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Abstract: The development of tools for Terrain Based Navigation of Underwater
Vehicles rooted on Principal Component Analysis are proposed and discussed
in detail. Resorting to a nonlinear Lyapunov transformation, the synthesis and
analysis of a nonlinear multirate H2 estimator is presented with guaranteed
stability and optimal performance on equilibrium trajectories. Post-processing
techniques using a fixed interval non-causal smoother are outlined to improve
the performance of the overall framework. Results from Monte Carlo simulation
techniques to assess the performance of the proposed tools are included. Copyright
c©2005 IFAC
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1. INTRODUCTION

Navigation systems for long duration missions of
underwater vehicles (UVs) in unstructured en-
vironments, without resorting to external sen-
sors, and with bounded estimation errors, have
been a major challenge in underwater robotics
(Leonard et al., 1998). However, unmodeled dy-
namics, time-varying phenomena, and the noise
present in the sensor measurements continuously
degrade the navigation system accuracy along
time, precluding its use on a number of important
long range missions. To overcome this limitation
external positioning systems have been proposed
in the past (Vickery, 1998) and successfully in-
tegrated in navigation systems for underwater
applications (Alcocer et al., 2004; Whitcomb et
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al., 1999). The tedious deployment and the de-
manding calibration procedure of the positioning
systems, strongly constrain the area where the
missions can take place and ultimately the use of
UVs.

In the case where the missions take place in ar-
eas where detailed bathymetric data are avail-
able, one alternative has been exploited in the
past: the terrain information can be used as
an aiding positioning sensor to bound the error
estimates on the navigation systems leading to
the so called Terrain Based or Terrain Aided
Navigation Systems. Applications on air (Baker
and Clem., 1977; Hostetler and Andreas, 1983),
land (Crowley et al., 1998) and underwater vehi-
cles (Karlsson and Gustafsson, 2003; Sistiaga et
al., 1998) were reported in the last decades.

Extended Kalman Filtering has been the most
commonly used synthesis technique to address
the terrain based navigation design problem
(Hostetler and Andreas, 1983; Sistiaga et al.,



Fig. 1. UV inertial and local coordinate frames. Mechan-

ical scanning sonar range measurements.

1998). However, several authors provide examples
on instability and severe performance degrada-
tion of the proposed solutions, precluding their
use in general. Correlation techniques (Baker and
Clem., 1977; Nygren and Jansson, 2003) and par-
ticle filters (Karlsson and Gustafsson, 2003; Pham
et al., 2003) have also been proposed, requiring a
high computational burden.

This paper tries to endow the underwater robotics
community with tools for terrain based navigation
but departs considerably from the approaches pre-
viously described. The methodology proposed is
rooted on optimal processing techniques of ran-
dom signals, namely Principal Component Anal-
ysis (PCA) based on the Karhunen-Loève Trans-
form (Mertins, 1999; Jolliffe, 2002).

The paper is organized as follows: in section 2
the notation is introduced and the sensor package
installed onboard is described. Section 3 reviews
the background on the Karhunen-Loève trans-
form, basis for the principal component analysis
of stochastic signals. The approach for the bathy-
metric data decomposition will also be detailed.
In section 4 the estimator structure to be used on
UV missions is introduced and some properties are
presented. Section 5 outlines the use of an optimal
fixed interval smoother for data post-processing
and section 6 addresses the implementation issues.
Monte Carlo results obtained with a simulated
model of an UV in a synthesized terrain are also
presented. Finally, some conclusions are drawn in
section 7.

2. NOTATION, SENSOR PACKAGE AND
DESIGN MODEL

2.1 Notation
Let {I} be an inertial reference frame located
at the pre-specified mission scenario with North,
East, and Down axes, and origin at mean sea level,
and let {B} denote a body-fixed frame that moves
with the UV, as depicted in fig. 1. The following
notation is required:

p :=[x y z]T - position of the origin of {B} in
{I};

B(IvB) - linear velocity of the origin of {B}
in {I}, expressed in {B}, i.e. body-fixed linear
velocity;

λ := [φ θ ψ]T - vector of roll, pitch, and yaw
angles that parameterize locally the orientation
of frame {B} with respect to {I};

B(IωB) - angular velocity of {B} relative to
{I}, expressed in {B}, i.e. body-fixed angular
velocity;

Given two frames {A} and {B}, A
BR denotes the

rotation matrix from {B} to {A}. In particular,
I
BR(λ) is the rotation matrix from {B} to {I},
parameterized locally by λ. Since R is a rotation
matrix, it satisfies RT = R−1 that is, RTR = I.

2.2 Sensor package and data geo-referencing

Consider an UV equipped with an Attitude and
Heading Reference System (AHRS) providing
measurements on the attitude λ and on the an-
gular velocities in body frame B(IωB). Two ro-
tation matrices RZ(ψ) (or Rψ in compact form)
and Rθ,φ = RY (θ)RX(φ) will be used, verifying
I
BR(λ) = RψRθ,φ. To complement the informa-
tion on position, a Doppler velocity log will be in-
stalled onboard the UV, providing measurements
of B(IvB). The body fixed velocity expressed in
the horizontal plane, using vH = R(θ, φ)B(IvB),
i.e. corrected with the attitude information in
R(θ, φ), will be an input to the design model, as
detailed next. A depth cell will also be considered
to provide measurements on the vertical.

A sonar ranging sensor is required to provide mea-
surements for the PCA based positioning system,
described later. Among the several types avail-
able, a mechanical scanning sonar, with a scan
bearing angle ε, will be considered. See fig. 1 in
detail, where the seafloor points sensed in consec-
utive ranging measurements - z(i) - are depicted in
red. Assuming, without loss of generality, that the
sonar is installed pointing down at the origin of
the reference frame B and the scanning angle lies
in the transversal plane (containing the (yB , zB)
axes), the ith range measurement d(i) can be geo-
referenced in the inertial reference frame I using
the relation z(i) = p +I

B R(λ)R(ε)[0 0 d(i)]T , where
R(ε) is the rotation matrix from the instantaneous
sonar bearing to the UV reference frame B. No
support from other external systems/devices will
be required.

2.3 Design model

The underlying design model G, that plays a
central role in the design of the estimator is based
on a simplified discrete time version of the UV
kinematics and has the realization



ΣG =
{

p(k + 1) = p(k) + hRψ(k)(vH(k) + b(k)) + ηp

b(k + 1) = b(k) + RT
ψ(k)ηb

(1)
where h is the sampling period, k describes in
compact form the time instant tk = kh for k =
0, 1, . . . , T (the final mission time), b captures
the bias terms due to velocity sensor installation
and calibration mismatches, assumed constant
or slowly varying, and ηp and ηb are auxiliary
inputs to be used in the stochastic H2 problem
considered later. Note that the UV velocity vH

is also considered as an input to the model. The
overall model structure is depicted as part of the
block diagram on fig. 2.

3. PRINCIPAL COMPONENT ANALYSIS

Considering all linear transformations, the Karhu-
nen-Loève (KL) transform allows for the optimal
approximation to a stochastic signal, in the least
squares sense. Furthermore, it is a well known
signal expansion technique with uncorrelated co-
efficients for dimensionality reduction. These fea-
tures make the KL transform interesting for many
signal processing applications such as data com-
pression, image and voice processing, data min-
ing, exploratory data analysis, pattern recognition
and time series prediction (Mertins, 1999; Jol-
liffe, 2002).

3.1 PCA background

Consider a set of M stochastic signals xi ∈
RN , i = 1, . . . ,M , each represented as a column
vector, with mean mx = 1/M

∑M
i=1 xi. The pur-

pose of the KL transform is to find an orthogonal
basis to decompose a stochastic signal x, from the
same original space, to be computed as x = Uv+
mx, where the vector v ∈ RN is the projection of
x in the basis, i.e., v = UT (x − mx). The matrix
U = [u1 u2 . . . uN ] should be composed by the N
orthogonal column vectors of the basis, verifying
the eigenvalue problem

Rxxuj = λjuj , j = 1, ..., N, (2)

where Rxx is the covariance matrix that can be
computed from the set of M experiments using

Rxx =
1

M − 1

M∑
i=1

(xi − mx)(xi − mx)T . (3)

Assuming that the eigenvalues are ordered, i.e.
λ1 ≥ λ2 ≥ · · · ≥ λN , the choice of the first n <<
N principal components, leads to an approxima-
tion to the stochastic signals given by the ratio on
the covariances associated with the components,
i.e.

∑
n λn/

∑
N λN . In many applications, where

stochastic multidimensional signals are the key to
overcome the problem at hand, this approxima-
tion can constitute a large dimensional reduction
and thus a computational complexity reduction.

The advantages of PCA are threefold: i) it is an
optimal (in terms of mean squared error) linear
scheme for compressing a set of high dimensional
vectors into a set of lower dimensional vectors; ii)
the model parameters can be computed directly
from the data (by diagonalizing the ensemble co-
variance); iii) given the model parameters, projec-
tion into and from the bases are computationally
inexpensive operations O(nN).

3.2 PCA based Positioning System

Assume a mission scenario where bathymetric
data are available and that a terrain based nav-
igation system should be designed. The steps to
implemented a PCA based positioning sensor us-
ing this bathymetric data will be outlined.

Prior to the mission, the bathymetric data of the
area under consideration should be partitioned in
mosaics with fixed dimensions Nx by Ny. After
reorganizing this two-dimensional data in vec-
tor form, e.g. stacking the columns, a set of M
stochastic signals xi ∈ RN , N = NxNy, results.
The number of signals M to be considered de-
pends on the mission scenario and on the mosaic
overlapping. The KL transform can be computed,
using (2) and (3), the eigenvalues must be ordered,
and the number n of the principal components
to be used should be selected, according with the
required level of approximation.

The following data should be recorded for lat-
ter use: i) the data ensemble mean mx; ii) the
matrix transformation with n eigenvectors Un =
[u1 . . . un]; iii) the projection on the selected basis
of all the mosaics, computed using vi = UT

n (xi −
mx), i = 1, . . . ,M ; iv) the coordinates of the
center of the mosaics, (xi, yi), i = 1, . . . ,M .

During the mission, at the time instants tk = Kk,
where K is an integer greater than 1, the geo-
referenced range measurements from the present
mosaic, are packed and will constitute the input
signal x to the PCA positioning system. The
following tasks should be performed: i) compute
the projection of the signal x into the basis, using
v = UT

n (x − mx); ii) given an estimate on the
actual horizontal coordinates of the UV position
x̂ and ŷ, provided by the navigation system, search
on a given neighborhood δ the mosaic that verifies
∀i‖[x̂ ŷ]T − [xi yi]T ‖2 < δ, rPCA = mini ‖v−vi‖2;
iii) given the mosaic i that is the closest to the
present input, its center coordinates (xi, yi) will
be selected as the xm and ym measurements.

Note that the bathymetric data based PCA posi-
tioning system described above, can be straight-
forward extended to use multidimensional geo-
physical data that can be measured with other
sensors installed onboard UVs such as magne-
tometers and gradiometers (Leonard et al., 1998).



4. NONLINEAR ESTIMATOR DESIGN AND
ANALYSIS

Based on the measurements from the set of sensors
installed on board and on the underlying design
model, derived from the kinematic relations with
realization G in (1), the estimator design will
be presented. The navigation system will provide
non-biased estimates p̂ and I v̂B of the position
and velocity of the body fixed frame {B} relative
to the inertial frame {I}, respectively.

A multi-rate minimization stochastic H2 problem
will be the setup adopted for the navigation sys-
tem design. First, some algebraic relations will
be outlined, a nonlinear transformation will be
introduced and applied when the UVs are describ-
ing trimming trajectories, i.e. equilibrium trajec-
tories, see (Fryxell et al., 1996) for details.

On the horizontal plane the rotation of the UV
admits the first order discrete time approximation
ψ(k + 1) = ψ(k) + hωz(k), where ωz is the
z component of the projection of the angular
velocity in body axis to the horizontal plane, i.e.
[ωx ωy ωz]T =I

B R(λ)B(IωB). Moreover, Rψ(k +
1) = Rψ(k)RZ(hωz(k)) = RZ(hωz(k))Rψ(k).

Lemma 4.1. Let T(k) ∈ R6×6 be a nonlinear time
varying Lyapunov transformation, parameterized
by ψ(k)

T(k) =
[

I3×3 03×3

03×3 Rψ(k)

]
,

verifying T−1(k) = TT (k), ‖T(k)‖2 ≤ 1, and
‖T(k)‖∞ ≤ 1.

Lemma 4.2. The estimation problem associated
with the UV kinematics, with realization in
G, is linear and time invariant over any trim-
ming trajectory, using the transformation z(k) =
T(k)[pT (k) bT (k)]T , introduced above.

PROOF. Using the transformation T(k) the dy-
namics of the new state variables can be written
as

z(k + 1) = A(k)z(k) + B1(k)(vH(k) + ηp(k))

+ B2(k)ηb(k),

y(k) = C(k)z(k)

(4)

where

A(k) =

[
I3×3 hI3×3

03×3 RZ(hωz(k))

]
, B1(k) =

[
hRψ(k)
03×3

]
,

B2(k) = [03×3 RT
Z(hωz(k))]T , and C(k) =

[I3×3 03×3]T , from the relations in (1). The key
idea is that the equilibrium trajectories for UVs
(also known as trimming trajectories) are circles
in the horizontal plane, parameterized by con-
stant vehicle’s body yaw rate ωz(k) (Fryxell et
al., 1996). Excluding as usually the deterministic
inputs (nulled when computing the error esti-
mates), the resulting system dynamics, described

Fig. 2. Block diagram of the nonlinear estimator pro-

posed.

by (4) on trimming trajectories is linear and time
invariant.

Remark that the dynamics described in (4), will
be used on the H2 estimator synthesis problem,
where η = [ηT

p ηT
b ]T is zero mean white noise with

uncorrelated covariance E[η(k)ηT (k)] = Q(k).
The multi-rate problem will be solved resorting
to the usual nonlinear recursions for the Kalman
filter:

ẑ−(k + 1) = A(k)ẑ+(k) + B1(k)vH(k)

P−(k + 1) = A(k)P+(k)A
T

(k) + Q(k)
for k = 0, 1, . . .

(5)

where ẑ−(k + 1) is the predicted state variable
estimate and P−(k + 1) is the covariance of the
prediction estimation error, respectively.

In the time instants multiple of K, the PCA
positioning system, described in subsection 3.2,
and the depth cell provide measurements y =
[xm ym zm]T , with covariance

R(k) = diag(f r
1/2
PCA, f r

1/2
PCA, rm),

where f is a proportion factor depending on the
terrain (Oliveira, 2005).

The Kalman filter state and error covariance up-
dates, ẑ+(k) and P+(k), respectively, can be ob-
tained according with

ẑ+(k) = ẑ−(k) + K(k)(y − C(k)ẑ−(k))

P+(k) = P−(k) − P−(k)C
T

(k)

(C(k)P−(k)C
T

(k) + R(k))−1C
T

(k)P−(k)

(6)

where K(k) = P−(k)C
T

(k)(C(k)P−(k)C
T

(k)+R(k))−1 =

[KT
p KT

b ]T is the Kalman gain, with two diago-
nal blocks. For the time instants mod(k,K) �= 0
P+(k) = P−(k) and ẑ+(k) = ẑ−(k). The result-
ing estimator is represented in fig. 2, with some
abuse of notation.

Under the assumption of homogeneous space
properties, note that the covariances in both x and
y directions of the initial error covariance P−(0),
the state noise covariance Q, and the observation
covariances from the PCA positioning system are
identical. It is important to remark that is this
case the probability density functions are symmet-
ric and under a rotation they are preserved (the



level curves are circles). This fact supports the use
of a linear Kalman filter for the nonlinear system
and explains the fact that over any trimming tra-
jectory the evolution of the estimate covariances
are correctly described, which is clearly not true
in the general case.

The proposed structure is a Complementary Fil-
ter, see (Oliveira, 2002) for a discussion on proper-
ties of complementary filters. The low-pass char-
acteristics from the PCA position measurement
to the position estimate are of utmost importance
to reject the high frequency noise due to finite
space resolution imposed by the dimensions of the
mosaics chosen. The bias present in the Doppler
velocity log measurements is fully compensated by
the bias terms of the filter.

5. OPTIMAL SMOOTHER

To obtain the optimal state and covariance esti-
mates, a noncausal fixed interval smoother can be
used for post-processing the data acquired during
the mission. As the underlying system obtained
along equilibrium trajectories is linear (4), the
proposed solution is close to the classical solu-
tion (Gelb, 1975), with minor changes due to the
multirate nature of the estimation problem at
hand. The smoother implemented is based on the
backward recursion{

G(k) = P−(k)A
T
per(k)(P+(k))−1

ẑ(k|T ) = ẑ−(k) + G(k)(ẑ+(k|T ) − ẑ+(k))

P+(k|T ) = P−(k) + G(k)(P+(k + 1|T ) − P+(k|T ))

(7)
where ẑ(k|T ) and P+(k|T ) are the a posteriori
state and error covariance estimates for instant k,
respectively. The initial conditions for the recur-
sion are ẑ(T |T ) = ẑ(T ) and P+(T |T ) = P+(T ),
the backwards iterations should be computed at
the time instants mod(k,K) = 0, and Aper(k) =
A(k ∗H − 1) . . .A((k− 1) ∗H) is the monodromy
of the periodic system.

6. SIMULATION RESULTS AND
PERFORMANCE ASSESSMENT

Table 1. Simulation parameters

Parameters and Values

Vehicle: T = 1800 s, h = 1 s, B(IvB) =
[2 0 0]T m.s−1, p(0) = [30 180 10]T m, b =
[0.1 0.2 0]T m.s−1, and ψ(0) = 1.65 rad.

Sensors: σu,v = 6 × 10−1 m.s−1, σd(i) = 10−1 m,
and σψ = pi/180 rad.

PCA: H = 10s, N = Nx ∗Ny = 20∗20, M = 42∗
21, n = 10, and δ = 60 m.

Estimator
P (0) = diag(102, 102, 1, 10−2, 10−2, 10−3),

Fig. 3. Mission scenario for UV Terrain Based Navigation

System assessment. Ideal trajectory.
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Fig. 5. Trajectory in the horizontal plane.

Q = diag(10−3, 10−3, 10−3, 10−6, 10−6, 10−7),
p̂(0) = [10 200 10]T m, and b̂(0) = [0 0 0]T m.s−1.

The performance of the proposed PCA based
positioning, estimator and smoother systems are
assessed on a synthetic world, through extensive
Monte Carlo simulations (based on 100 runs).
This mission area is constrained to x ∈] −
210, 210] m, y ∈]0, 840] m, and the depth is given
by

z(x, y) = 80 − 10sin(2π/400x)cos(2π/600y)
− 20cos(2π/800x) + ηz ,



where ηz is correlated white noise, depicted in
fig. 3. The set of parameters used are listed on
table 1 as well as the initial parameters for the
ideal vehicle and for the estimator. Note that
the choice of δ can be critical: in the case of a
large estimation error a small value can difficult
to obtain the correct neighbor; the choice of a
large δ augments the probability of misidentifying
an incorrect neighbor. The optimal choice of the
mosaics dimensions Nx and Ny are not completely
clear: if they are too small not enough bathymetric
data will be available, given the resolution of
the bathymetric data available (according with
the survey quality and accuracy); if they are
too big a large number of returns is required to
characterize a mosaic and therefore the period of
the resulting multirate system and the accuracy
of the PCA based positioning systems increases.
This problems will be addressed in the near future,
resorting to Kalman filter multi-model adaptive
estimators.

The measurements of the simulated sensors are
corrupted by white noise with characteristics simi-
lar to the sensors commercially available and com-
monly installed on UVs. The mission is composed
by a sequence of trimming trajectories similar to
the ones used in survey missions. In the first leg,
in fig. 5, the estimation error is larger due to the
initial position and bias estimate mismatches, to
illustrate the performance of the estimator (de-
picted in figure 4). The advantages relative to the
dead reckoning open loop integration are evident.
This error is obviously reduced in the (off-line)
smoothed trajectory estimate. The advantages of
the proposed framework can hardly be overem-
phasized.

7. CONCLUSIONS AND FUTURE WORK

In this work tools for Terrain Based Naviga-
tion rooted on the Principal Component Analysis
are proposed, discussed in detail, and validated
in simulation. The results obtained validate the
methodology of the overall system and pave the
way for a more intense effort in the near future
in a series of concurrent issues: i) use of sub-pixel
techniques to overcome the resolution limitations
due to the PCA approach; ii) application of multi-
model adaptive estimators to address the issues
of robustness and parameters’ sensitivity for the
proposed methodology; iii) assessment on the ap-
plication of recent results on incremental PCA to a
Simultaneous Localization and Mapping problem;
iv) development of a tightly coupled version, ex-
ploiting the linear relations on the KL transform.

The possibility of application to Autonomous Un-
derwater Vehicles and Remotely Operated Vehi-
cles should be pursued with the aim of impacting
on overcoming the limitations that the UVs have
today.

REFERENCES

Alcocer, A., P. Oliveira and A. Pascoal (2004).
Study and implementation of an ekf gib-
based underwater positioning system. IFAC
CAMS04.

Baker, W. and R. Clem. (1977). Terrain con-
tour matching (tercom) primer. ASD-TR-77-
61, Aeronautical Systems Division, Wright-
Patterson AFB.

Crowley, J., F. Wallner and B. Sciele (1998). Po-
sition estimation using principal components
of range data. Proceedings 1998 IEEE ICRA.

Fryxell, D., P. Oliveira, A. Pascoal, C. Silvestre
and I. Kaminer (1996). Navigation, guidance
and control systems of auvs: An application
to the marius vehicle. IFAC CEP.

Gelb, A. (1975). Applied Optimal Estimation. The
M.I.T. Press.

Hostetler, L. and R. Andreas (1983). Nonlinear
kalman filtering techniques for terrain-aided
navigation. IEEE TAC, vol. AC-28, No. 3.

Jolliffe, I. (2002). Pricipal Component Analysis.
Springer.

Karlsson, R. and F. Gustafsson (2003). Particle
filter for underwater terrain navigation. 2003
IEEE Workshop on Statistical Signal Process-
ing.

Leonard, J., A. Bennett, C. Smith and H. Feder
(1998). Autonomous underwater vehicle nav-
igation. MIT Marine Robotics Laboratory
Technical Memorandum.

Mertins, A. (1999). Signal Analysis: Wavelets,
Filter Banks, Time-Frequency Transforms
and Applications. John Wiley & Sons.

Nygren, I. and M. Jansson (2003). Robust terrain
navigation with the correlation method for
high position accuracy. OCEANS 2003.

Oliveira, P. (2002). Periodic and Nonlinear Esti-
mators with Applications to the Navigation of
Ocean Vehicles. IST,UTL. Lisbon, Portugal.

Oliveira, P. (2005). PCA positioning sensor char-
acterization for terrain based navigation of
uvs. 2nd IbPRIA.

Pham, D., K. Dahia and C. Musso (2003). A
kalman-particle kernel filter and its applica-
tion to terrain navigation. Proceedings 6th
ICIF.

Sistiaga, M., J. Opderbecke, M. Aldon and
V. Rigaud (1998). Map based underwater
navigation using a multibeam echosounder.
OCEANS 1998.

Vickery, K. (1998). Acoustic positioning systems
- a pratical overview of current systems. Pro-
ceedings of AUV’98.

Whitcomb, L., D. Yoerger and H. Singh
(1999). Combined doppler/lbl based naviga-
tion of underwater vehicles. 11th Interna-
tional UUST99.


