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1. INTRODUCTION

A considerable progress has been achieved during the
last decade in solution of the problem of stabilization
of nonlinear systems with known and unknown pa-
rameters under acting external disturbances. New
design tools such as robust adaptive feedback lineari-
zation (Cambion, and Bastin, 1991; Kanellakopoulos,
et al., 1991a; Kanellakopoulos, et al., 1991b; Sastry,
and Isidori, 1989), robust adaptive backstepping
(Krstić, et al., 1995; Voronov, et al., 2001), control
Lyapunov functions (CLFs) (Sontag, 1989b; Free-
man, and Kokotović, 1996; Liberzon, et al., 2001),
passivation approach (Fradkov, et al., 1999) and
switching adaptive control (Efimov, 2003; Kosmato-
poulus and Ioannou, 2002) have been introduced.
Using these new design tools, globally stabilizing
controllers have been constructed for various classes
of nonlinear systems, which typically provide bound-
edness of the system solution for bounded distur-
bances and asymptotic stability of the plant for van-
ishing disturbance. Despite the success of the afore-
mentioned design tools to resolve a variety of adap-
tive control problems for nonlinear systems, the
problem of adaptive control of nonlinear systems
with functional uncertainty (Bobtsov, and Efimov,
2003; Haddad et al., 2001; Kosmatopoulus and Ioan-
nou, 2002; Lin and Qian, 2001; Nikiforov, 1997) still
has not advanced solution. For example, in the most
of the cited before papers, which deal with functional
uncertainty, were not analyzed the influence on sta-
bility properties of external disturbances appearance
and, that is more, only practical stability is guaran-
teed for vanishing disturbances. Or, like in paper
Kosmatopoulus and Ioannou (2002), authors sup-
posed that all uncertainties are linearly included in
equations of the plant. In recent work (Bobtsov, and
Efimov, 2003) all this obstacles were vanquished, but
with too restrictive assumptions imposed on the plant

equations.

In this paper, we extend the result of (Bobtsov, and
Efimov, 2003) for designing robust adaptive con-
trollers for a large class of multi-input nonlinear sys-
tems with exogenous bounded input disturbances and
functional uncertainty. Both can appear in nonlinear
fashion in plant equations. The class of systems for
which the proposed approach is applicable is charac-
terized by the assumption that a robust CLF for the
system is known and it admits some mild conditions.
Additionally in the paper it is shown, that under suit-
able modification of result of (Bobtsov, and Efimov,
2003) an ε-invariance property (Bobtsov, 2003; Fo-
min, et al., 1981) can be assigned to the plant. In
other words it does not matter how big is the ampli-
tude of input disturbance and initial conditions of the
system, all trajectories are attracted to predefined
neighborhood of the origin (a ball of radios ε) uni-
formly with respect to functional uncertainty.

In the second section definitions and statements are
presented. The main result is described and proven in
the Section 3. Conclusion finishes the paper.

2. DEFINITIONS AND STATEMENTS

Let us consider nonlinear dynamical system
( )( ) ( )uxGxωxfx += t,,& ,  (1)

where nR∈x  is state vector, mR∈u  is control;
( )ωxf ,  and the columns of ( )xG  are continuous and

locally Lipschitz vector fields on nR , ( ) 0,0 =ωf  for
any pR∈ω ; ( )t,xω  is unknown vector function rep-
resenting functional uncertainty of system. Let us
introduce main restrictions on the system uncertainty.

A s s u m p t i o n  1 . There are an unknown constant



[ )∞+∈ ,0m , unknown Lebesgue measurable and
essentially bounded signal 00: ≥≥ → RRw  and a
known function  0: ≥→ RRr n , such, that for all 0≥t

( ) ( ) ( )trmt wxxω +≤, , nR∈x , 0)0( =r . □

Assumption 1 does not imply boundedness of func-
tion ( )t,xω  with respect to variable x . The presence
of unknown parameter m  leads to necessity of adap-
tive controller construction. Opposite to classical
adaptive control theory (Fomin, et al., 1981; Frad-
kov, et al., 1999; Krstic, et al., 1995) here there is no
assumption on compactness of admissible values set
for unknown parameter m . Such complication al-
lows to take into account the presence of unmodeled
dynamics, nonlinear parameterization of the plant
equations by vector of unknown parameters, and
even case with unknown function ( )xr  under suit-
able approximation (see paper (Bobtsov, and Efimov,
2003) for detailed explanation of these connections).

Further, we suppose, that for system (1) some differ-
entiable Lyapunov function 0: ≥→ RRV n  is given:

( ) ( ) ( )uxx Gdxf VLVLV += ,
& ,

where ( ) ( ) ( )dxfxxxf ,∂∂= VVL ,
( ) ( ) ( )xGxxxG ∂∂= VVL .

According to Lemma 2.1 in (Lin and Qian, 2001),
Lemma 9 in (Sontag,1998) or discussion in section 4
of paper (Liberzon, et al., 2001), the first term of
above expression can be majorized as follows

( ) ( ) ( ) ( )dxxdxf χ+≤ aVL , ,

where a  is some continuous function, ( ) 00 =a ,

∞∈χ K  (definitions of classes K  and ∞K   are stan-
dard (Sontag, 1989b)). Utilizing the same arguments
and substituting upper bound of function ω  from
Assumption 1 in function χ  it is possible to intro-
duce new designations:

( )( ) ( ) ( )( )tt wxxω δ+ρµ≤χ , ,
where µ  is a new unknown constant and ρ  is some
new known continuous function ( 0)0( =ρ ), which is
dependent on functions r  and  χ ; K∈δ . Hence:

( ) ( ) ( ) ( )( )tVLaV wuxxx G δ++ρµ+≤& . (2)
It is necessary to note, that under property

( ) 0≡xGVL  ⇒ ( ) ( ) 0<ρµ+ xxa
this function V  becomes input-to-state stable (ISS)
CLF (see (Sontag and Wang, 1995a; Liberzon, et al.,
2001; Efimov, 2002a) for these terms introductions)
for the system (1). This fact is equivalent to ISS sta-
bilization of system (1) by state feedback, that will be
exploited further in the paper. So, let us define the
main requirement to properties of system (1).

A s s u m p t i o n  2 . There exists a differentiable
Lyapunov function ( )xV , such, that

( ) ( ) ( )xxx 21 α≤≤α V
for some functions ∞∈αα K21, , and inequality (2)
holds for all 0≠x  and any 0≥µ  with properties:
1. ( ) 0≡xGVL  ⇒ ( ) ( ) ( )xxx α−<ρµ+a , ∞∈α K ;

2. [ ] 0)()()(suplim
0

≤ρµ+
→

xxx G
x

VLa . □

It is worth to note, that the first property of Assump-
tion 2 supposes, that on the set where control can not
affect on the dynamics of system (1) (i.e. on the set,
where ( ) 0≡xGVL ) this system is asymptotically
stable for any admissible values of µ . In fact, if there
exists some another adaptive controller which solves
posed problem with some Lyapunov function V ,
then again we should meet this constrain: on subset

( ) 0≡xGVL  controller can not affect on sign of time
derivative of function V .

An example of class of systems which possess con-
ditions of this assumption is the following one with
input functional uncertainty:

( ) ( ) ( ) ( )[ ]tt 1, wuxωxGxfx +++=& . (3)
For system (3) property 1 of Assumption 2 takes
form

( ) 0≡xGVL  ⇒ ( ) ( ) 0<= xxf aVL  for all 0≠x ,
the last fact simply means that system (3) can be as-
ymptotically stabilised by (continuous) state feed-
back if functional uncertainty ω  and external distur-
bance w  are missing (for details see Sontag (1989b),
another condition for system (3) to be asymptotically
stabilised by state feedback was presented in (Efi-
mov, 2002b)). The second property of Assumption 2
is called small control property, which is included to
base continuity of control law at point 0=x  (Liber-
zon, et al., 2001; Efimov, 2002a).

Function ρ  by construction is a continuous one, so
there exists function ∞∈ρ K1 , such, that for all

nR∈x  inequality ( )xx 1)( ρ≤ρ  holds. To use
function 1ρ  instead of ρ  in control algorithms the
following property will be utilized.

A s s u m p t i o n  3 . ( )xx 1)( ρ=ρ , ∞∈ρ K1 .  □

According to these statements, the solving problem
consists in development of adaptive controller, which
provides for any initial condition nR∈0x  and con-
stant 0≥m :
– asymptotic stability of (1) then ( ) 0≡tw , 0≥t ;
– boundedness trajectories of overall system for

any ∞L  bounded ( )tw .
– for arbitrary 0>ε , for any finite initial condi-

tions of  the overall system and for any essen-
tially bounded input ( )tw   should exist 0>T ,
such, that ε≤)( tx  for Tt ≥  ( ε -invariance
property for the plant).

3. MAIN RESULTS

For this purpose we will use the theory of input-to-
state stable systems (Sontag, 1989a; Sontag, 1995). It
is worth to stress, that ISS system has global asymp-
totic stability property for vanishing input and for
any bounded inputs trajectories stay asymptotically
bounded by ∞L  norm of the input. So, main charac-



teristics of ISS property coincide with requirements
formulated in control goal. Hence, it is possible to
base solution of the task on ISS theory using.

3.1. Non adaptive control

At first, for the sake of simplicity, let us assume that
constant m  from Assumption 1 is known. It is re-
quired to design a control law ensuring a input-to-
state stability of a system (1) for any function ω  that
satisfies Assumption 1. It is well known “universal”
control (Liberzon, et al., 2001; Wang, 1996), which
provides for any function ρ  global asymptotic sta-
bility of system (1) (robust stability with specified
stability margin ρ ):

( ) ( )( ) ( )TVL xxxu Gβψκ−= ,1 ,  (4)
where ( ) ( ) ( )xxx ρµ+=ψ a ,  ( ) ( )xx GVL=β ,

( )
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For the task of global asymptotic stabilisation of
system (1) while disturbance w  is missing such
controls were formulated in papers (Sontag, 1989b ;
Wang, 1996). The extension of these results on the
problem IOS stabilisation was proposed in (Efimov,
2002a).

The ISS property uniformly with respect to uncertain
function ω  for system (1), (4) follows by ISS-
Lyapunov function candidate V  analysis. Substitute
in (2) control (4). According to Assumption 2, for

( ) 0=xGVL  term ( ) ( )xx ρµ+a  is negatively defi-
nite and radially unbounded. So, let ( ) 0≠xGVL ,
then inequality (2) takes form:

( ) ( )[ ] ( )wxx G δ++ρµ+−≤ 42 VLaV& .
The square root function is concave one, and, hence,
inequality baba 5.05.0 +≥+  is satisfied, thus

( ) ( ) ( )wxx G δ+ρµ−+−≤ 42 VLaV& .
Due to Assumption 2 (the first property):

( ) ( )xx G α≥+ 42 VLa

for some ∞∈α K  and finally we obtain
( ) ( ) ( )wxx δ+ρµ−α−≤V& .

That is sufficient to conclude that V  is an ISS-
Lyapunov function and system (1), (4) is ISS (Sontag
and Wang, 1995b). If Assumption 3 holds, then

( ) ( ) ( )wxx δ+ρµ−α−≤ 1V&

and ISS system obtains robust stability margin de-
pendent on )(1 ⋅ρµ .

3.2. Adaptive and robust adaptive controls

Suppose, that constant m  from Assumption 1 is un-
known and, hence, constant µ  is unknown too. Then
for system (1) control laws (4) should be modified as
follows:

( ) ( )( ) ( )TVL xxxu Gβψκ−= ,1 ,  (5)
where ( ) ( ) ( )xxx ρµ+=ψ )a ; µ)  is adjustable pa-

rameter, estimation of unknown constant µ . Updat-
ing algorithm for parameter µ)  is selected in the fol-
lowing way:

( )xργ=µ&) ,  (6)
where 0>γ  is a design parameter.

L e m m a  1 . Let Assumptions 1 and 2 be true. Then
system (1), (5), (6) possesses the following properties
uniformly with respect to functional uncertainty ω
satisfied Assumption 1:
1. Forward completeness for any essentially bounded
and Lebesgue measurable disturbance w .
2. Asymptotic gain property with respect to x :

( ) ( )wx γ≤
∞+→

t
t
limsup ,

where function ( ) ( )ss δααα=γ −− ooo 1
2

1
1  belongs

to class K , { })(supess 0 tt ww ≥= .
3. If Assumption 3 is true, then for any 0>ε , for any
initial conditions nR∈)0(x , 0)0( ≥∈µ R)  and any

∞+<w  there exists

( ) 0),0(),0(, >µε= wx )TT

such, that ε≤)( tx   for all Tt ≥ .
P r o o f . The proof of the Lemma can be found in
paper (Bobtsov, and Efimov, 2003) with minimum
modifications. ■

If function ρ  is separated from zero, then variable µ)

can infinitely increase. Therefore, the control (5) im-
proves its robust stabilization ability. This increasing
is the cost of disturbance attenuation in adaptive
system. To compensate this shortage in paper
(Bobtsov, and Efimov, 2003) an additional negative
feedback in parameter updating algorithm (6) was
introduced:

( ) µγ−ργ=µ )&) kx ,  (9)
where 0>k . Unfortunately algorithm (9) leads to a
steady state error in the system response provided by
constant µ , even then disturbance is vanishing.

R e m a r k  1 . Value of constant µ  does not belong
to some known compact set. Therefore, to add robust
properties in the system we can not borrow from
(Pomet, and Praly, 1992) projection modification of
algorithm (6) instead of  (9). □

According to the result of Lemma above, starting
from some time instant 0>T  further increasing of
µ)  does not add something to system properties. In-
deed, in common case if µ≥µ )( t)  or with Assump-
tion 3 εµ≥µ )( t)  for Tt ≥ , then prospective stabili-
zation goal is reached and further growth of control
amplitude is not desirable ( εµ  is value of µ)  for
which plant state converges to ε  vicinity of the ori-
gin). Thus stopping of µ)  increasing after Tt =  can
ensure overall boundedness of system trajectories. In
paper (Bobtsov, and Efimov, 2003) a switching
scheme was developed, which utilized described
above ideas. In supervision algorithm in work
(Bobtsov, and Efimov, 2003) the information about



function V  time derivative is required, that seriously
complicate application of that result. Here we will
improve switching adaptive algorithm from
(Bobtsov, and Efimov, 2003) to provide some new
results and overcome this obstacle.

3.3. Switching adaptive control

In Lemma 1 it was established, that there exists a
moment of time 0≥T , after which ( ) µ≥µ t)  and al-
gorithm of adaptation (6) can be switched off (or

εµ≥µ )( t)  for case of Assumption 3 satisfying). So,
new algorithm of adaptation can be formalised as
follows for 0>γ :
    ( )xiF=µ&) , 2,1=i ; ( ) ( )xx ργ=1F ; ( ) 02 =xF . (10)
Control system with adaptation algorithm (10) be-
comes a switching one, where signal ( ) { }2,1∈ti
describes a current dynamics of variable ( )tµ) . While
( ) 1=ti  dynamics of system (1), (5), (10) possesses

properties, which were established in Lemma 1: for-
ward completeness, global asymptotic stability of
variable x  for vanishing disturbance w . For ( ) 2=ti
this system becomes equivalent to non adaptive sys-
tem (1), (5) with some frozen value of variable ( )tµ) .
If it happens, that ( ) 2=ti  but still ( ) µ<µ t) , then the
behaviour of the system is unknown and should be
investigated. Then ( ) 2=ti  and ( ) µ≥µ t) , inequality
(8) would be true and, like in non adaptive case, sys-
tem recovers ISS property.

While ( ) µ≥µ t)  or εµ≥µ )( t) , inequality (8) is satis-
fied and plant state space vector is bounded and the
following property is true

( ) Θ∈tx , { }ε≤=Θ xx : , (11)

where ( )max
1

2
1

1 Wδααα=ε −− ooo  and maxW  is an
upper bound of external disturbance w , i.e.

( ) maxWt ≤w  for almost all 0≥t . Such constant

maxW  possibly unknown always exists according to
suppositions posed on signal ( )tw . If Assumption 3
is satisfied, then 0>ε  in (11) can be picked up arbi-
trary. Property (11) helps to design a supervisor. In
this work so-called dwell time technique (Morse,
1995) will be used to prevent chattering regime
arising. So, supervision algorithm can be described as
follows:

( )
( )

( )
( )

( ) ,0,1

;if
;if,2
;if,1
;if

=τ=τ









τ≥τ




Θ∈
Θ∉

τ<τ

=

k

D

Dk

t

t
t

ti
ti

&

x
x

(12)

where auxiliary variable τ  represents internal super-
visor timer dynamics, 0>τD  is dwell time constant
and kt , ...,2,1,0=k  are instants of switching (in-
stants then signal ( )ti  changes its value), k  is num-
ber of current switching. The operating of algorithm
(12) can be explaining in the following way: after
each switching internal timer τ  is initialised to zero.
While Dτ<τ  signal ( )ti  does not change its value.
Dwell time presence in algorithm (12) help us to pre-

vent fast switching arising in the system (1), (5),
(10), (12). After dwell time signal ( )ti  can be set up
to 1, if  property (11) does not satisfy and, conse-
quently, variable x  is not bounded; signal ( )ti
would be set up to 2, if variable x  is bounded. The
knowledge of constant maxW  is supposed in algo-
rithm (12) for case when Assumption 3 is not satis-
fied. Properties of proposed switched system are
summarised in the following theorem.

T h e o r e m  1 . Let Assumptions 1 and 2 be true.
Then system (1), (5), (10), (12) has
a) asymptotically bounded solution x~ : there exists

01 >T , such, that
( ) Θ∈tx , ( ) constt =µ) , 1Tt ≥ ;

b) if, additionally, for each fixed µ<µ)  system (1), (5)
possesses unbounded solution, i.e. for each 00 >ε

there exists an 0>εT , such, that ( ) 0ε>tx   for

ε>Tt , then asymptotic gain property with respect to
variable ( )tx  holds for the system :

( ) ( )wx γ≤
∞+→

t
t
limsup , K∈γ .

If also Assumption 3 holds, then constant 0>ε  in
definition  of the set Θ  (11) can be chosen arbitrary.
P r o o f .  Presence of dwell time in algorithm (12)
bounds number of switchings [ ]BtAtN ,  on any time
interval [ ]BA tt ,  in the following obvious way:

[ ] 1, +
τ
−

≤
D

AB
BtAt

ttN .

Therefore, the solution of the system is well defined
at the least locally and absolutely continuous (Filip-
pov, 1988; Morse, 1995).

The advance of switched system consists in possibil-
ity of system dynamics analysing without supervisor
system behaviour consideration, i.e. at first we can
investigate properties of switched system (1), (5),
(10) for frozen values of signal ( )ti  and after that
analyse the influence of algorithm (12). Let us con-
sider three situations or, better to say, three sets of
time instants  iΛ , 3,1=i . Where ( ){ }1:1 ==Λ tit
and if 1Λ∈t , then system (1), (5), (10) admits all
properties claimed in Lemma 1. Let

( ) ( ){ }*and2:2 µ<µ==Λ ttit )  where
{ }εµµ=µ ,max* .

Then solution of system (1), (5) is bounded for
2Λ∈t . Indeed, by construction in this case ( ) Θ∈tx

and *)( µ≤µ t)  for 2Λ∈t . Note also, that case

εµ=µ*  may be included into consideration only if
Assumption 3 holds. Finally let 3Λ∈t , where

( ) ( ){ }*and2:3 µ≥µ==Λ ttit ) . Then system (1), (5)
is ISS. Note, that if ( ) 2=ti , then it is possible to
analyse system (1), (5) with some fixed value of
( )tµ)  instead of whole system (1), (5), (10). In this

situation time derivative of Lyapunov function can-
didate (7) can be rewritten as follows:

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) .

,1

wxxw
xxxx GG

δ+ρµ−µ+α−≤δ+

+βψκ+ρµ+≤
)

&

t
VLVLaU T



For 3Λ∈t  the last inequality takes form:
( ) ( ) ( ) ( ) ( ) ( )wxwxx δ+α−≤δ+ρµ−µ+α−≤

)&U ,
that is equivalent to ISS property (Sontag and Wang,
1995b). Note, that interval of overall system solution
definition [ ) 321,0 Λ∪Λ∪Λ=T  and on each time

instants subset iΛ , 3,1=i  solution can not escape to
infinity. So, system is forward complete and solution
is defined for all 0≥t .

Now let us suppose that number of switchings are
finite, but in this case the control goal is realized.
Indeed, let after the last switching 1)( =ti , but it is
not possible, due to result of Lemma 1: in this case
always would exist a time instant 0>T , such, that
( ) Θ∈Tx . Therefore case 1)( =ti  can not corre-

spond to the last switching. If after last switching
2)( =ti , then desired control goal is reached. Sup-

pose that switchings are infinite. It means, that there
is infinite sequence of intervals
[ ) [ ) [ ){ }...,,....,,,,,0 1211 +kk ttttt , where, we can suppose

it without losing generality, on each even interval
[ )122k ,t +kt , ...,2,1=k  equality ( ) 1=ti  holds, and on
each odd interval ( ) 2=ti .

By construction of algorithm (12) Dkk tt τ≥−+1  for all
0≥k . Further, we know, that if ( ) *2 µ≥µ T)  for

some 02 ≥T , then also ( ) *µ≥µ t)  for all 2Tt ≥  and
inequality (8) is satisfied for all such 2Tt ≥ . So, to
prove the main result of the Theorem we should base,
that always exists such 2T . If a time 2T  exists, then
obviously exists a time 1T . Now as a contradiction,
we assume, that neither time 2T  neither time 1T  does
not exist. It means that for all 0≥t , ( ) *µ<µ t) , or
equivalently:

( ) ( )( )

( )( ) *)0(

)0(

12

2

12

2

1

µ<ργ+µ=

=+µ=µ

∑ ∫

∑ ∫

+

+

k

t

t

k

t

t

k

k

k

k

dtt

dttFt

x

x

)

))

.

Due to continuity of function ρ  it is possible to use
mean value theorem to rewrite sum of integrals as
follows:

( )( ) ( ) ( )( )∑∑ ∫ ρ−γ=ργ +

+

k
kkk

k

kt

kt
ttdtt Txx 212

12

2
,

where time [ )122 , +∈ kkk ttT . Finally we obtain:

 
( )( ) ( ) ( )( )

,)0(*

212

µ−µ<

<ρ−γ≤ρτγ ∑∑ +
k

kkk
k

kD tt TT xx

it means that sum of infinite series ( )( )kTxρ ,
,...1,0=k  converges to value smaller than

( ) 11)0(* −− τγµ−µ D
) . The last fact ensures that there

exists an infinite sequence of time instants
....,,,

210 iii TTT  such, that ( )( ) 0→ρ
kiTx  while

index k  grows to infinity. We should exclude from
consideration case ( )( ) 0* =ρ kTx  for some finite *k ,
as since in such situation, according to positive

semidefiniteness of function ρ , equality ( )( ) 0=ρ tx
for all [ )1*2*2 , +∈ kk ttt  immediately follows. By conti-
nuity of function ρ  also ( )( ) 0*2 =ρ ktx  and

( )( ) 01*2 =ρ +ktx , but in such situation ( ) Θ∈tx  on
ends of  the interval and algorithm (12) should not
change value of i  at time *2kt . By the same argu-
ments, for any 00 >ε  in this case there exists some
index εl , such, that inequality ( )( ) 0ε≤ρ tx  holds for
all [ )122 , +∈ ll ttt , ε≥ ll . This conclusion is satisfied for

εµ=ε − ~1
0  with any 0~ >ε , hence for all
[ )122 , +∈ ll ttt , ε≥ ll  time derivative of function V

possesses the following inequality:
( ) ( )( ) ( )( ) ε+δ+α−≤ ~tttV wx& .

Due to arbitrary choice of ε~  there exists some index
0>l , such, that ( ) Θ∈lt2x  and algorithm (12)

should not change further value of i , we receive a
contradiction. Thus, there exists a time 02 ≥T , such,
that ( ) *µ≥µ t)  for all 2Tt ≥  and inequality (8) is
satisfied, then there exists a time 01 ≥T , such, that
( ) Θ∈tx  for all 1Tt ≥ . So, the point (a) of the Theo-

rem 1 is proven.

Note, that time 2T  always exists only with supposi-
tion that there is no time 1T . In general case it is pos-
sible a situation, when time 1T  exists, but time 2T  is
not. A condition provided that additionally for sys-
tem there exists time 2T  is formulated in point (b) of
Theorem 1. Indeed, suppose that system (1), (5) pos-
sesses unbounded solution ( )tx  for any µ<µ)  and let

1Tt ≥ . Then trajectory ( )tx  should leave set Θ  in
finite time, but it contradicts definition of  time 1T ,
hence, in such situation time 2T  should exist and

12 TT ≤ . Then for all 2Tt ≥  inequality (8) is satisfied,
from which asymptotic gain property holds with γ .
If Assumption 3 holds, then for arbitrary 0>ε  it is
possible to calculate constant 0>µε  as a solution of
inequality

( ) ε≤µδραα −
ε

−− w11
12

1
1 ooo . ■

Let us additionally emphasize and explain result of
Theorem 1. If uncertainty of system (1) possesses
requirements of Assumption 1 and system (1) is ISS
stabilizable by continuous feedback with respect to
input ω  (with known ISS-Lyapunov function, this
requirement is fixed in Assumption 2), then control
(5) with adaptation algorithm (10) and supervisor
(12) provides boundedness of overall system solution
and attractiveness of variable x  to some neighbour-
hood of the origin. If additionally Assumption 3
holds, then this neighbourhood can be chosen arbi-
trary. If signal uncertainty w , which reflects influ-
ence of exogenous disturbances on system dynamics,
is vanishing, then global asymptotic stability property
of the system with respect to variable x  is proven.
As it was mentioned before, for system (3) with input
appearance of uncertainty ω  ISS stabilizability can
be weakened to simple global asymptotic stabi-
lizability with known Lyapunov function.



4. CONCLUSION

In this work a switching adaptive controller is de-
signed, which for uncertain system (1) provides
boundedness of overall system solution and attrac-
tiveness of variable x  to some neighbourhood of the
origin. Applicability conditions of proposed solution
assume, that functional uncertainty admits require-
ments of Assumption 1 and system (1) is ISS stabi-
lizable by continuous feedback (Assumption 2). If
additionally Assumption 3 holds, then radios of at-
tracting neighbourhood can be chosen arbitrary. If
disturbance signal is absent, then global asymptotic
stability property of the system with respect to vari-
able x  is proven. Additionally, there is no restriction
on compactness of admissible values set for system
uncertain parameters.
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