
PLANNING ALGORITHMS FOR

AUTONOMOUS AERIAL VEHICLE

Elodie Chanthery ∗ Magali Barbier ∗

Jean-Loup Farges ∗

∗ ONERA - Toulouse Center - FRANCE

Systems Control and Flight Dynamics Department

{firstname.name}@cert.fr

Abstract: Planning function is essential for increasing the autonomy of aerial
systems. This paper presents some improvements dedicated to the management
of degraded events in an existing control architecture. These events may start an
online replanning. In a military observation mission context, a complex modeling
and several efficient algorithms for planning are proposed. Experiments highlight
the efficiency of these solutions. Copyright c©2005 IFAC
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1. INTRODUCTION

Robots and unmanned vehicles can be used to per-
form missions in hazardous environments. The de-
velopment of unmanned aerial vehicles (UAVs) for
military observation missions is a way to reduce
human casualties. The autonomy of an unmanned
vehicle is characterized by its level of interaction
with the operator (Goodrich et al., 2001) : the
more abstract the operator decisions are, the more
autonomous the vehicle is. In order to assist the
operators and to deal with the loss of communi-
cation, aerial systems tend to be more and more
autonomous. The autonomy consists on the one
hand on following the current plan and on the
other hand on being able to replan on line after the
occurrence of events which degrade or invalidate
it.
Many planning problems for vehicles are described
and solved in the literature. The scheduling of
observations for an airborne telescope (Frank and
Kurklu, 2003) requires making choices which lead
to other choices later, and contains many in-
teracting complex constraints over both discrete
and continuous variables. The planning for mobile

robot navigation in an unknown terrain (Koenig
and Likhachev, 2001) is solved by a heuristic
search method that repeatedly determines a short-
est path from the current robot coordinates to
the goal coordinates while robot moves along the
path. A real-time route planner named Sparse A∗

Search (Szczerba et al., 2000) generates mission-
adaptable routes and takes into account various
mission constraints cited above.
The planning context treated in this work is a
military observation mission for an autonomous
aerial system in a three-dimensional, dynamic, un-
certain and dangerous environment. This type of
mission can be performed by a Medium Altitude
Long Endurance (MALE) UAV. The environment
includes an unsafe area where the vehicle carries
out operations, which are the objectives of the
mission. The mission constraints are due to the
objectives, the environment and the engine. The
planning function has to select and order the best
sub-set of objectives and to determine the arrival
date at each waypoint, maximizing observation
profits and minimizing criteria on danger, fuel
consumption and durations, while meeting the



mission constraints. Compared to the cited lit-
erature, the aerial system is exposed to danger
and there are many objectives whose order is
computed by the planning function.
(Chanthery et al., 2004b) presents the modeling
of the problem and a first planning algorithm im-
plementation. (Chanthery et al., 2004a) describes
some improvements on the algorithm, the main
concepts of the on-board architecture and the
details of the planning integration.
This paper presents new research works on the
planning algorithms and their capacities to be
used in replanning conditions. Section 2 describes
the on-board architecture that controls the plan-
ning and replanning functions in nominal and
degraded situations. Section 3 presents planning
algorithms improvements. Tests results are shown
in section 4. Section 5 concludes this work and
presents future work.

2. CONTROL ARCHITECTURE

In the on-board architectures field, recent stud-
ies on the links between the calculation of plans
and their executions show a growing number of
practical applications. The context of these stud-
ies casts doubt over the assumptions generally
adopted in planning, which are a static and de-
terministic environment. Indeed, new events can
occur and invalidate the plan in progress; then
the planning function must be executed in order
to obtain a new plan. The objective of the ex-
ecution controller of the mission is to adapt in
an asynchronous way to the update of the state
of the vehicle and of the environment. This work
uses a control architecture developed around the
ProCoSA execution controller (ONERA, n.d.).

2.1 Concepts

The on-board architecture is presented on Fig. 1.
In accordance with compositional methods (Sinopoli
et al., 2001), the problem is broken up into a se-
quence of several sub-problems. Each sub-problem
corresponds to a practical or decisional task car-
ried on by a software program. In accordance
with distributed hierarchical architectures (Kim
et al., 2001), the system is described by increas-
ingly detailed elements. Those elements are Petri
nets modeling the logic of the vehicle behavior.
Finally, the supervision is achieved thanks to the
ProCoSA Petri player that manages the update
of the Petri nets and the communication through
events with software programs.

The software programs included are: the planning
program; the trajectory computation program cal-
culates the vertical profile between two mission
waypoints; the guidance program calculates the
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Fig. 1. On-board architecture

controls sent to the vehicle; the data manage-
ment program centralizes dynamic information;
the operator program allows the ground operator
to communicate high level decisions; the situation
awareness program supervises the mission and the
engine state, it sends alert events to the supervisor
or/and to the operator.

2.2 Nominal Mode

In a military observation mission, the vehicle takes
off from a safe area at an origin take-off waypoint
TOW and should come back to one of possible
landing waypoints {LW} also in the safe area. The
unsafe area is defined by sets of entrance {ENU}
and exit {EXU} points. Each objective area is de-
fined by sets of entrance {ENO} and exit {EXO}
points. These waypoints, plus specific waypoints
{TW} for data transmission, make it possible to
define a directed graph that models the steps of
the mission. Each phase of the mission (takeoff,
navigation to the next waypoint and landing) is
broken up in an increasingly detailed way. The
low level of this decomposition is the highest level
of guidance controls. The Petri nets are developed
according to this decomposition.
The main Petri net (dashed block in Fig. 2) de-
scribes the general behavior of the vehicle from
its takeoff until its landing in the nominal situa-
tion that is the following of the initial plan. The
marked place in this Petri net indicates the phase
in which the vehicle is or the high level action
in progress (TO, GO2ENU, OPE ENO2EXO,
TRANS TW, GO2EXU, GO2LW). These places
correspond to the activation of a more detailed
Petri net. At the beginning of the mission, the ac-
tivation of the INIT PLANNING place indicates
the initial plan computation.

2.3 Degraded Mode

At the beginning of the mission, if costs are lower
than profits, the path is accepted and the mission
starts. Otherwise, the operator is informed.
In a dynamic and dangerous context, the mis-
sion achievement follows rarely the initial plan.



NOMINAL MODE

Fig. 2. Mission Petri net

New events can occur and invalidate the plan
in progress. The control architecture has to take
these events into account. Three types of events
can occur. The payload of MALE UAVs can detect
close and far threats in the environment. If the
threat detection is far, a computation of a new
optimal plan is possible; in case of close threat
(< 4km), a fast admissible plan is needed. The
situation awareness program analyzes data com-
ing from aircraft sensors (speed, engine, fuel, . . . )
and sends alarms in case of failures. When the op-
erator sends new objective, new time constraints,
information on new threats or information on new
weather data, a new plan is also required.
All these events start the replanning thanks to
the transitions called “replanning-request” of the
MISSION Petri net (Fig. 2).

3. PLANNING ALGORITHMS

3.1 Basic modeling and algorithm

In the chosen modeling, a directed graph G(N, A,-
W ) is defined. N is a set of nodes that represents
the set of waypoints of the mission. The node type
is related to the point which it represents among
(TOW , ENU , EXU , ENO, EXO, TW , LW ). A

is the set of arcs. Each arc represents a feasible tra-
jectory between two waypoints. W = W1, . . . , Wp

is a partition of N . The main particularity of the
graph is that there exist two sorts of subsets Wi.
The subsets denoted Wid

, as disjunctive, can be
visited only once (one input/ one output). The
others, denoted Wi, may be visited as many times
as wanted. Let S(Wi) be a set of successors of
a subset Wi. If n1 is in Wi and n2 is in Wj ,
it exists an arc from n1 to n2 if and only if
Wj ∈ S(Wi). The goal of the planning function
is to select and order the best sub-sets Wi, to
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determine the waypoint to be used in each sub-
set and the arrival date to this waypoint, maxi-
mizing observation profits and minimizing criteria
of danger, fuel consumption and durations, while
meeting the mission constraints. This planning
problem can be seen as a more complex case of
the Orienteering Problem with Time Windows
(OPTW) (Kantor and Rosenwein, 1992), which
is classified as NP-hard. It can also be seen as
a more complex International Traveling Salesman
Problem (ITSP) (Laporte and Nobert, 1983). The
main difference is that profits and danger costs
depend on the past route and on the optimized
duration between each node. They can not be
calculated by summing the cost of each arc as for
a traditional OPTW or ITSP. An example of a
mission map including two objective areas is given
Fig. 3. Fig. 4 illustrates the partition W for this
mission.

The criterion and the constraints of the prob-
lem are described in (Chanthery et al., 2004b).
The itinerary search is performed on the tree of
possible ways. Proposed algorithms are different
from the ones of the literature: for each developed
node, the precise evaluation of the criterion re-
quires an optimization of the speeds for the whole
itinerary. The output is a path defined by an
ordered list of nodes and a vector of optimized
durations between each pair of nodes. The plan-
ning algorithm is adapted for on-line replanning
and so is able to begin at any point taking into
account the new situation. For each developed
node, an optimization sub-problem is solved. The
problem is transformed into an optimization of a



nonlinear criterion under linear constraints. It is
solved by the Frank-Wolfe algorithm (Frank and
Wolfe, 1956). The basic algorithm is the following:

begin

Put IW in P
while P is not empty

for each v in S(û)
Build path from IW to v
Optimize speeds for each edge of the path
while meeting the constraints
Compute the path cost g from IW to v

if v end waypoint and g < BOUND

BOUND = g

end

Prune the exploration tree
end

Put the elements of S(û, C) in P
Remove û from P
Put û in Q

end

end

Notations: IW point of the planning beginning,
IW = TOW at the mission beginning, IW 6=
TOW when replanning; g optimal value of the
criterion from the origin node to the current node;
P list of nodes not yet expanded (frontier of
search); Q list of expanded nodes; û first element
of P ; S(û) children of the node û in the data
graph complying with the disjunction require-
ment; BOUND is the current optimal value of
the criterion for a path from IW to an end point,
initially equal to zero. P and Q are empty at the
algorithm initialization.

3.2 Modeling Improvements

Danger zones are modeled by half-balls placed on
the ground and centered on the most probable
location of the threat. In the first tests, the cross-
ing of danger zones was very penalized and danger
zones were avoided. This modeling was quite strict
and another one (Method B) is proposed: to follow
the outline of the encountered danger zone.
Let C be the center of a sphere and A and B the
two points of the path which intercept the sphere
(Fig. 5). The distance between A and B is denoted
d. It can proved that the arc of minimal length
between A and B belongs to the plane containing
A, B and C. The length L to bypass the zone is
thus given by L = R.α. As d2 = 2R2(1 − cos(α)),

so L = R. arccos(2R2
−d2

2R2 ). To treat bypasses in the
algorithm, node v is duplicated in v′, except that
there is no danger cost and a new length between u

and v′. Bypasses are not treated when the current
node is in the danger zone.

L

d
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B
A

R

αu

v

Fig. 5. Intersection of a sphere and a line

3.3 Algorithm improvements

The improvements are performed on the explo-
ration strategy and on the pruning. Indeed, better
exploration guidance and pruning will be useful
to increase on-line replanning algorithm perfor-
mances.
A fast first admissible path is very useful for re-
active behavior of the system, and for an efficient
pruning of the tree. Method F calculates a first
path without optimizing speeds and by developing
only a limited number of nodes. Speeds are then
optimized for this path, given a bounded value for
the criterion used by other algorithms.

Several cost evaluation methods are studied. The
basic algorithm is modified by implementing a
cost evaluation h of the itinerary from an unspec-
ified node to an end node.
Method H1 uses the evaluation of not yet obtained
profits. Let EProfits be an evaluation of maximum
future profits.

H1 : h = −EProfits

Method H2 uses the evaluation of not yet ob-
tained profits multiplied by the probability to be
alive at the moment of the evaluation Palive (see
(Chanthery et al., 2004b) for its computation).

H2 : h = −EProfits × Palive

Method H3 is based on the solving of a relaxed
problem: the problem is solved with a constant
speed on the itinerary. The selected value is the
optimal value for a problem without constraint
and danger. The calculation takes into account the
transmissions differed at the transmission way-
points. Search will be better guided than for H1 or
H2; however, the tree could be not pruned enough
and search in all the possible paths would be time-
consuming. H3 is neither a maximum bound nor
a minimum bound of the criterion cost.
Method H4 uses the particular structure at two
levels of the graph. The high level treats the sub-
sets of objectives (Wi level) and the second level
treats the choice of the nodes in the considered
sub-sets. To sum up, a backward search is done
on the partition W , and an heuristic value of the
criterion is affected to each node embodying the



shortest distance in the danger zones, the best
profit and the shortest covered distance.

Two pruning methods are used. The first one,
denoted E1, is used if h is a minimum bound of the
criterion from the current node to an end node.
if g + h > BOUND then prune node v.
The second one, denoted E2, is used in other cases.
if (g+h)−γ|g+h| > BOUND then prune node v.

In the basic algorithm, the choice of how to put
the elements of S(û, C) in P is essential. If the
arrangement is not efficient, the duration of the
search may considerably increase. Four arrange-
ments are considered. R1 and R2 are ordered best-
first searches (Reif, 1985) guided by g and g + h

respectively. They may be sum up in “ sort S(û)
in an increasing g (or g+h) order and put S(û) on
the top of P”. R3 and R4 are g (respectively g+h)
best-first search strategies. They may be sum up
in “ put S(û) in P and sort P in an increasing g

(or g + h) order”.

4. EXPERIMENTS

A military mission is defined for a MALE UAV.
The waypoints of the mission and the danger
zones DG1 and DG2 are shown on map Fig. 3.
The transmission for the objective area 1 is done
at an exit point of the area. The objective area
2 is located out of the range of the ground sta-
tion; a transmission point is thus defined for the
transmission of information concerning this area.
The operator defines the mission by giving a set of
waypoints (type, coordinates and time windows),
the frontier between safe and unsafe areas and
information about threats. The goal of the tests
is to assess the efficiency of the modeling and
algorithm improvements and to compare the per-
formances of the different algorithms. In (Bonet
and Geffner, 2004), the criteria to evaluate an
algorithm are the number of solved problems, the
duration to obtain the solutions, the length of
the solution, measured by the number of actions
in the plan. These criteria are defined for clas-
sical planning problem as blocks-world, logistic,
or gripper. Here, evaluation criteria are adapted
to the observation mission planning problem. The
performances of an algorithm are evaluated by
the size of the mission (number of objective ar-
eas, number of entrance/exit waypoints per area,
types of constraints), the time to obtain the first
admissible path and the best path, the value of
the criterion for the first admissible and the best
solutions.

Four scenarios are defined.
The first one is named “nominal”. The initial

Table 1. Experiments results: CPU
times in seconds, g criterion value

Algorithm 1st admissible best path end

time g time g time

FH3E2R2 2 -57862 2 -57862 60

FBH3E2R2 2 -57872 27 -57873 269

H3E2R2 11 -57862 11 -57862 57

FH1E1R2 2 -57862 2 -57862 32

FH2E1R2 2 -57862 2 -57862 32

FH4E1R2 7 -57806 50 -57862 69

FH3E2R1 2 -57862 2 -57862 60

FH3E2R3 2 -57862 2 -57862 21

FH3E2R4 2 -57862 2 -57862 15
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map of Fig. 3 does not change during the mission
execution. Planning is computed from TOW to
one end waypoint of the mission. The optimal
path is shown on Fig. 6. Algorithms are compared
with the one that has been already tested in
(Chanthery et al., 2004a) (FH3E2R2) taken as a
reference. Only one parameter is changed for each
test. Table 1 sums up the results computed by
a Sun Microsystems Sparc Ultra 5 processor. By-
pass possibility allows to obtain better criteria but
induces a multiplication per 13 and 4 respectively
of the times for the obtaining of the best solution
and of the algorithm ending. Nevertheless with
bypass, the first admissible solution is obtained
as quickly as without bypass and is of better
quality. Method E1 associated with H1 and H2

is as efficient as the basic method in terms of
criterion value and of obtaining times of the first
admissible solution or of the best one. Moreover,
these combinations reduce the algorithm execu-
tion times by 2. The association of E1 with H4

degrades the computation times and the first so-
lution quality. For all algorithms using method F ,
first admissible path has a good quality and is
obtained in less than 11 s. When it is not used,
computation times are degraded. Best-first search
methods, particularly R4, end the computation
more quickly (reduction of the computation time
by 4 for R4).

The three other missions assess replannings on
the FH3E2R2 and FBH3E2R2 algorithms. Re-
planning 1 is performed after TW1: an event of
new threat is sent (Fig. 6). Without bypassing,



replanning result is [TW1, EXU3, LW1]. Re-
planning takes 0.3 s and the solution is given in
0.05 s. With bypassing, replanning result is [TW1,
EXU2′, LW2]. Replanning takes 0.2 s and the
solution is given in 0.05 s. The difference between
criteria with and without bypassing is 179976,
that represents about 18% of the system price.
Replanning 2 and 3 are performed after EXO11.
For replanning 2, a new objective is added in the
mission (Fig. 6). Solutions without and with by-
passing are [EXO11, ENO31, EXO32, ENO21,
EXO21, TW1, EXU4, LW1] and [. . . , TW1,
EXU2′, LW2] respectively. The gain on cost is
10. These solutions are given in 1.5 s and 1.6 s.
End times of algorithms are 29.3 s and 51.7 s. Re-
planning 3 is an event of failure in the system. The
first admissible solution [EXO11, EXU3, LW1]
is given in 4.2 s without bypassing. Algorithm
with bypassing finds the same solution in 7 s.
Tests of replanning stress on the importance of
bypassing during online computations: indeed the
mission is more constrained concerning possible
waypoints and bypasses represent a significant
gain on the cost criterion.

5. CONCLUSION

This paper presents some significant advances on
planning algorithms to be integrated in a con-
trol architecture of an autonomous aerial vehicle.
Events, sent by the situation awareness program,
the operator program or by the components of
the payload, are taken into account by the con-
trol architecture based on the combination of the
ProCoSA supervisor and the planning function.
The planning function has a complex modeling
that takes into account the bypassing of threats,
time windows and hard constraints of fuel. Plan-
ning algorithms have been developed: they solve
a shortest path search problem in a graph where
costs are dynamic, either positive or negative, and
take into account uncertainties. During the search
in the graph, for each node expansion, the speed is
dynamically optimized for each edge of the path.
Future work will concern the improvement of the
H4 method. A better pruning method is envis-
aged. Algorithm FH2E1R4 would be tested first
because this combination seems to be the best
one. A second track will concern the test of all the
algorithms on several missions and in a real-time
context. Other research could be performed on the
modeling assumptions. The duration of transmis-
sions could be modeled and taken into account.
Other types of threats may also be modeled. Petri
nets may be used not only for specifying the be-
havior of the system, but also for modeling some
constraints of the planning problem.

REFERENCES

Bonet, B. and H. Geffner (2004). Planning
as heuristic search. In: Proceedings of the

14th International Conference on Automated

Planning and Scheduling. Whistler, British
Columbia, Canada.

Chanthery, E., M. Barbier and J.L. Farges
(2004a). Integration of mission planning and
scheduling for unmanned aerial vehicles. In:
ECAI’04 - Workshop on ”Planning and

Scheduling: Bridging Theory to Practice”. Va-
lencia, Spain.

Chanthery, E., M. Barbier and J.L. Farges
(2004b). Mission planning for autonomous
aerial vehicles. In: IAV2004 - 5th IFAC Sym-

posium on Intelligent Autonomous Vehicles.
Frank, J. and E. Kurklu (2003). Sofia’s choice:

Scheduling observations for an airborne ob-
servatory. In: 13Th International Conference

on Automated Planning & Scheduling.
Frank, M. and P. Wolfe (1956). An Algorithm

for quadratic programming. Vol. 3. Naval Re-
search Logistic Quaterly.

Goodrich, M.A., D.R. Olsen, J.W. Crandall and
T.J. Palmer (2001). Experiments in ad-
justable autonomy. In: Workshop on Auton-

omy Delegation and Control. IJCAI 2001.
Seattle WA.

Kantor, M.G. and M.B. Rosenwein (1992).
The orienteering problem with time win-
dows. Journal of Operational Research Soci-

ety 43(6), 629–635.
Kim, H. Jin, R. Vidal, D. H. Shim, O. Shakernia

and S. Sastry (2001). A hierarchical approach
to probabilistic pursuit-evasion games with
unmanned ground and aerial vehicles. In:
IEEE Conference on Decision and Control.
Orlando.

Koenig, S. and M. Likhachev (2001). Improved
fast replanning for robot navigation in un-
known terrain. Technical report. College of
Computing, Georgia Institute of Technology.

Laporte, G. and Y. Nobert (1983). Generalized
traveling salesman problem through n sets
of nodes: an integer programming approach.
INFOR 21, 61–75.

ONERA (n.d.).
http://www.cert.fr/dcsd/cd/procosa.

Reif, J. (1985). Depth-first search is inherently
sequential. Information Processing Letters

20, 229–234.
Sinopoli, B., M. Micheli, G. Donato and T.J. Koo

(2001). Vision based navigation for an un-
manned aerial vehicle. In: IEEE International

Conference on Robotics and Automation.
Szczerba, R.J., P. Galkowski, I.S. Glickstein

and N. Ternullo (2000). Robust algorithm
for real-time route planning. IEEE Transac-

tions on Aerospace and Electronics Systems

36(3), 869–878.


