

STUDY OF TWO SWARM INTELLIGENCE TECHNIQUES
FOR PATH PLANNING OF MOBILE ROBOTS

Cezar A. Sierakowski and Leandro dos S. Coelho

 Pontifícal Catholic University of Parana, PUCPR/PPGEPS/LAS
 Imaculada Conceição, 1155, Zip code 80215-901, Curitiba, PR, Brazil

E-mail: cezar.sierakowski@pucpr.br; leandro.coelho@pucpr.br

Abstract: Swarm intelligence was originally inspired in social behaviour in nature, also
considering the evolving aspects, several variations in swarm intelligence’s techniques
made it applicable to optimization problems. In this paper two case studies of static
environment, composed with obstacles are presented and evaluated, a comparative study
is evaluated between two techniques of swarm intelligence and a genetic algorithm for the
presented problems. Copyright © 2005 IFAC

Keywords: mobile robots, path planning, swarm intelligence, evolutionary algorithms,
optimization.

1. INTRODUCTION

Swarm intelligence is an emerging research area with
similar population and evolution characteristics to
those of genetic algorithms. However, it
differentiates in empathizing the cooperative
behaviour among group members. Swarm
intelligence is used to solve optimization and
cooperative problems among intelligent agents,
mainly in computer’s networks, mobile robotics (Liu
and Passino, 2004) and cooperative and/or
decentralized control (Baras et al., 2003). Swarm
intelligence is inspired in nature, in the fact that
contribution among living animals of a group
contribute with their own experiences to the group,
making it stronger in face of others. The most
familiar representatives of swarm intelligence in
optimization problems are: food-searching behaviour
of ants (Dorigo and Di Caro, 1999), particle swarm
optimization (Kennedy and Eberhart, 2001), and
artificial immune system (Castro and Timmis, 2002).

Swarm intelligence, in nature, may be composed of
three main principles: evaluation, comparing and
imitation. Evaluation is the capacity to analyze what
is positive or negative in nature, attractive or
repulsive. Even the smaller life forms have these

abilities, in the case of bacteria, they are able to
notice if the environment in which they are located is
noxious or not. Learning won’t happen unless beings
are capable of evaluate the attractive and repulsive
characteristics of the environment. Comparison is the
way living beings use other beings as a standard to
evaluate themselves, results of these comparisons
may become a motivation to learning and/or
modification. Imitation is an effective form of
learning. However, very few animals, in nature, are
capable of imitating, in fact, only human beings and
some species of birds are capable of such action
(Kennedy and Eberhart, 2001). These three basic
principles may be combined, in a simplified version,
in computer programs, opening possibilities for them
to adapt to complex problems. Animals, or groups of
animals, when foraging, act looking for maximizing
the amount of energy obtained per unit of time spent
foraging, considering the biological and
environmental limitations.

This paper contribution is to present a comparative
study between two swarm intelligence’s techniques
and a evolutionary technique, these are bacteria
colony, particle swarm optimization and genetic
algorithms. These techniques will be applied to two
path planning problems of mobile robots.

The next sections of the paper are presented as
follows. In section 2, the fundamentals of bacteria
colony algorithm are presented. The particle swarm
optimization is discussed in section 3. Two case
studies of path planning for mobile robots are
proposed in section 4. The simulation results and
conclusions are presented in sections 5 and 6,
respectively.

2. BACTERIA COLONY

Natural selection tends to eliminate animals with
poor foraging strategies and to favor gene
propagation of those with good foraging strategies,
once these have higher chances of succeeding in
reproduction. These evolutionary principles have
taken scientists to develop the foraging strategies,
turning it appropriate to optimization models
(Passino, 2002).

A bacterium position, in a time instant, can be
determined through equation (1), where the position
in that instant is calculated in terms of the position in
the previous instant and the step size C(i) applied in a
random direction Φ(j), generated in the bacterium
tumble,

() () () ()lkjiClkjlkj ,,,,',,1' φθθ ×+=+ (1)

To adapt such strategy to optimization problems, an
equation to determinate the cost of each position is
needed, to possibilitate the comparison between the
position and the environment. The cost is determined
by the equation,

() () () ()()lkjPlkjJlkjiJlkjiJ cc ,,,,,',,,,,, θ+= (2)

Through equation (2) is noticed that the cost of a
determined position J(I,j,k,l) is also affected by the
attractive and repulsive forces existing among the
diverse bacteria of the population
Jcc(θ’(j,k,l),P(j,k,l)).

After a determined number of chemotactic steps
(steps comprehending the movement and the cost
determination of each bacterium position), a
reproductive step occurs. In this reproductive step the
bacterium are sorted decreasingly by their
cumulative cost. The lower half of the list die, these
are the bacteria that couldn’t gather enough nutrients
during the chemotactic steps, and the upper half
divide themselves into two new bacteria, located in
the same position.

The bacteria colony algorithm is basically composed
by an elimination and dispersal loop, inside this loop,
there is another one, who is responsible for the
bacteria reproduction. Inside this one, there is a third
loop, responsible for generating the direction in
which each bacterium will run, determining the
period the bacterium will move and, as a
consequence, determining it’s position after the loop
execution, and calculating the fitness of these
positions. The reproductive loop is responsible for

determining which of the bacteria must reproduce
and which must be exterminated after the movements
executed in loop 3, through a cost analysis of their
positions along their movement. The first loop is
responsible for eliminating some bacteria; it’s ruled
by an elimination probability, repositioning them into
another random position of the search space. Details
of this approach are presented in Passino (2002).

3. PARTICLE SWARM OPTIMIZATION

The proposal of such algorithm appeared from some
scientists that developed computational simulations
of the movement of organisms such as flocks of birds
and fish schooling. Such simulations were heavily
based in manipulating the distances between
individuals, that is, the synchrony of the behaviour of
the swarm was thought as an effort to keep an
optimal distance between them. Sociobiologist E. O.
Wilson has outlined a link of these simulations to
optimization problems (Brandstätter and
Baumgartner, 2002).

In theory, at least, individuals of a swarm may
benefit from the prior discoveries and experiences of
all member of the swarm when foraging. The
fundamentals of developing particle swarm
optimization (PSO) is an hypothesis in which the
exchange of information among beings of a same
species offer some sort of evolutionary advantage.

Similarly to genetic algorithms (GAs) (Goldberg,
1989), PSO is an optimization tool based in a
population, where each member is called a particle,
that is, each particle is a potential solution to the
analyzed problem. However, unlike GAs, PSO does
not have operators, like crossover and mutation. PSO
does not implement the survival of the fittest
individuals, instead, it implements the simulation of
social behaviour.

The PSO algorithm works as follows, initially, a
random position population exists, each of these
particles has a speed, and the particles start to “fly
around” the search space. Each particle has a
memory, allowing it to remember the best position it
has visited in history (pbest), and also the fitness in
that position (Krohling et al., 2004).

The best position ever achieved by the whole swarm
is denominated the global best (gbest) (Gudise and
Venayagamoorthy, 2003). The basic concept of PSO
algorithm is to accelerate the particles towards pbest
and gbest, considering a random weight at each time
step. Mathematically, the particles move following
the equations:

()
()t

idgd

t
idididt

t
id

XPrandc

XPrandcVWV

−××

+−××+×=+

22

11
1

 (3)

tVXX t

id
t
id

t
id ∆+= ++ 11 (4)

where ∆t=1, t represents the actual iteration and t+1
represents the next iteration Vid and Xid represent the

particle speed and position respectively, rand1 and
rand2 are two random numbers with uniform
distribution in [0,1], used to maintain populations’
diversity.

Eq. (3) is used to update each particle’s speed, and
Eq. (4) represents the position update, according to
its previous position and its speed, considering ∆t=1.

Positive constants c1 and c2 are denominated
cognitive and social components, respectively. These
are the acceleration constants, responsible for
varying the particle speed towards pbest and gbest.
Constants c1 and c2 are not critical factors for
determining the algorithm convergence; however, a
correct tuning may cause the algorithm convergence
to occur faster.

The use of W, called inertia weight was proposed by
Shi and Eberhart (1998). This parameter is
responsible for dynamically adjust the speed of the
particles, so, it’s responsible for balancing between
local and global search, consequently, needing less
iterations for the algorithm to converge. A small
value of inertia weight implies in a local search, by
the other side, a high value leads to a global search.

Applying a high inertia weight at the start of the
algorithm and making it decay to a low value
through the PSO algorithm execution, makes the
algorithm globally search in the start of the search,
and search locally at the end of the execution. Eq. (5)
shows how the inertia weight is updated, considering
itermax the maximum number of iterations of the
algorithm and iter the actual iteration (Shi and
Eberhart, 2002).

iter
iter

WW
WW ×

−
−=

max

minmax
max (5)

The first step of the PSO algorithm is to start each
particle with random numbers, considering that the
random number must belong to the search space.
Next a loop starts being executed, and it remains
until the stopping criteria is met, the stopping criteria
may be the convergence of the algorithm, a
maximum number of iterations, or anything else.
Inside the loop the value of the fitness and the pbest
of each particle is determined. Once all particles
have been analyzed, it’s calculated the gbest, and
with this value, the velocity and position of all
particles is achieved.

4. TRAJECTORY PLANNING OF MOBILE
ROBOTS

Literature is rich in approaches to solve mobile
robots trajectory planning in presence of static and/or
dynamic obstacles (Tu and Yang, 2003; Bennewitz et
al., 2002; Melchior et al., 2003). One of the most
popular planning methods is the artificial potential
fields (Tsuji et al., 2002). However, this method
gives only one trajectory solution that may not be the

smaller trajectory in a static environment. The main
difficulties in determining the optimum trajectory are
due to the fact that analytical methods are extremely
complex to be used in real time, and the searching
enumerative methods are excessively affected by the
size of the searching space.

Recently, the interest in using evolutionary
algorithms, especially genetic algorithms, has
increased in last years. Genetic algorithms are used
in mobile robots trajectory planning, generally when
the search space is large (Fujimori et al., 1997; Xiao
et al., 1997; Gemeinder and Gerke, 2003).

The trajectory planning is the main aspect in the
movement of a mobile robot. The problem of a
mobile robot trajectory planning is typically
formulated as follows: given a robot and the
environment description, a trajectory is planned
between two specific locations which is free of
collisions and is satisfactory in a certain performance
criteria (Xiao et al., 1997).

Seeing the trajectory planning as an optimization
problem is the approach adopted in this article. In
this case, a sequence of configurations that moves the
robot from an initial position (origin) to a final
position (target) is designed.

A trajectory optimizer must locate a series of
configurations that avoid collisions among the
robot(s) and the obstacle(s) existing in the
environment. The optimizer must also try to
minimize the trajectory length found, in order to be
efficient. The search space is the group of all possible
configurations.

In the present study, it’s considered a 2-dimensional
mobile robot trajectory planning problem, in which
the position of the mobile robot R is represented by
Cartesian coordinates (x,y) in the xy plan. The initial
and destination points of the robot are (x0, y0) and
(xnp, ynp), where np is a design parameter. The initial
point is always (0,0).

Only the trajectory planning problem is empathized
in this paper, the robot control problem is not the
focus of this paper. However, details of the robots
movement equations can be found in Fujimori et al.
(1997). It’s assumed that the obstacles are circular in
the robot’s moving plan. Besides, the hypothesis that
the free 2-dimensional space is connected and the
obstacles are finite in size and does not overlap the
destiny point is true.

The optimization problem formulated consists of a
discrete optimization problem, where the objective
function f(x,y), which is the connection between the
technique used for optimization and the environment,
aims to minimize the total trajectory percurred by the
mobile robot and is ruled by

oobj ndyxf λ+α=),((6)

 () ()∑ −++−+=
=

pn

i
obj iyiyixixd

0

22)()1()()1((7)

where α and λ are weighted factors, dobj represents
the Euclidian distance between the initial and the
destiny point, n0 denotes the number of obstacles
prevented by the robot movement following the
planned trajectory, and np is the number of points
where a trajectory change occurs (project parameter
in this article). It’s noticed by the equation (6) that a
λ term exists, it’s an weighting (penalty) term for
unfeasible solutions, meaning, the trajectory that
intercepts obstacles. In this case, the fitness function
to be evaluated by optimization approaches of this
paper aims to maximize

ε+
=

),(yxf
Kfitness c (8)

where Kc and ε are scale constants.

5. SIMULATION RESULTS

The environment used for the trajectory planning is a
100x100 meters field. The search interval of the
parameters is xi ∈ [0,100] meters and yi ∈ [0,100] m,
where i=1,..,np. About the fitness it’s adopted α=1,
λ=200, Kc =100 and ε=1x10-6. Two simulated cases
and the results achieved by the GA, Bacteria Colony
and PSO are presented.

The GA used to simulate the cases had population
size 50, crossover probability 0.85, mutation
probability 0.15, size of each chromosome 16 bits
(binary codification), maximum number of
generations 100, the selection operator is roulette
wheeling with elitist structure.

For the bacteria colony algorithm the following
parameters needed to be adjusted p (optimization
problem’s dimension), S (population size), Nc
(number of chemotactic steps), Ns (maximum
number of steps that a bacterium can swim in a turn),
Nre (number of reproductions), Ned (number of
elimination-dispersals events), ped (elimination-
dispersal probability) and C(i), i=1,2,...S (speed of
the movement taken in one step) it is adopted, S=50,
Nc=15, Ns =10, Nre=4, Ned =2, ped = 0.3 and C(i)=2.5,
i=1,2,...S.

The PSO parameters are population size 50,
maximum number of iterations 100, maximum speed
10, maximum inertia weight 0.9, minimum inertia
weight of 0.4, and c1 = c2 = 2.

6.1 Case study 1: Environment with 4 obstacles

In Table 1 are presented the positions of the centers
(xc, yc) of the circular obstacles and their respective
radius (in meters) of case 1. The results obtained
with the bacteria colony are restricted to p=3. In
Table 2 the achieved solutions after executing each
algorithm 10 times are presented.

Table 1: Definition of obstacles for the case study 1.

obstacle number radius position (xc, yc)
1 10 (40, 15)
2 10 (20, 35)
3 20 (75, 60)
4 15 (35, 75)

Table 2: Results for an environment with 4 obstacles

for 10 experiments.

fitness genetic
algorithm

bacteria
colony

PSO

mean 0.6778 0.6937 0.6909
maximum 0.6892 0.6954 0.6987
minimum 0.6448 0.6908 0.6273
standard
deviation

0.0148 0.0014 0.0223

As noticed by the results presented in Table 2, the
three algorithms presented relatively similar
performances, when dealing with simple
environments. Because the environment is simple,
every experiment have achieved a feasible solution,
the best trajectory were achieved by PSO with a
fitness of 0.6987. In Figs. 1, 2 and 3, the best results
achieved by GA, Bacteria and PSO, respectively, are
presented.

Fig. 1. Best result achieved by GA, for study case 1,

after 10 experiments.

Fig. 2. Best result achieved by Bacteria Colony, for

study case 1, after 10 experiments.

Fig. 3. Best result achieved by PSO, for study case 1,

after 10 experiments.

The best result achieved for study case 1 were
achieved by the coordinates:

P1 = (27.6117, 28.4504);
P2 = (60.0076, 73.4066);
P3 = (62.8143, 75.9458).

6.2 Case study 2: Environment with 12 obstacles

Once the algorithms presented similar performances
in simple environments, a complex environment is
presented to test their performance. In Table 3 are
presented the center positions (xc, yc) of the circular
obstacles and their respective radius (in meters) for
case 2. The results obtained are restricted to p=5. In
Table 4 the results for the case study 2 are
summarized.

Table 3: Obstacles for case study 2.

obstacle number radius position (xc, yc)
1 10 (13, 25)
2 08 (10, 76)
3 05 (76, 09)
4 14 (45, 45)
5 09 (12, 55)
6 15 (80, 30)
7 13 (66, 77)
8 08 (32, 15)
9 07 (75, 55)

10 06 (87, 70)
11 08 (35, 66)
12 05 (45, 90)

Table 4: Results for an environment with 12

obstacles for 10 experiments.

fitness genetic
algorithm

bacteria
colony

PSO

mean 0.3039 0.5725 0.4182
maximum 0.4867 0.6564 0.6691
minimum 0.1721 0.2804 0.2584
standard
deviation

0.1021 0.1168 0.1772

As seen in Table 4, the genetic algorithm does not
work very well when dealing with complex
environments. The bacteria colony algorithm
achieved more regular solutions; this fact is noticed

by the higher mean and the best minimum for the
fitness after ten experiments. This fact happens
because the bacteria colony algorithm is a good
global optimizer algorithm. However, PSO achieved
the better solution for the environment, however the
mean fitness is lower because PSO a good local
optimizer.

In other case to simple environments, where the
performances of the algorithms were relatively
similar, the performances vary from one algorithm to
another in complex environments. In Fig. 4, 5 and 6,
the best solutions achieved by each algorithm is
presented. One point must be emphasized, in study
case 2, a good number of experiments couldn’t
achieve a feasible solution due to the complexity of
the environment.

Fig. 4. Best result achieved by GA, for study case 2,

after 10 experiments.

Fig. 5. Best result achieved by Bacteria, for study

case 2, after 10 experiments.

Fig. 6. Best result achieved by PSO, for study case 2,

after 10 experiments.

The best result achieved for study case 2 were
achieved by the coordinates:

P1 = (35.8869, 7.5879);
P2 = (41.5000, 13.1526);
P3 = (57.2419, 37.5937);
P4 = (69.5467, 59.5898);
P5 = (76.4572, 69.2533).

6. CONCLUSION AND FUTURE WORKS

A research area with special relevance to mobile
robot systems is devising suitable methods to plan
optimum moving trajectories. There exist many
approaches within the area of evolutionary
computation and swarm intelligence to solve the
problem of optimization of path planning in mobile
robotics. In this paper the application of the genetic
algorithms, bacteria colony and particle swarm
optimization is explored for this purpose.

Considering the results presented through this paper
it’s possible to conclude that there is an advantage in
using PSO instead of the other two algorithms,
because it achieved the better solution in both case
studies and it requires less time to execute. The
results of these simulations are very encouraging and
they indicate important contributions to the areas of
swarm intelligence and path planning in robotics.

However, in future works, more detailed studies
related to the parameters related to the three
techniques, specially related to the bacteria colony.

REFERENCES

Baras, J.S., Tan, X., and Hovareshti P. (2003),

“Decentralized control of autonomous vehicles,”
Proceedings of the 42nd IEEE Conference on
Decision and Control, Maui, Hawaii, USA, pp.
1532-1537.

Bennewitz, M., Burgard, W., and Thrun, S. (2002),
“Finding and optimizing solvable priority
schemes for decoupled path planning techniques
for teams of mobile robots,” Robotics and
Autonomous Systems, vol. 41, no. 2, pp. 89-99.

Brandstätter, B., and Baumgartner, U. (2002)
“Particle swarm optimization – mass-spring
systems analogon,” IEEE Transactions on
Magnetics, vol. 38, no. 2, pp. 997-1000.

Castro, L. N., and Timmis, J. I. (2002), “Artificial
immune systems: a new computational
intelligence approach,” Springer-Verlag, London.

Dorigo, M., and Di Caro, G. (1999), “The ant colony
optimization meta-heuristic,” in D. Corne, M.
Dorigo, and F. Glover (editors), New Ideas in
Optimization, McGraw-Hill, pp. 11-32.

Fujimori, A., Nikiforuk, P.N., and Gupta, M.M.
(1997), “Adaptive navigation of mobile robots
with obstacle avoidance,” IEEE Transactions on
Robotics and Automation, vol. 13, no. 4, pp. 596-
602.

Gemeinder, M. and Gerke, M. (2003), “GA-based

path planning for mobile robot systems
employing an active search algorithm,” Applied
Soft Computing, vol. 3, pp. 149-158.

Goldberg, D.E. (1989). Genetic algorithms in search,
optimization, and machine learning, Addison
Wesley: Reading, MA.

Gudise, V.G., and Venayagamoorthy, G.K. (2003)
“Evolving digital circuits using particle swarm,”
Proceedings of the International Joint
Conference on Neural Networks, vol. 1, pp. 468-
472.

Kennedy, J.F., Eberhart, R.C., and Shi, R.C. (2001),
Swarm intelligence. San Francisco: Morgan
Kaufmann Pub.

Krohling, R. A., Hoffmann, F., and Coelho, L. S.
(2004). Co-evolutionary particle swarm
optimization for min-max problems using
Gaussian distribution,” Proceedings of the
Congress on Evolutionary Computation,
Portland, Oregon USA, pp. 959-964.

Liu, Y., and Passino, K.M. (2004), “Stable social
foraging swarms in a noisy environment,” IEEE
Transactions on Automatic Control, vol. 49, no.
1, pp. 30-44.

Melchior, P., Orsoni, B., Lavaialle, O., Poty, A., and
Oustaloup, A. (2003), “Consideration of obstacle
danger level in path planning using A* and fast-
marching optimization: comparative study,”
Signal Processing, vol. 83, pp. 2387-2396.

Passino, K.M. (2002), “Biomimicry of bacterial
foraging for distributed optimization and
control,” IEEE Control Systems, vol. 22, no. 3,
pp. 52-67.

Shi, Y., and Eberhart, R. C. (1998) “Parameter
selection in particle swarm optimizer,”
Proceedings Seventh Annual Conference on
Evolutionary Programming, V.W. Porto, N.
Saravan, D. Waagen, and A.E. Eiben (eds.).
Berlin: Springer-Verlag, pp. 591-601.

Shi, Y., and Eberhart, R. C. (2002) “Fuzzy adaptive
particle swarm optimization,” Proceedings of the
2002 Congress on Evolutionary Computation,
Honolulu, Hawaii, USA, vol. 1, pp. 101-106.

Tsuji, T., Tanaka, Y., Morasso, P. G., Sanguineti, V.,
and Kaneko, M. (2002), “Bio-mimetic trajectory
generation of robots via artificial potential field
with time base generator,” IEEE Transactions on
Systems, Man and Cybernetics - Part C, vol. 32,
no. 4, pp. 426- 439.

Tu, J., and Yang, S.X. (2003), “Genetic algorithm
based path planning for a mobile robot,”
Proceedings of the IEEE International
Conference on Robotics & Automation, Taipei,
Taiwan, pp. 1221-1226.

Xiao, J., Michalewicz, Z., Zhang, L., and
Trojanowski, K. (1997), “Adaptive evolutionary
planner/navigator for robots,” IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp.
18-28.

