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Abstract: Vehicle dynamics control systems require a close monitoring of the
associated sensors since an erroneous intervention of the controller due to faulty
measurements may have fatal consequences. Hardware failures with an immediate
impact on sensor signals are detected by build-in sensor tests in connection with
a plausibility check of the electrical signals. Slowly growing sensor offsets on the
other hand require model based monitoring. Actually, simple stationary models
are used to detect these slow changes. Simplicity of the models, however, must
be compensated for by an excessive exception handling in order to avoid false
alarms due to non-valid models. In this paper, an invariant relation for the signals
capturing vehicle lateral dynamics is derived. Based on this relation a novel
scheme for vehicle lateral dynamics sensor monitoring is proposed which drastically
reduces the necessary exception handling and which keeps up simultaneously with
the advantage of simple models. Copyright c© IFAC 2005
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1. INTRODUCTION

In recent years vehicle dynamics control (VDC)
systems which support the driver in critical driv-
ing situations (as e.g. the ESP system from
Bosch (van Zanten et al., 1995; van Zanten et
al., 1998)) have been introduced. These systems
use signals to derive the drivers intent (steering
wheel angle, brake pressure, engine torque) and
they compare it with the actual vehicle motion
(yaw rate, lateral acceleration). In case of devi-
ations between actual and intended motion cor-
rective actions by means of controlled braking
of individual wheels are initiated by the system.
Since this intervention is safety critical, the under-
lying measurements related to lateral dynamics
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(i.e. steering wheel angle, yaw rate, and lateral
acceleration) closely have to be monitored for
possible faults.

Sensor monitoring typically includes three differ-
ent layers (Isermann, 1997). The first layer con-
tains sensor build-in test procedures which ba-
sically check sensor hardware for failures (Henry
and Clarke, 1993). Signal-individual tests for sig-
nal plausibility (physical limits) and signal charac-
teristics (e.g. periodicity or statistical properties)
make up the second layer (see also (Basseville
and Nikiforov, 1993)). In the third layer, relations
between signals are checked by means of process
models (Frank, 1990).

The different layers not only classify different fault
detection mechanisms but also indicate an order-
ing with respect to detection time: while the build-



in tests in the first layer are intended to detect a
sudden hardware fault, model-based methods in
the third layer aim at the detection of slowly grow-
ing sensor offsets. However, also abrupt changes
can be detected with these methods.

Since the different layers are capable to detect
different kinds of faults typically more than one
layer is realized within a monitoring system. For a
safety critically critical system like a VDC system
all layers are encountered (Robert Bosch GmbH,
1998; Ding et al., 2004).

In this paper the focus is on the third layer,
namely on a model based signal plausibility test.
Typically, simple kinetic and kinematic models in
combination with further simplifying assumptions
(stationary driving on circular roads) are used in
this layer (Börner, 2004; Ding et al., 2004). The
reasons for using rather simple models are real-
time limitations on the one hand. On the other
hand all vehicle models face the same problem, i.e.
unknown, fast time-varying parameters describ-
ing the force generation at the tire-road interface
(Gustafsson, 1998). Therefore more complex mod-
els do not offer a significant advantage.

Sensor signal monitoring is then based on the
residual, i.e. the difference between measured sig-
nals and corresponding model based estimates (ei-
ther from forward calculations or as output of an
observer scheme). Sufficiently large thresholds for
the residuals combined with explicit conditions for
model validity are used to account for the model
uncertainties. Errors in the dynamical order of
the employed models and measurement outliers
are considered by requiring a certain number of
succeeding threshold violations before a failure
is declared. Further improvements are possible
by means of adaptive thresholds (Chen and Pat-
ton, 1999).

A major problem of the outlined approach is that
even stationary driving situations may lead to
residuals. This is especially the case for banked
curves since the (unknown) lateral inclination
angle is neglected in the employed stationary
models. However, roads almost always have a
small lateral inclination angle in order to let rain
water drain off the road surface. More important
with respect to the size of artificial residuals
are banked curves at mountain passes and at
proving grounds. These conditions only make up
a small percentage of a typical vehicle life, but a
large percentage in vehicle tests from automotive
oriented media. Thus false alarms, especially for
the mentioned types of roads, absolutely must be
avoided. State of the art to overcome this problem
is an involved situation detection and exception
handling.

In this paper a novel approach towards monitoring
of vehicle lateral dynamics sensors is presented

that is based on a model of the most general
case of stationary driving, i.e. driving in banked
curves is included as a special case. It turns out
that an invariant relation holds true for lateral
acceleration, yaw rate, steering angle, and vehicle
velocity – especially this relation is independent
from the lateral inclination of the road. With the
introduction of a residual for this relation it is
then possible to realize a simple fault detection
scheme.

In detail the article is structured as follows. Firstly
the considered road geometry and the correspond-
ing vehicle motion is presented. Expressions for
the (idealized) sensed signals in terms of vehicle
velocity and geometric data are derived in the
next section. Based on these expressions an invari-
ant relation between the lateral sensors is derived
and implications are discussed. The usage of this
invariant relation in a fault detection scheme is
outlined in the follwing section. A brief summary
concludes the paper.

2. STATIONARY DRIVING ON A HELIX

With stationary driving on a helix we mean that
the position r(t) of the center of gravity (CoG) of
the vehicle at time t is given by

r(t) =
[

R cos(ωt), R sin(ωt), h
ω

2π
(t− t0)

]T

(1)

(in Cartesian coordinates x, y, z) for some con-
stant parameters R, h, ω > 0 . This means that
the motion of the CoG is restricted to the helix
given by (1) for t0 ≤ t ≤ te where t0, te denotes
the starting-time respectively end-time of the con-
sidered motion. While R, h describe geometric
properties, the helix is ω-invariant. However, the
value ω is directly related to the absolute value v
of the velocity of the CoG:

v = |ṙ(t)| = ω

√

R2 +

(

h

2π

)2

. (2)

In the following the vehicle pitch and roll motion
relative to the road is neglected. Thus the CoG
can be assumed to lie at street level (Wong, 2001).
The virtual road that supports the CoG motion
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Fig. 1. Definition of bank angle α.

described by (1) is assumed to be a smooth
surface that locally is approximated by its tangent
planes: if et, en, and eb denote the normalized
tangent vector, the normal vector, and binormal
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Fig. 2. Schematic representation of a banked curve
with slope.

vector, respectively, for a given point of (1), the
corresponding tangent plane is spanned by et and
a vector eα that lies in the en, eb-plane with eα

and en enclosing a constant angle α independent
from the considered point of the curve (see also
Fig. 1). A sketch of the constructed road is given
in Fig. 2).

”Stationary driving on a helix” is intended to
model vehicle movement in banked curves with
longitudinal inclination, e.g. for certain mountain
passes. However, the situation described above is
completely general in the sense that all stationary
driving situation are included for a suitable choice
of parameters in (1): for h = 0 one has a circular
movement in the plane, R →∞ results in straight
line driving.

Additionally to road geometry and position of the
CoG, the slip angle β, i.e. the angle between longi-
tudinal axis of the vehicle and velocity vector, is
necessary to describe the position of the vehicle
completely. Due to the stationarity assumption
the slip angle is constant for the considered mo-
tion.

The implications of this set-up for sensors fixed to
the vehicle are considered in the following section.
For the corresponding derivations it is convenient
to introduce the radius of curvature % of the
helix and the inclination angle γ (see also (do
Carmo, 1976)):

% = R+
1

R

(

h

2π

)2

, cos γ =
2πR

√

(2πR)2 + h2
. (3)

3. IDEALIZED SENSOR MODELS

In the following it is assumed that the vehicle
position is determined by the local tangent plane
at the road surface. This is already a simplifica-
tion since the tangent planes at the wheels are
different from the one at the CoG. However, with
vehicle dimensions being small compared to the
helix radius R, the corresponding effects remain
negligible.

3.1 Turn Rate Sensors

It is immediate from (1) that the total angular
velocity of the vehicle is given by ωges = ωez

with ez being a unit vector which defines the z-
coodinate in (1). Decomposition in terms of the
natural basis (et, en, eb) leads to

ωges = ω cos γeb + ω sin γet (4)

or ωges =
v

%
eb +

2πvh

(2πR)2 + h2
et. (5)

The yaw rate sensor fixed to the vehicle measures
the component of ωges perpendicular to the road
surface. Due to the introduction of the bank angle
α, i.e. as a rotation angle around et, only the
projection of the component in et-direction of
ωges, i.e.

ωz,S = ω cos γ cosα = ω
v

%
cosα , (6)

is actually measured.

3.2 Acceleration Sensors

Modern micro-mechanical acceleration sensors re-
alize the seismic principle (Stein, 2001). This
means that a hypothetical 3-D acceleration sensor
mounted in the CoG of a moving vehicle measures

aS = af − g, (7)

i.e. a combination of the forcing acceleration af

and the acceleration of gravity g. In reality no 3-D
accelerations are measured but components of aS

in fixed vehicle directions. Thus measured acceler-
ations depend on lateral inclination, bank angle,
and slip angle. In the following this dependency
is explicitly derived for the lateral acceleration
sensor. The prevalent convention is to consider
a CoG-fixed coordinate system (xF , yF , zF ) with
positive xF , yF , zF in longitudinal front direction,
lateral left direction, and vertical up direction, re-
spectively. Therefore the lateral acceleration sen-
sor measures the yF component of aS given in
vehicle fixed coordinates.

In order to evaluate aS , the right hand side of (7)
has to be expressed in vehicle fixed coordinates.
However, af is most natural expressed in terms of
(et, en, eb) while the simplest expression for g is
given in inertial coordinates. With transformation
matrices Tγ , Tα, T−β given as

Tγ =





cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ



, Tα =





1 0 0
0 cosα − sinα
0 sin α cosα



 ,

T−β =





cosβ − sinβ 0
sin β cosβ 0

0 0 1



 . (8)



Eq. (7) can be written in vehicle fixed coordinates
as

aS =





axF,S

ayF,S

azF,S



= T−β·Tα





0
v2/%

0



−T−β·Tα·Tγ





0
0
−g



 .

(9)
Here the transformation Tγ considers the incli-
nation angle of the helix, Tα account for the
bank angle, and T−β describes the rotation of the
vehicle-fixed coordinate system within the road
surface. The expression af = [0, v2/%, 0]T can be
interpreted as forcing acceleration for a point mass
motion on the circle of curvature for the helix.
Although the circle of curvature is only a local
approximation for the helix the equation for af

is exact (this can be shown by differentiation of
(1)).

The measured lateral acceleration signal now can
be derived from the second component of (9):

ayF,S =
v2

%
cosβ cosα+

+ g (sinβ sin γ − cosβ cos γ sin α) . (10)

3.3 Steering Angle Sensor

Assuming an constant transmission ratio iL for
the steering mechanism, the measured steering
wheel angle δL,S is given as

δL,S = iLδR (11)

with δR being the steering angle at the wheels. For
a prescribed vehicle motion, i.e. the movement on
a helix with a fixed slip angle, the steering angle
becomes a function of road geometry and vehicle
velocity. In order to derive an explicit expression
for the steering angle, models for the force gen-
eration at the tires and vehicle kinematics are
necessary. The linear tire model (tire side slip
constants cV , cH)

SV = cV · αV , SH = cH · αH , (12)

describes the side forces SV , SH at the front and
rear tires as linear function of the slip angles
αV , αH (see Figure 3). This description models
the force generation at the tires for a wide range
of vehicle operating conditions quite well (Wong,
2001). The tire model is not further detailed for
left and right wheels since the employed simplified
kinematics depicted in Figure 3 is based on a
fusion of the tires at one axis into a substitute tire
at the symmetry axis of the vehicle. Therefore the
terminology single track model or bicycle model
is frequently used (Mitschke and Wallentowitz,
2004).

However, due to longitudinal and lateral inclina-
tion the expressions for the side forces from the
standard single track model do not hold anymore
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Fig. 3. Scheme of the single-track model.

for driving on the helix. In this case an impulse
balance in the direction eα (see Figure 1)

m
v2

%
cosα = SV cos δR cosβ+

+ SH cosβ + mg cos γ sin α (13)

together with the angular momentum balance

0 = SV · lV · cos δR − SH · lH (14)

in the local tangent plane to the road surface
renders (with l = lV + lH , cosβ ≈ 1, cos δR ≈ 1)
the side forces

SH =
lV ·m · g

l
cosα

(

v2

% · g
− tanα cos γ

)

,

(15)

SV =
lH ·m · g

l
cosα

(

v2

% · g
− tan α cos γ

)

.

(16)

The steering angle δR follows from the kinematic
expression v = v0 + ω × r for the velocity
distribution of a rigid body. Applied to the center
points of front and rear axis the equations

v cosβ = vV cos(δR − αV ), (17)

v cosβ = vH cosαH , (18)

vV sin(δR − αV ) = v sin β + lV · ωz,S , (19)

−vH sin αH = v sin β − lH · ωz,S. (20)

follow for longitudinal (17), (18) and lateral (19),
(20) direction. These equations imply

tan(δR − αV ) = tanβ +
lV · ωz,S

v cosβ
,

tan(αH ) = − tanβ +
lH · ωz,S

v cosβ
,

which in turn (together with (6) and the ”small
angle simplifications” for δR, β, αV , αH) renders
the steering angle δR:



δR = αV − αH +
l

%
cosα. (21)

From (11), (21), (12), (15) (16) and with the
abbreviation

v2

c =
cV · cH · l2

m · (lH · cH − lV · cV )

we finally have

δL,S = iL

(

l cosα

%

(

1+

(

v

vc

)2
)

−
l· g

v2
c

sinα cos γ

)

,

(22)
i.e. an expression of the measured steering wheel
angle in terms of vehicle velocity, geometric prop-
erties of the road, and vehicle parameters.

4. AN INVARIANT RELATION FOR VDC
SENSOR SIGNALS

The geometric information on lateral and longi-
tudinal inclination of the vehicle and the radius
of curvature are typically not available within a
vehicle dynamic control system. Therefore it is not
possible to evaluate the derived sensor equations
directly. The idea of the following is to extract an
invariant relation from the equations (22), (10),
(6) for steering wheel angle sensor, lateral accel-
eration sensor, and yaw rate sensor that does no
more require the geometric properties from the
road.

Also the slip angle β is not measured within a
standard vehicle. However, one goal of the VDC
system is to limit the slip angle at small values
(van Zanten et al., 1995). Additionally the slip
angle is small for almost all standard driving
situations. Thus we follow here the pragmatic
approach to consider the slip angle being zero.

With β = 0 and (10) it is possible to eliminate
the term sinα · cos γ in (22). The remaining
complicating term cos α

%
can be eliminated by

means of the yaw rate sensor equation (6). The
resulting formula

δL,S = iL l

(

ωz,S

v
+

ay,S

v2
c

)

(23)

is now independent from road information. Pro-
vided the assumptions for the measurement equa-
tions hold true, this formula is valid for all station-
ary driving situations characterized by constant
CoG velocity v and CoG motion as in (1), i.e. an
upward movement in a right turn helix. However,
the preceding calculations can be repeated for
downward movements and for movements on a
left turn helix with only minor changes in the
equations for the acceleration and yaw rate sensor.

It turns out that (23) remains unchanged in
all these cases (upward/downward driving on
right/left turn helices). Especially important in

the context of sensor signal monitoring is that
(23) is valid for arbitrary %, i.e. also for straight
ahead driving, and also for arbitrary longitudinal
and lateral inclinations. The usage of (23) in a
signal monitoring context is discussed in the next
section.

5. CONCEPTUAL MONITORING OF
LATERAL DYNAMICS SENSORS IN A VDC

SYSTEM

The vehicle velocity v is one of the central sig-
nals used within a VDC system. This signal is
estimated quite well on the basis of the measured
wheel velocities. Together with the measured sig-
nals: lateral acceleration ay,s, yaw rate ωz,S, and
steering wheel angle δL,S (and the vehicle param-
eters l, iL, vc) it is possible to monitor deviations
from (23) due to sensor failures by means of the
residual R3,

R3 = δL,S − iL l

(

ωz,S

v
+

ay,S

v2
c

)

. (24)

In the following we briefly outline how a residual-
based fault detection scheme substantially can be
improved by the additional consideration of the
residual introduced by (24).

R1 R2 R3

ωz,S-failure 0 1 1

ay,S-failure 1 1 1

banked curve 1 1 0

Fig. 4. Residual based incidence table.

For simplicity a fault free steering wheel angle
sensor and an accurate velocity estimation are
assumed. Then it is possible to introduce a fault
detection scheme for lateral acceleration sensor
and yaw rate sensor with the residuals

R1 = ay,S −
δL,S

iL · l

v2

1 +
(

v
vc

)2
, (25)

R2 = ay,S − v · ωz,S , (26)

(derived for stationary driving on a horizontal
plane) as decision variables (Börner, 2004; Ding et
al., 2004). With the usual single failure assump-
tion a deflection of R2 indicates a faulty acceler-
ation signal or a faulty yaw rate signal while a
non-zero R1 indicates a faulty acceleration signal.
However, the residuals R1, R2 will also show a
deflection for a banked curve since road geometry
is not considered in (25), (26).

This situation is summarized in Figure 4 with the
convention that “1” indicates an absolute residual
value above a certain threshold (accounting for



noise and model uncertainty) and that a “0”
indicates the contrary.

It is clear from the left part of Figure 4 that no
fault isolation is possible since there is no one-to-
one relation between failure and residual pattern.
Not even fault detection is possible since driving
in a banked curve cannot be distinguished from a
lateral acceleration sensor failure.

In practice the residual information is not con-
densed to {0, 1} but also directional information
is exploited and ambiguity as e.g. for banked
curves can be circumvented by exception handling
(Börner, 2004). However, we see that within the
simple set-up considered here, only the additional
residual information R3 from the invariant for-
mula (23) is enough to have fault detection and
isolation. In fact, residual R3 is sensitive to faulty
lateral acceleration signals and to faulty yaw rate
signals but not to banked curves. Thus, with the
additional information from R3, the residual pat-
terns in Figure 4 for the three cases considered
here become distinguishable.

It is noteworthy that the fault detection and isola-
tion is reached within the residual concept, i.e. as
a simple addition of an existing concept without
using additional sensors. This is especially impor-
tant in the context of new centralized concepts
for vehicle dynamics sensors in order to cope with
complexity of sensor networks in modern vehicles
(Rehm and Hofmann, 2004).

6. SUMMARY

In the paper at hand an invariant relation be-
tween the core measurement signals of a vehicle
dynamics control system is derived. This rela-
tion is independent from non-measured geometric
information from the road (i.e. radius of curva-
ture, longitudinal- and lateral inclination) and can
therefore be incorporated into fault detection and
isolation (FDI) schemes. The benefits of using the
novel invariant relation in FDI schemes for signal
monitoring of vehicle dynamics control systems
are outlined by means of a simple incidence based
FDI system.
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