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1. INTRODUCTION

The class of quasi-polynomial (QP) systems plays
an increasingly important role in the modelling of
dynamical systems since the majority of smooth
nonlinear systems occurring in practice can be
easily transformed to QP form (Hernández-Bermejo
et al., 1998). At the same time, the stability prop-
erties of QP systems have been intensively studied
recently (Figueiredo et al., 2000), (Hernández-
Bermejo, 2002).

On the other hand, some computationally ef-
fective numerical methods have been developed
lately, that allow us to practically perform the
stability analysis of QP systems (Figueiredo et
al., 2003).
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To the best of the authors’ knowledge no one
has tried to use the above mentioned theoretical
and numerical tools in the framework of nonlinear
control systems. This paper aims to show that
the QP description of dynamical systems can
offer practically feasible design methods in this
challenging field.

2. BASIC NOTIONS

In this section some basic concepts of quasi-
polynomial (QP) and Lotka-Volterra (LV) sys-
tems (Hernández-Bermejo and Fairén, 1997) are
introduced. Basic notions on linear- and bilinear
matrix inequalities are also presented here.

2.1 Quasi-Polynomial Models

Quasi-polynomial models are sets of ODEs of the
following form



ẏi = yi
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Aij
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y
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 (1)

where y ∈ int(Rn
+), A ∈ R

n×m, B ∈ R
m×n, Li ∈

R, i = 1, . . . , n. Furthermore, L = [L1 . . . Ln]T .
Let us denote the equilibrium point of interest
of (1) as y∗ = [y∗

1 y∗
2 . . . y∗

n]T . Without the
loss of generality we can assume that Rank(A) =
Rank(B) = n and m ≥ n.

The above family of models is split into classes
of equivalence (Hernández-Bermejo and Fairén,
1997) according to the values of the products
M = B · A and N = B · L. The Lotka-Volterra
form gives the representative elements of these
classes of equivalence. If Rank(B) = n, then the
set of ODEs in (1) can be embedded into the
following m-dimensional set of equations, which
is a classical Lotka-Volterra model:

żj = zj

(

Nj +

m
∑

i=1

Mjizi

)

, j = 1, . . . ,m

(2)
where each zj represents a so called quasi-
monomial :

zj =

n
∏

k=1

y
Bjk

k , j = 1, . . . ,m. (3)

2.2 Rewriting non QP models into QP-form

A set of nonlinear ODEs can be embedded to QP-
form if the non-QP elements are multiplicative
functions f appearing in the QP-terms and a QP-
type ODE can be found such that f is a solution
of it (Hernández-Bermejo and Fairén, 1995).

The embedding is performed by introducing a new
auxiliary variable x for each non-QP function f

which is in the simplest case x = f . One can
differentiate this algebraic equation in order to
arrive at a new ODE in QP-form that completes
the embedded QP-ODE model.

It is important to note that the embedding is not
unique, because we can choose the new variables
in a different, more complicated way as compared
to x = f .

2.3 Linear and bilinear matrix inequalities

A linear matrix inequality (LMI) is a convex
constraint which can be expressed in the form

F (x) = F0 + F1x1 + · · · + Fnxn > 0 (4)

where

• F0, F1, · · · , Fn are given symmetric matrices
• (x1, · · · , xn)T ∈ Rn is the vector of decision

variables

Furthermore, the inequality symbol in (4) stands
for the positive definiteness of F . If we allow
the equality in (4), then we talk about a non-
strict LMI. LMIs are solved e.g. with the so called
Ellipsoid algorithm (Gahinet et al., 1995) which
has polynomial complexity. There are efficient
software tools for solving LMIs. One of them is
the MATLAB r© LMI Control Toolbox (Scherer
and Weiland, 2000) but there are other useful
instruments, too (Figueiredo et al., 2003).

A bilinear matrix inequality (BMI) is a diagonal
block composed of q matrix inequalities of the
following form

Gi
0 +

p
∑

k=1

xkGi
k +

p
∑

k=1

p
∑

j=1

xkxjK
i
kj ≤ 0,

i = 1, . . . , q

(5)

where x ∈ R
p is the decision variable to be

determined and Gi
k, k = 0, . . . , p, i = 1, . . . , q and

Ki
kj , k, j = 1, . . . , p, i = 1, . . . , q are symmetric,

quadratic matrices.

The main properties of BMIs are that they are
non-convex in x (which makes their solution nu-
merically much more complicated than that of lin-
ear matrix inequalities), and their solution is NP-
hard (VanAntwerp and Braatz, 2000). However,
there exist practically applicable and efficient al-
gorithms for BMI solution (Tuan et al., 2000),
(Kocvara and Stingl, 2003).

2.4 Stability Analysis of QP and LV models

In this section the methods of local and global
stability analysis of QP and LV models, i.e. au-
tonomous QP and LV system models are briefly
summarized. Henceforth it is assumed that y∗ is a
positive equilibrium point, i.e. y∗ ∈ int(Rn

+) in the
QP case and similarly z∗ ∈ int(Rm

+ ) is a positive
equilibrium point in the LV case.

2.4.1. Global stability analysis of LV models For
LV systems there is a well known Lyapunov func-
tion family (Hernández-Bermejo, 2002),
(Figueiredo et al., 2000), which is in the form:

V (z) =
m

∑

i=1

ci

(

zi − z∗i − z∗i ln
zi

z∗i

)

, (6)

ci > 0, i = 1 . . . m.

where z∗ = (z∗1 , . . . , z∗m)T is the equilibrium point
corresponding to the equilibrium y∗ of the original
QP system. The time derivative of the Lyapunov
function (6) is:

V̇ (z) =
1

2
(z − z∗)(CM + MT C)(z − z∗) (7)

where C = diag(c1, . . . , cm) and M is the in-
variant characterizing the LV form. Therefore the



nonincreasing nature of the Lyapunov function is
equivalent to the feasibility of the following set of
LMIs:

CM + MT C ≤ 0
C > 0

(8)

where the unknown matrix is C, which is diagonal
and contains the coefficients of (6). It is important
to note that the strict positivity constraint on ci

can be somewhat relaxed in the following way
(Figueiredo et al., 2000): if the equations of the
model (1) are ordered in such a way that the first
n rows of B are linearly independent, then ci > 0
for i = 1, . . . , n and cj = 0 for j = n + 1, . . . ,m
still guarantee global stability.

It is examined and proved in (Figueiredo et al.,
2000) and (Hernández-Bermejo, 2002) that the
global stability of (2) with Lyapunov function (6)
implies the boundedness of solutions and global
stability of the original QP system (1).

3. ZERO DYNAMICS ANALYSIS OF QP
SYSTEMS

In this section we extend the autonomous QP-
ODE models (1) first to construct QP system
models. Thereafter the conditions to have a QP-
form of the zero dynamics of QP systems are
presented.

3.1 QP system models

A single-output input-affine nonlinear system
model

ẏ = f(y) +

p
∑

i=1

gi(y)ui

η = h(y) (9)

(where y ∈ R
n is the state vector, u ∈ R

p is the
input and η ∈ R is the output) is in QP-form if
all of the functions f , g and h are in QP-form.
Then the general form of the state equation of an
input-affine QP system model with p-inputs is:

ẏi = yi
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(10)

where

i = 1, . . . , n, A0, Al ∈ R
n×m, B ∈ R

m×n,

λ0, λl ∈ R
n, l = 1, . . . , p.

Table 1. Variables and parameters of the
bioreactor model

X biomass concentration [ g
l
]

S substrate concentration [ g
l
]

F inlet feed flow rate [ l
h
]

V volume 4 [l]
SF substrate feed concentration 10 [ g

l
]

Y yield coefficient 0.5 -

µmax, kinetic parameter 1 [ 1

h
]

K1 kinetic parameter 0.03 [ g
l
]

K2 kinetic parameter 0.5 [ l
g
]

3.2 Zero dynamics analysis

Let us consider a SISO input-affine QP-model
in the form of Eq. (10) with p = 1 and with
the simplest output η = yi − w∗ for some i

and w∗ > 0, i.e. we want to keep the system’s
output at a positive constant value. Moreover, let
us assume that the relative degree of the system
equals one and gi1(y) = gi(y) =

∏n
j=1

y
γji

j , i.e. the
input function is of quasi-monomial type. Then
the output zeroing input is given in the form

u(t) = −
Lfi

h(y)

Lgi
h(y)

= −
fi(y)

∏n
j=1

y
γji

j

(11)

where Lfh denotes the Lie-derivative of h along
f . It is seen that the output zeroing input above
is in QP-form if fi(y) is in QP-form.

In order to obtain the zero dynamics, one has to
substitute the input (11) to the state equation
(10) to obtain an autonomous system model. It is
easy to compute that the resulting zero dynamics
system model will remain in QP-form with an
output zeroing input in QP-form. Therefore the
stability analysis of the zero dynamics can be
investigated using the methods described earlier
in section 2.4.

The above result can be easily generalized to the
case of outputs in quasi-monomial form.

3.2.1. A simple fermentation example Con-
sider a simple fermentation process with non-
monotonous reaction kinetics that is described by
the non-QP input-affine state-space model

Ẋ = µ(S)X −

XF

V

Ṡ = −

µ(S)X

Y
+

(SF − S)F

V
(12)

µ(S) = µmax
S

K2S2 + S + K1

,

Where the inlet feed flow rate denoted by F is the
manipulated input. The variables and parameters
of the model together with their units and param-
eter values are given in Table 1. The parameter
values are taken from (Kuhlmann et al., 1998).

The investigated equilibrium point of the system
is where the outlet biomass flow rate (i.e. biomass
production per unit time) is maximal:



S0 =
1

2

−2K1 + 2
√

K2

1
+ S2

F K1K2 + SF K1

SF K2 + 1
(13)

X0 = (SF − S0)Y (14)

By introducing a new differential variable Z =
1

K2S2+S+K1

in addition to X and S, the original

system (12) can be represented in QP-form char-
acterized by the following matrices:

A0 =







µmax 0 0 0 0 0 0

0 −

µmax

Y
0 0 0 0 0

0 0 0
2µmaxK2

Y
0

µmax

Y
0







A1 =







0 0 0 0 0 0 0

0 0
SF

V
0 0 0 0

1 − 2K2SF

V
0 0 0

2K2

V
0 −

SF

V







B =















0 1 1
1 0 1
0 −1 0
1 2 2
0 2 1
1 1 2
0 0 1















λ1 =













−

1

V

−

1

V

0













The quasi-monomials in the QP system model
are:

SZ, XZ, S−1, S2XZ2, S2Z, SXZ2, Z

Let us choose input of the system to be the input
flowrate, F , and the output to be the centered
substrate-concentration:

y = η = S − S0

The output zeroing input can be easily computed:

F =
µmaxS0V

Y (SF − S0)
XZ (15)

If the above equations are substituted into the
QP-form, the matrices A′, B′ and λ′ characteriz-
ing the zero dynamics are the following:

A′ =





µmaxS0 −

µmaxS0

Y (SF − S0)
0

0 0 R



 ,

B′ =

[

0 1
1 1
1 2

]

, λ′ =

[

0
0

]

,

where

R =
(1 − 2K2SF )µmaxS2

0

Y (SF − S0)
+

2µmaxK2S2

0

Y
+

+
2K2µmaxS3

0

Y (SF − S0)
+

µmaxS0

Y
−

µmaxS0SF

Y (SF − S0)

Hence, the monomials of the zero dynamics are

Z, XZ, XZ2

Note that the number of quasi-monomials has been
drastically reduced.

In order to study the local stability of the zero
dynamics, we first computed the eigenvalues of the

Jacobian of the zero dynamics at the equilibrium
point X0, Z0 that are

−0.8022, 0

Thereafter the feasibility of the LMI (8) was in-
vestigated using the LMI Toolbox in Matlab for
global stability analysis. The singular perturba-
tion technique was also applied to overcome the
technical difficulty caused by the zero eigenvalues
of the LV coefficient matrix. The result of the LMI
is the following Lyapunov function parameter ma-
trix with ε = −10−7 as a perturbation parameter:

C =





8.4341 · 108 0 0
0 180.33 0
0 0 0





Therefore the global stability of the zero dynam-
ics is proved through the QP description. This
result is in good agreement with (Szederkényi
et al., 2002) where the stability of the zero dy-
namics was proved through nonlinear coordinates-
transformations.

4. CONTROLLER DESIGN

The output zeroing input (11) can be viewed as a
nonlinear static state feedback acting on the QP-
form state equation (10). If the state feedback is in
QP-form then the closed-loop system will also be
in QP-form and its stability can be conveniently
investigated by using LMIs if the feedback param-
eters are known and fixed.

4.1 The controller design problem

Therefore, one can formulate a globally stabilizing
state feedback design problem for QP systems
as follows. Consider arbitrary quasi-polynomial
inputs in the form:

ul =

r
∑

i=1

kilq̂i, l = 1 . . . , p (16)

where q̂i = q̂i(y1, . . . , yn), i = 1, ..., r are arbitrary
quasi-monomial functions of the state variables of
(10) and kil is the constant gain of the quasi-
monomial function q̂i in the l-th input ul. The
closed loop system will also be a QP system with
matrices

Â = A0 +

p
∑

l=1

r
∑

i=1

kilAl, B̂,

λ = λ0 +

p
∑

l=1

r
∑

i=1

kilλl.

where kil is the (i, l)-th entry of the gain ma-
trix k. Note that the number of quasi-monomials
in the closed-loop system (i.e. the dimension of



the matrices) together with the matrix B̂ may
significantly change depending on the choice of
the feedback structure, i.e. on the quasi-monomial
functions q̂i.

Furthermore, the LV coefficient matrix M can also
be expressed in the form:

M = B̂ · Â = M0 +

p
∑

l=1

r
∑

i=1

kilMl

Then the global stability analysis of the closed
loop system with unknown feedback gains kil

leads to the following bilinear matrix inequality

MT C + CM = MT
0 C + CM0+

+

p
∑

l=1

r
∑

i=1

kil

(

MT
l C + CMl

)

< 0,
(17)

where C is diagonal and positive definite. The
variables of the BMI are the p × r kil input-
parameters and the cj , j = 1, .., m̂ parameters
of the Lyapunov function. If the BMI above is
feasible then there exists a globally stabilizing
feedback with the selected structure.

4.1.1. Feedback structure design Clearly, the
general feedback structure (16) should be spe-
cialized in order to reduce the number of quasi
monomials in the closed-loop system. This can
be performed by analyzing carefully the relation-
ship between the quasi-monomials of the open-
loop system. Further reduction can be possibly
achieved by choosing appropriate feedback gain
values from the feasible set.

The following example illustrates the above ap-
proach to design globally stabilizing static QP
feedback controllers.

4.2 Example

Let the open loop system be the following one:

ẋ1 = x1

(

−0.25x
−5/3

1
x−1

2
+

+(0.3413 − 0.0833 · u)x
−5/3

1
x−2

2
−

−0.1666x
−1/15

1
x
3/5

2
− 0.4166x

13/6

1
x
−3/2

2
+

+0.3333x
−5/6

1
x
1/2

2

)

ẋ2 = x2

(

0.0277x
13/6

1
x
−3/2

2
+ 0.1666x

−2/3

1
x−2

2
+

+0.2592x
14/15

1
x
−2/5

2
+

+(0.1296 · u − 0.5309)x
−1/15

1
x
−2/5

2

)

(18)

The system can also be given by the following
quasi-monomials and system matrices:

x
−5/3

1
x−1

2
, x

−5/3

1
x−2

2
, x

−1/15

1
x
3/5

2
, (19)

x
13/6

1 x
−3/2

2 , x
−5/6

1 x
1/2

2 , x
−2/3

1 x−2
2 ,

x
14/15

1 x
−2/5

2 , x
−1/15

1 x
−2/5

2 .

A =

[

−0.25 0.3413 − 0.0833 · u −0.1666 −0.4166 . . .
0 0 0 0.0277 . . .

. . . 0.3333 0 0 0

. . . 0 0.1666 0.2592 0.1296 · u − 0.5309

]

B =



















−5/3 −1
−5/3 −2
−1/15 3/5
13/6 −3/2

−5/6 1/2
−2/3 −2
14/15 −2/5

−1/15 −2/5



















, λ =

[

0

0

]

The open loop system (18) has a positive equi-
librium point at x∗

a = [0.8921 0.7704]T , which is
locally stable because the eigenvalues of the Jaco-
bian matrix in this point are: −0.5439,−1.7824.
The open loop system has another equilibrium
point at

x∗
b = [0.0380 1.6639]T .

In this point the eigenvalues of the Jacobian are:
5.9029,−1.7392, so it is an unstable equilibrium
point of the system. It can be checked that by
choosing e.g. [0.01 5]T as initial condition, the
solution goes to infinity, therefore x∗

a is not a
globally stable equilibrium.
Now we try to globally stabilize the equilibrium
point x∗

a with the simplest (linear) monomial
feedback (because with a linear static feedback of
these states we expect that it will be possible to
find parameter values k1 and k2 for which the
number of monomials decreases). The feedback
structure has the following form:

u = −k1(x1 − x∗
1) − k2(x2 − x∗

2) (20)

where [x∗
1 x∗

2]
T = x∗

a.

Substituting the above structure into system (18)
one gets a QP system with the following quasi-
monomials and parameters:

x
−5/3

1 x−1
2 , x

−5/3

1 x−2
2 , x

−2/3

1 x−2
2 ,

x
−1/15

1 x
3/5

2 , x
13/6

1 x
−3/2

2 , x
−5/6

1 x
1/2

2 ,

x
14/15

1 x
−2/5

2 , x
−1/15

1 x
−2/5

2 .

A =

[

−0.2500 + 0.0833k1 . . .
0 . . .

. . . 0.3413 − 0.0743k1 − 0.0642k2 0.0833k1 . . .

. . . 0 0.1666 . . .

. . . −0.1666 −0.4166 0.3333 0

. . . −0.1296k2 0.0277 0 0.2592 − 0.1296k1

. . . 0

. . . −0.5309 + 0.1156k1 + 0.0998k2

]

B =



















−5/3 −1

−5/3 −2
−2/3 −2
−1/15 3/5

13/6 −3/2
−5/6 1/2
14/15 −2/5

−1/15 −2/5



















, λ =

[

0

0

]



It can be seen that A can be written in the form:

A = A0 + A1k1 + A2k2,

so the design of a globally stabilizing controller
may be reduced to a BMI:

= MT C + CM < 0, where C = diag [c1, . . . , c8]

(MT
0

C + CM0) + (MT
1

k1C + Ck1M1)+

+(MT
2

k2C + Ck2M2) < 0 (21)

It can be easily checked that the following vectors
are feasible solutions of (21)

c1 > 0, c2 > 0, c3 = 1,

c4 = 10, c5 = 2, c6 = 4,

c7 > 0, c8 > 0, k1 = 2, k2 = 3,

then the monomials x
−5/3

1 x−1
2 , x

−5/3

1 x−2
2 , x

14/15

1 x
−2/5

2 ,

and x
−1/15

1 x
−2/5

2 disappear.
The closed loop system is the following quasi-
polynomial system:

ẋ1 = x1

(

0.1666x
−2/3

1
x−2

2
− 0.1666x

−1/15

1
x
3/5

2
−

−0.4166x
13/6

1
x
−3/2

2
+ 0.3333x

−5/6

1
x
1/2

2

)

ẋ2 = x2

(

0.1666x
−2/3

1
x−2

2
− 0.3889x

−1/15

1
x
3/5

2
+

+0.0278x
13/6

1
x
−3/2

2

)

(22)

With system matrices:

A =

[

0.1666 −0.1666 −0.4166 0.3333
0.1666 −0.3889 0.0278 0

]

B =







−2/3 2

−1/15 3/5
13/6 −3/2
−5/6 1/2







, λ =

[

0
0

]

The system (22) now has only x∗
a as an equi-

librium point in the positive orthant, for which
the eigenvalues of the Jacobian matrix are: λ1 =
−1.2596, λ2 = −0.9552.

However, the stability of x∗
a is now global with the

Lyapunov function of the form (6) with parame-
ters c1, . . . , c8.

5. CONCLUSIONS AND FUTURE WORK

A QP description has been proposed and found
to be particularly useful for constrained (zero)
dynamics analysis of relative degree 1 input-affine
nonlinear systems with quasi-monomial type in-
puts and outputs.

It has also been shown that the globally stabilizing
controller design problem with quasi-polynomial
feedback structure for QP systems having relative
degree 1 leads to the feasibility of a bilinear matrix
inequality where the unknowns to be determined
are the parameters of the Lyapunov function of
the closed loop system and the constant coeffi-
cients of the monomials in the feedback law.

The feasibility of the proposed methods and tools
are demonstrated using illustrative simple exam-
ples.

The development of a systematic method for feed-
back structure selection based on the present re-
sults is the target of future research.
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