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Abstract: An alternative approach, between much others, for mathematical representation 
of dynamics systems with complex or chaotic behaviour, is a radial basis function neural 
network using k-means for clustering and optimized by pseudo-inverse and particle 
swarm optimisation. This paper presents the implementation and study to identify a 
dynamic system, with nonlinear and chaotic behaviour, called Rössler’s circuit, with 
concepts of multi-step-ahead prediction. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
The mathematical description of dynamic systems 
it’s not a simple task in which basic principles may 
be used. For complex systems, modelling using basic 
laws to determine the dynamic behaviour of such 
systems is not always possible. An interesting 
alternative to solve such problems would be an 
experimental for systems identification. A model 
based in an input-output system must be found, 
seeking a relation between these. 
 
In real life, most systems are nonlinear and the use of 
linear models is limited, because they cannot 
represent the system dynamics, such as its hysteresis, 
amplitude dependency, bifurcations or chaos 
(Ivankhnenko, 1971). This characteristics describes a 
nonlinear system and is necessary the development 
of techniques that model such behaviour. A 
particular area of nonlinear system identification is 
the chaotic modelling. A high number of experiments 
for classification, analysis, comprehension and 

control chaotic systems exists (Alligood et al., 1996; 
Ioh et al., 2001; Thamilmaran et al., 2000). 
 
Nonlinear systems identification is normally a 
difficult task. When the system is dissipative, to 
develop a model through experimental data became a 
challenge due to its nature. Although the system 
outputs are limited, the chaotic behaviour is 
essentially unstable, with asymptotic behaviour, 
producing strange attractors. Besides, the chaotic 
systems show a huge sensitivity to initial conditions. 
When two or more trajectories diverge and become 
non-correlated, a limit is imposed to make 
predictions and makes harder to determine if the 
identified model is equivalent to the tested system 
(Huang and Loh, 2001; Lian and Liu, 2000). 
 
The use of neural networks to nonlinear 
identification problems has attracted some attention 
in recent years. Neural networks are originally 
inspired by biologic neural networks’ functionality 
that may learn complex functional relations through a 



     

limited number of training data. Neural networks 
may serve as black-box models of nonlinear 
multivariable dynamic systems and may be trained 
using input-output data, observed from the system 
(Mcloone, et al., 1998; Narendra and Parthasarathy, 
1990). The usual neural network consists of multiple 
simple processing elements, called neurons, 
interconnections among them and the weights 
attributed to the interconnections. The relevant 
information of such methodology is stored in the 
weights. (Haykin, 1994; Pei and He, 1999). 
 
The main objective of this paper is to present an 
optimization approach for nonlinear identification 
using radial basis function neural network (RBF-NN) 
of Rössler’s chaotic electronic system. The RBF-NN 
uses the k-means clustering algorithm, and is 
optimized by pseudo-inverse and particle swarm 
optimization (PSO). 
 
This paper is organised as follows. In section 2, the 
Rössler’s system is presented. In section 3, the multi-
step-ahead prediction with RBF-NN is discussed. 
The simulation results are presented in section 4. The 
conclusions and future works are discussed in section 
5. 
 
 

2. RÖSSLER’S CIRCUITS 
 
The identification case study boarded in the paper is 
the nonlinear dynamic system with chaotic behaviour 
of Rössler (1976). The german scientist O. Rössler 
proposed a chaotic attractor composed by nonlinear 
differential equations. The Rössler’s equations are: 
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These equations show chaotic behaviour for (a, b, c) 
= (0.36; 0.40; 4.50). This behaviour is illustrated in 
Fig. 1. 

 
 
Fig. 1. Rossler’s attractor system for (a, b, c) = (0.36, 

0.40, 4.50). 
 
A pair of electronic oscillators is used to simulate 
Rössler’s chaotic oscillation, a study is developed in 
(Taherion and Lai, 2000). The schematic diagram of 

two unidirectionally coupled Rössler’s chaotic 
circuits is presented in Fig. 2. 
 

 
 

Fig. 2. Two coupled Rössler’s chaotic circuits 
diagram. 

 
A pair of unidirectionally coupled oscillators can be 
described, mathematically, as follows: 
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where x and y are the sets of dynamical variables of 
the two oscillators. The unidirectional coupling 
scheme is equivalent to the master-slave type of 
coupling because there is no influence, say, from y to 
x. The unidirectionally coupling scheme is actually 
quite representative of coupled nonlinear oscillators 
in general, because there always exists a 
mathematical change of coordinates to transform a 
pair of mutually coupled (bidirectionally coupled) 
oscillators into a pair of unidirectionally coupled 
ones, at least locally near the state of synchronization 
(Rössler, 1976). 
 
For the unidirectionally coupling scheme in our 
experiment, the differential equations describing the 
circuit are: 
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where g(x) = 0 if x ≤  3, g(x) = µ(x − 3) if x > 3. The 
parameters in Eq. above are as follows: α = 0.5, β = 
1, γ = 0.05, a1 = 0.113, a2 = 0.129, ε = 0.015, and µ = 
15. The uncertainties in these parameters are about 
5%. The resistors R1 and R2 in the circuit are chosen 
to be 75 kΩ and 67 kΩ, respectively, to ensure a 
systematic parameter mismatch between the two 
Rössler circuits. This difference corresponds to 
approximately 10% difference in the parameters a1 
and a2. 
 
 

3. MULTI-STEP-AHEAD WITH RBF-NN 
 
System identification is a process that requires the 
modeller involvement (Chen, et al., 1990; Ljung, 
1997). The designer must analyse which system’s 
variables are relevant for the modelling, and if the 
chosen structure model is adequate, otherwise, he 
must take the necessary decisions to solve the 
problem. The following steps may be quoted in the 
identification system process: (i) experimentation; 
(ii) nonlinear detection; (iii) structure model 
determination; (iv) parameters estimation phase; and 
(v) validation phase. 
 
There are several representations for nonlinear 
system modelling with chaotic behaviour. In this 
application is chosen RBF-NN. This neural network 
project can be seen as a curve adjustment problem 
(function approximation problem) in a high 
dimensionality space. For this, the RBF-NN learning 
is equivalent to find a surface in a multidimensional 
space that better fit the training data set, where the 
criteria for best fit is measured in statistic (Chen et 
al., 1990; Jang and Sun, 1993). 
 
The RBF-NN is a flexible tool in dynamic 
environment. They have the ability to quickly learn 
complex patterns and tendency present in data and 
quickly adapt to changes. Such characteristics make 
them adequate to temporal series prediction, 
especially those ruled by linear processes and/or non 
stationary (Lo, 1998). 
 
The radial basis function (or activation function) 
used in RBF-NN is Gaussian type as illustrated in 
Eq. 12. The estimated output is shown in Eq. 13. The 
Fig. 3 shows the general structure of RBF-NN. 
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where: 
 xi: inputs vector; 
 cj: activation function center (Gaussian); 
 σj: standard deviation. 
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where: 
 n: clusters quantity (neurons); 
 wm: weights;   
 km: hidden layer output. 
 
 

 
 
Fig. 3. General structure of RBF-NN. 
 
The clustering method used in this application by the 
RBF-NN for classification problems is k-means. Its 
implementation follows the steps: 
 
Step 1: Initialize functions centers. 
Adjust the function initial centers to the first training 
data. 
 
Step 2: Group all data with each function center. 
Each input data (xi) belongs to a cluster j*, where: 
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Step 3: Find each function center. 
For each cj: 
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where mj is the number of data of cluster j. 
 
Step 4: Repeat step 2, until there is no more changes 
in each cluster. 
 
The PSO is responsible for optimizing the centers 
obtained by k-means and also optimizing the 
Gaussian spreads, PSO has a population with random 
positions, each of these particles have a velocity , and 
the particles “fly” around the search space. The 
particles store their best position in their memory 
(pbest) and also the fitness in this point. 
 
The best pbest of all swarm is denominated as the 
best global position (gbest) (Gudise and 
Venayagamoorthy, 2003). The basic concept of PSO 



     

is to accelerate particles toward pbest and gbest, 
weighted by an acceleration factor at each time step. 
Mathematically, a particle follows the following 
equations. 
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where 1=∆t , t represents the actual iteration and t+1 
represents the next iteration Vid and Xid represents the  
particles’ velocity and position, rand1 and rand2 are 
random number between [0,1], used to maintain the 
population diversity. 
 
Eq. 16 is used to update each particle’s speed, for its 
calculus the speed in last iteration, multiplied by an 
inertial weight. The second factor is composed by a 
cognition part, the basis is the difference between the 
actual position of the particle and the best position it 
has achieved in history (pbest). 
 
The last factor is composed by a social component; 
the calculus basis is the particle actual position and 
the best position achieved by any particle in the 
algorithm execution (gbest). 
 
Eq. 17 represents the position update of a particle, 
according with its previous position and its actual 
speed, considering 1=∆t .  
 
One of the main reasons for the PSO attractive is the 
need to adjust few parameters (Xie et al., 2002). 
 
Constants c1 and c2 are positive constants 
denominated cognition and social components, 
respectively. These are the acceleration constants, 
varying the speed of the particle toward pbest and 
gbest, according to past experience. 
 
Constants c1 and c2 are not critical factors to 
algorithm convergence. However, a fine tuning of 
such values may cause a faster convergence. Values 
of c1 and c2 are assumed as 2.0, according to Gaing 
(1994). But recent researches inform that the choice 
may be even better if the cognition parameter higher 
than a social parameter, inside the limits 421 ≤+ cc  
(Parsopoulos and Vrahatis, 2002). 
 
The use of W, called inertial weight is proposed by 
Shi and Eberhart (1998), this parameter is 
responsible for a dynamic adjustment of the particle 
speed, so, it’s responsible for balancing the research 
performed by the algorithm between a local and a 
global one, making possible that the algorithm 
converges in a smaller number of iterations. A higher 
value of inertial weight make possible a global 
search, by the other side, a small value takes the 
algorithm into a local search. 
 
Through a dynamical adjustment of the inertial 
weight, it’s possible to dynamically adjust the search 

capability. Once the PSO search process is nonlinear 
and complex, it is hard, if not impossible, to 
mathematically model the search capability to 
dynamically adjust the inertial weight, so, a fixed or 
a linearly decaying inertial weight may be adopted. 
Other alternatives for dynamical adjustment or W are 
adoption of co-evolution, meta-optimization or 
adoption of fuzzy systems. 
 
Application of a high value of inertial weight at the 
start and decaying until a small value through the 
PSO execution causes the algorithm to own global 
search characteristics at the start and local search 
characteristics in the end of the execution. The value 
of W decaying from a maximum value of 0.9 towards 
a minimum value of 0.4 through the execution is a 
good call. When adopting linearly decaying inertial 
weights, normally Eq. 18 is adopted, for W update, 
where itermax is the maximum number of iterations 
and iter is the actual iteration (Shi and Eberhart, 
2002). 
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The linear optimization method to making the 
parameters of RBF-NN linear, in this application, is 
the pseudo-inverse. The update of each weight for 
training RBF-NN using this derivation of least mean 
squares is realized by Eq. 19. 
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where x(t) is the desired output. The error calculus is 
realized by: 
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The performance criteria evaluated for the dynamic 
system to be identified is the multiple correlation 
coefficient, 2R , between real output y(t) and the 
estimated output )(ˆ ty . 
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where n is the number of measured samples of the 
process output. 
 
When the value of R2 is equal to 1.0, indicates an 
exact fit of the model to the process’ measured data. 
The value of R2 between 0.9 and 1.0 is considered 
enough for practical applications, in control systems 
(Schaible et al., 1997). 
 
 
 
 
 
 



     

4. RESULTS 
 

In Table 1, the Rössler’s system identification results 
using a radial basis function neural network using k-
means for clustering and optimized by pseudo-
inverse and PSO with concepts of multi-step-ahead 
prediction are presented. 
 
In the estimation phase (training of RBF-NN) 10000 
samples were used, and in the validation phase 
10000 different samples were used. 
 
The results were obtained using 3 clusters for a 
multi-step-ahead prediction of coordinate x(t) of 
Rössler system. In this case, it’s used the addition of 
a white noise varying between [-0.1, 0.1] for the 
coordinate x(t). The tables 1 to 3 are formed with the 
number of steps ahead in the rows and the presence 
or not of noise in the columns. Table 1 presents the 
maximum of R2 obtained by the simulations; Table 2 
presents the mean of R2 and Table 3 presents the 
standard deviation of R2.  
 
Table 1. Maximum of R2 obtained for the simulations 
 

 Without noise With noise 
50 0.9931 0.9398 
60 0.9928 0.9101 
70 0.9922 0.9109 
80 0.9843 0.8776 
90 0.9807 0.8511 

100 0.9428 0.7649 
 

Table 2. Mean of R2 obtained for the simulations 
 

 Without noise With noise 
50 0.9305 0.9188 
60 0.9619 0.8932 
70 0.9276 0.8685 
80 0.8614 0.8517 
90 0.8719 0.8209 

100 0.7838 0.7022 
 

Table 3. Standard deviation of R2 obtained for the 
simulations 

 
 Without noise With noise 

50 0.0350 0.0119 
60 0.0530 0.0119 
70 0.0761 0.0286 
80 0.0943 0.0418 
90 0.0982 0.0488 

100 0.0967 0.0358 
 
Through Table 1 it’s possible to observe that the 
RBF-NN without noise is capable to predict 
efficiently until 100 steps-ahead. However,, for a  
system with Gaussian noise, the RBF-NN is capable 
to predict only 70 steps-ahead. The figures about 
these predictions are illustrated in Figs. 4, 5, 6 and 7. 
These figures present only the results for the 
validation phase of RBF-NN. 
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Figure 4. Output signal using RBF-NN with k-means 

without noise and 100 steps-ahead. 
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Figure 5. Output signal using RBF-NN with k-means 

and PSO without noise and 100 steps-ahead. 
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Figure 6. Output signal using RBF-NN with k-means 

with noise and 70 steps-ahead. 
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Figure 7. Output signal using RBF-NN with k-means 

and PSO with noise and 70 steps-ahead. 
 
 
 



     

5. CONCLUSIONS 
 
The case study of this paper intended to 
identification and validation of a Rössler’s circuit 
dynamic behaviour using RBF-NN. In this paper the 
RBF-NN to identification are presented and the 
methodology presented result with high precision 
when dealing with the approximation of Rössler’s 
circuit nonlinear chaotic behaviour. 
 
The preliminary presented results show that RBF-NN 
can be a powerful tool to predict temporal series and 
to study complex and chaotic behaviour. It’s possible 
to realize that the use of PSO in optimizing the 
centers generated by k-means has considerably 
increased the results, increasing the robustness of 
RBF-NN. 
 
Including noise it’s possible to observe that the 
applied methodology suffers a decrease in its’ 
results, however, the results, for 70 steps-ahead, may 
be considered acceptable, because R2 is above 0.9. 
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