos(npq)

]

,

where q is the rotor shaft angle, and the transfor-
mations

λr = e−Jnpqλab, is = e−Jnpqiab (4)

yields the system

λ̇r =−
Rr

Lr

λr +
MRr

Lr

is

ω̇ =
npM

mLr

iTs Jλr −
τL

m
,

where λr ∈ R
2 is the transformed rotor flux vector

and is ∈ R
2 is the transformed stator current

vector. Note that the above system describes the
dynamic behavior of the current-fed induction
motor in a frame rotating with angular speed npω
(Kim et al., 1997).

In the sequel, to simplify the presentation and
without loss of generality, we assume that all
constants are equal to one, except for the rotor re-
sistance and the load torque which are considered
unknown. Defining the control input as u = is
yields the simplified model

λ̇r =−Rrλr + Rru (5)

ω̇ = uT Jλr − τL . (6)

The indirect field-oriented controller (IFOC) is
described by the equations (De Wit et al., 1996)

u = eJρd

[

yd

τd/yd

]

(7)

ρ̇d =
R̄rτd

y2

d

, (8)

where yd and τd are the reference values of the
flux norm and the torque, respectively, R̄r is an
estimate of the rotor resistance and

eJρd =

[

cos ρd − sin ρd

sin ρd cos ρd

]

.

In what follows we focus (mainly) on the case of
torque regulation, where τd is a constant reference,
as opposed to speed regulation, where τd is the
output of a PI controller, i.e.

τd = −

(

KP +
KI

s

)

(ω − ωd) , (9)

where ωd is the speed reference, s denotes the
Laplace operator and KP , KI are constant gains.
Note, however, that the two cases can be con-
sidered as approximately equivalent, if the PI is
sufficiently slow.

Consider now the variables

ξ1 = uT Jλr , ξ2 = uT λr , y =
√

λT
r λr

and suppose that the generated electromagnetic
torque ξ1 and the flux norm y are available for
measurement. The closed-loop system (5)–(7) can
be rewritten in the ξ1, ξ2 and ω co-ordinates as

ξ̇1 =−Rrξ1 + ρ̇dξ2 +
τ̇d

c

(

τd

y2

d

ξ1 + ξ2

)

(10)

ξ̇2 =−ρ̇dξ1 − Rrξ2 + Rrc

+
τ̇d

c

(

−ξ1 +
τd

y2

d

ξ2

)

(11)

ω̇ = ξ1 − τL , (12)

where c = y2

d + (τd/yd)
2

, while the dynamics of
the flux norm are given by

ẏ = −Rry +
1

y
Rrξ2 . (13)



Note that, for the case of the torque regulation
problem, τ̇d = 0, hence the equations (10)-(11)
reduce to

ξ̇1 =−Rrξ1 + ρ̇dξ2

ξ̇2 =−ρ̇dξ1 − Rrξ2 + Rrc .

Our objective is to obtain asymptotic estimates
of the rotor resistance Rr and the load torque τL

using measurements of ξ1, y and ω.

3. ESTIMATOR DESIGN

Motivated by the adaptive control tools developed
in (Astolfi and Ortega, 2003; Karagiannis et al.,
2003) we define the error variables

z1 = τ̂L − τL + β1(ω) (14)

z2 = R̂r − Rr + β2(ξ1) , (15)

where β1(·) and β2(·) are continuous functions yet
to be specified, and the update laws

˙̂τL =−
∂β1

∂ω
(ξ1 − τ̂L − β1(ω)) (16)

˙̂
Rr =−

∂β2

∂ξ1

[

(

−R̂r − β2(ξ1)
)

ξ1 + ρ̇dξ2

+
τ̇d

c

(

τd

y2

d

ξ1 + ξ2

)

]

, (17)

where ξ2 is obtained from the identity 1

ξ2

1
+ ξ2

2
= cy2 . (18)

The resulting error dynamics are described by the
equations

ż1 =
∂β1

∂ω
z1 (19)

ż2 =
∂β2

∂ξ1

ξ1z2 . (20)

Selecting the function β1(·) as

β1(ω) = −k1ω (21)

with k1 > 0 yields the error system

ż1 = −k1z1 , (22)

which has a globally exponentially stable equilib-
rium at the origin, hence z1 converges to zero. As

1 Solving (18) for ξ2 we obtain two solutions from which

we select the positive one, i.e. ξ2 =
√

cy2
− ξ2

1
. This is

justified by the fact that the dynamics of the square of the

flux norm are given by ẏ2 = −2Rry2 + 2Rrξ2, hence y2 is

a filtered version of ξ2.

a result, from (14) an asymptotic estimate of the
load τL is given by

τ̄L = τ̂L + β1(ω) . (23)

Note, moreover, that the constant k1 which corre-
sponds to the convergence rate of the estimation
error can be arbitrarily assigned.

Consider now the problem of finding a function
β2(·) such that the system (20) has an asymptot-
ically stable equilibrium at z2 = 0. 2 A possible
selection is

β2(ξ1) =
k2

2

1

1 + k3ξ2

1

(24)

with k2 > 0, k3 > 0 constants, yielding the stable
(uniformly in ξ1) error dynamics

ż2 = −
k2k3ξ

2

1

(1 + k3ξ2

1
)
2
z2 . (25)

Remark 1. The advantage of (24) over the more
obvious selection β2(ξ1) = k2

2
ξ2

1
is that it ensures

boundedness of R̂r for any ξ1. This will be par-
ticularly useful in the following section to prove
stability of the adaptive closed-loop system.

Remark 2. A guideline for tuning the parameters
k2 and k3 in (25) is to select k3 to maximize the

function k3ξ
2

1
/
(

1 + k3ξ
2

1

)2

for the nominal value
of ξ1 and then select k2 according to the desired
convergence rate.

From (15), assuming that ξ1/
(

1 + k3ξ
2

1

)

is not in
L2, an asymptotic estimate of the rotor resistance
Rr is given by

R̄r = R̂r + β2(ξ1) . (26)

Summarizing, the proposed (second-order) esti-
mator is given by the equations (16)-(17), (21),
(24) and (26).

4. ADAPTIVE OUTPUT FEEDBACK
CONTROL

Consider again the closed-loop system (5)–(8),
where R̄r is given by (26). It was shown in the
previous section that the estimate R̄r remains
bounded and asymptotically converges to the true
value Rr, provided that ξ1 is not identically equal
to zero. We will now show that, for the torque
regulation case, the rotor flux and the generated

2 It is interesting to note that, for any function β2(·), when

ξ1 = 0 the system (20) has a stable equilibrium manifold

given by the z2-axis. This implies that it is not possible to

estimate the rotor resistance when the torque is identically

equal to zero.



torque remain bounded and asymptotically con-
verge to the reference values.

Proposition 1. Consider the IFOC-driven current-
fed induction motor described by the equa-
tions (10)–(13), where ρ̇d is given by (8) and yd

and τd are constant references, in closed-loop with
the estimator given by the equations (16)-(17),
(21), (24) and

R̄r = max(R̂r + β2(ξ1), Rmin) (27)

with Rmin > 0 an arbitrarily small lower bound
on Rr. Then, for all initial conditions, the states
ξ1 and ξ2 remain bounded and, moreover,

lim
t→∞

ξ1(t) = τd, lim
t→∞

ξ2(t) = y2

d

and
lim

t→∞

y(t) = yd .

Proof: Define the error variables

x1 = ξ1 − τd, x2 = ξ2 − y2

d

and note that the system (10)–(12) can be rewrit-
ten in the x1, x2 and ω co-ordinates as

ẋ1 =−Rrx1 +
R̄rτd

y2

d

x2 +
(

R̄r − Rr

)

τd (28)

ẋ2 =−
R̄rτd

y2

d

x1 − Rrx2 −
(

R̄r − Rr

) τ2

d

y2

d

(29)

ω̇ = x1 + τd − τL . (30)

Consider now the Lyapunov function

V (x1, x2) =
1

2
x2

1
+

1

2
x2

2
,

whose time-derivative along the trajectories of
(28)-(29) satisfies

V̇ (x1, x2) =−Rr

(

x2

1
+ x2

2

)

+τd

(

R̄r − Rr

)

(

x1 −
τd

y2

d

x2

)

.

A simple application of Young’s inequality shows
that there exist constants ε > 0 and δ > 0 such
that

V̇ (x1, x2) ≤ −εV (x1, x2) + δ
(

R̄r − Rr

)2

,

hence the system (28)-(29) is input-to-state stable
with respect to R̄r −Rr. It remains to prove that
the error R̄r − Rr is bounded and asymptotically
converges to zero. To this end, recall first that the
dynamics of the error variable z2 defined in (15)
are described by (25), hence z2 ∈ L∞ and

ξ1z2

1 + k3ξ2

1

∈ L2 .

Since z2 is bounded, R̄r is also bounded, hence
ξ1, ξ2 ∈ L∞ and, from (10)-(11) and (25), the
time-derivatives of ξ1, ξ2 and z2 are also bounded.
From Barbalat’s lemma, this implies that

lim
t→∞

ξ1(t)z2(t)

1 + k3ξ1(t)2
= 0 ,

hence either z2 converges to zero or ξ1 converges
to zero and z2 converges to a nonzero constant.
Due to the dynamics (10)-(11) the latter is only
possible if ρ̇d = 0. But from (8) and (27) we have

|ρ̇d| ≥
Rmin|τd|

y2

d

> 0 .

Hence z2 and therefore R̄r −Rr converge to zero.
As a result, x1 and x2 are bounded and asymptot-
ically converge to zero, hence ξ1 converges to τd

and ξ2 converges to y2

d. This, from (13), implies
that the flux norm y converges to the reference
value yd. /

Remark 3. A practical limitation of the proposed
scheme is that it relies on measurements of the
generated torque ξ1 and the flux norm y, which,
in turn, require knowledge of the rotor flux. To
overcome this problem it is necessary to devise a
method for estimating the flux vector λab. To this
end, note that from (1) and (3) we obtain

λ̇ab = −
σLsLr

M
i̇ab −

RsLr

M
iab +

Lr

M
vab ,

where i̇ab can be computed using (4) and (7).
Hence, the (open-loop) observer

˙̂
λab = −

σLsLr

M
i̇ab −

RsLr

M
iab +

Lr

M
vab

is such that λ̂ab −λab = const, i.e. λ̂ab is an exact
estimate of λab up to a constant error term. Since
under normal operation the flux has zero mean,
this error can be practically removed by filtering
out the DC component of λ̂ab.

5. SIMULATION RESULTS

The model of the induction motor (1)–(3) has
been simulated using the parameters Rr = 2,
τL = 2 and assuming all other constants are equal
to one. A high-gain current control loop has been
implemented as

vab = Kc

(

eJnpqu − iab

)

with Kc = 500, where u is given by (7)-(8) and R̄r

is given by (27). The initial conditions are defined
as λab(0) = [1, 0]T , ω(0) = 0 and iab(0) = [0, 0]T .
The reference of the flux norm has been set to
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Fig. 1. Time histories for the torque regulation case.

yd = 1. The adaptive gains have been set to
k1 = k2 = 10 and k3 = 1. In order to compare the
response with the non-adaptive case, during the
first 5s we replace R̄r in (8) with a fixed estimate.
In this case we have taken R̄r = Rr/2.

5.1 Torque regulation

We first consider the torque regulation problem,
where the torque reference is fixed at τd = 2.
Figure 1(a) shows the time histories of the flux
vector λr and flux norm y, while Figure 1(b)
shows the time histories of the control input u, the
controller state ρd and the flux angle. A plot of the
generated torque ξ1 is shown in Figure 1(c). Notice
that, as expected from the results in (De Wit et

al., 1996), the mismatch in the estimate of the
rotor resistance during the first 5s results in a
significant steady-state error both in the flux level
and in the generated torque. The convergence of
the estimates τ̄L and R̄r to the true values τL and
Rr is shown in Figure 1(d).

5.2 Speed regulation

For the speed regulation case, recall that τd is
given by the PI control law (9). An implemen-

tation of this control law, which uses the estimate
of the load torque τL computed in (23), is given
by

τ̇d = −KP (ξ1 − τ̄L) − KI (ω − ωd) .

A plot of the flux vector λr and the flux norm y
is shown in Figure 2(a), while Figure 2(b) shows
the time histories of the control input u, the
state ρd and the flux angle. The time histories
of the generated torque ξ1 and the rotor speed
ω are shown in Figure 2(c). Again we see that
all signals converge to their respective reference
values. Figure 2(d) shows the convergence of the
estimates τ̄L and R̄r to the true values τL and Rr

with a small steady-state error due to the filtering
of the flux observations (see Remark 3).

6. CONCLUSIONS

In this paper we have presented a new algorithm
for estimating the rotor resistance and load torque
of a current-fed induction motor, using measure-
ments of the rotor speed, flux magnitude and
electromagnetic torque. It has been shown that
the generated estimates converge asymptotically
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Fig. 2. Time histories for the speed regulation case.

to the true values. The proposed estimator has
been combined with an indirect field-oriented con-
trol law to achieve torque/speed regulation in the
absence of rotor resistance or load torque infor-
mation.
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