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Abstract: We present a simple tube controller for efficient robust model predictive
control of constrained linear, discrete-time systems in the presence of bounded
disturbances. The proposed control policy ensures that controlled trajectories are
confined to a given tube despite uncertainty. The robust optimal control problem
that is solved on–line is a standard quadratic programming problem of marginally
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in the deterministic case. We show how to optimize the tube cross section, how
to construct an adequate tube terminal set and we establish robust exponential
stability of a suitable robust control invariant set (the ‘origin’ for uncertain system)
with enlarged domain of attraction. Copyright c©2005 IFAC.
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1. INTRODUCTION

Research on robust model predictive control has
recognized the advantages of feedback control
when uncertainty is present (Mayne et al., 2000;
Findeisen et al., 2003). The decision variable in
feedback model predictive control is a control pol-
icy π that is a sequence {µ0(·), µ1(·), . . . , µN−1(·)}
of control laws. Determination of a feedback con-
trol policy is usually prohibitively difficult and
various simplifying approximations have been pro-
posed in the literature (Kouvaritakis et al., 2000;
Chisci et al., 2001; Mayne and Langson, 2001;
Löfberg, 2003; van Hessem and Bosgra, 2003; Ker-
rigan and Alamo, 2004; Smith, 2004). Both open–
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loop and feedback model predictive controller gen-
erate a tube of trajectories when uncertainty is
present. Feedback model predictive control re-
duces the spread of predicted trajectories result-
ing from uncertainty. In this note we present a
simple, computationally efficient, controller that
forces controlled trajectories to remain within a
suitably designed tube (sequence of sets of states),
ensuring robust constraint satisfaction and appro-
priate stability properties. Tubes have been ex-
tensively studied, see for instance (Quincampoix
and Veliov, 2002; Calafiore and El Ghaoui, 2004;
Kurzhanski, 2004) and references therein. Appli-
cation of tubes to robust model predictive control
has been reported in (Langson et al., 2004; Mayne
et al., 2005; Raković and Mayne, 2004).

Our main focus is the choice of tube cross–section,
tube terminal set and cost function in order to



simplify the resultant robust optimal control prob-
lem. Section 2 is concerned with the preliminaries.
Section 3 discusses an appropriate choice for tube
cross–section and tube terminal set. Section 4
presents a simple formulation of the resultant
robust optimal control problem and discusses sta-
bility properties. Section 5 presents an illustrative
numerical example. Finally, Section 6 presents
conclusions.

Notation: Let N , {0, 1, 2, . . .}, N+ , {1, 2, . . .}
and Nq , {0, 1, . . . , q}. A polyhedron is the (con-
vex) intersection of a finite number of open and/or
closed half-spaces and a polytope is the closed and
bounded polyhedron. Given two sets U and V,
such that U ⊂ R

n and V ⊂ R
n, the Minkowski

(vector) sum is defined by U ⊕ V , {u + v |
u ∈ U , v ∈ V}, the Pontryagin (geometric) set
difference is: U ⊖ V , {x | x ⊕ V ⊆ U}. Given
the sequence of sets {Ui ⊂ R

n}b
i=a, we denote

⊕b
i=a Ui , Ua ⊕ · · · ⊕ Ub. We denote d(z,X) ,

inf{|z − x| | x ∈ X}.

2. PRELIMINARIES

We consider the following discrete-time linear
time-invariant (DLTI) system:

x+ = Ax + Bu + w, (2.1)

where x ∈ R
n is the current state, u ∈ R

m

is the current control action x+ is the successor
state, w ∈ R

n is an unknown disturbance and
(A,B) ∈ R

n×n × R
n×m. The disturbance w is

persistent, but contained in a convex and compact
set W ⊂ R

n that contains the origin. We make
the standing assumption that the couple (A,B)
is controllable. We also define the corresponding
nominal system:

z+ = Az + Bv, (2.2)

where z ∈ R
n is the current state, v ∈ R

m is the
current control action z+ is the successor state of
the nominal system. The system (2.1) is subject
to the following set of hard state and control
constraints:

(x, u) ∈ X × U (2.3)

where X ⊆ R
n and U ⊆ R

m are polyhedral and
polytopic sets respectively and both contain the
origin as an interior point. Let W , WN de-
note the class of admissible disturbance sequences
w , {w(i) | i ∈ NN−1}. Let φ(i;x, π,w) denotes
the solution at time i of (2.1) when the control
policy is π , {µ0(·), µ1(·), . . . , µN−1(·)}, where
µi(·) is the control law (mapping state to control)
at time i, the disturbance sequence is w and the
initial state is x at time 0. If the initial state of
nominal model is z at time 0 then we denote by
φ̄(k; z, v) the solution to (2.2) at time instant k,
given the control sequence v , {v0, v1 . . . vN−1}.

Robust model predictive control is defined, as
usual, by specifying a finite-horizon robust op-
timal control problem that is solved on-line. In
this note, the robust optimal control problem is
the determination of a simple tube, defined as a
sequence X , {X0,X1, . . . ,XN} of sets of states,
and an associated control policy π that minimize
an appropriately chosen cost function and satisfy
the following set of constraints, for a given initial
condition x ∈ X:

x ∈ X0, Xi ⊆ X, XN ⊆Xf ⊆ X, (2.4)

µi(y) ∈ U, ∀y ∈ Xi, (2.5)

Ay + Bµi(y) ⊕ W ⊆Xi+1, ∀y ∈ Xi (2.6)

for all i ∈ NN−1; Xf is the terminal constraint
set. In order to exploit linearity and convexity of
the considered problem, we recall and generalize
some preliminary results.

Definition 1. A set Ω ⊂ R
n is a robust positively

invariant (RPI) set for system x+ = Ax + w
and constraint set (X,W ) if Ω ⊆ X and Ax +
w ∈ Ω, ∀w ∈ W , ∀x ∈ Ω.

Definition 2. A set Ω ⊂ R
n is a robust control

invariant (RCI) set for system x+ = Ax+Bu+w
and constraint set (X, U,W ) if Ω ⊆ X and for
every x ∈ Ω there exists a u ∈ U such that
Ax + Bu + w ∈ Ω, ∀w ∈ W .

The definition of a positively invariant (PI) set
for x+ = Ax and constraint set X is given
by Definition 1 with W = {0}. Similarly, the
definition of a control invariant (CI) set for x+ =
Ax + Bu and constraint set (X, U) is given by
Definition 2 with W = {0}. First we generalize
Proposition 1 of (Mayne and Langson, 2001):

Proposition 1. Let Ω be a RCI set for (2.1) and
constraint set (X, U,W ), and let ν : Ω → U be
a control law such that Ω is a RPI set for system
x+ = Ax+Bν(x)+w and constraint set (Xν ,W ),
where Xν , X∩{x | ν(x) ∈ U}. Let also x ∈ z⊕Ω
and u = v + ν(x − z). Then for all v ∈ R

m,
x+ ∈ z+ ⊕ Ω where x+ , Ax + Bu + w, w ∈ W
and z+ , Az + Bv.

This result allows us to exploit a simple param-
eterization of the tube-policy pair (X, π) as fol-
lows. The state tube X = {X0,X1, . . . ,XN} is
parametrized by {zi} and R as follows:

Xi , zi ⊕R, i ∈ NN (2.7)

where zi is the tube cross–section center at time i
and R is a set. The control laws µi(·) defining the
control policy π = {µ0(·), µ1(·), . . . , µN−1(·)} are
parametrized by {zi} and {vi} as follows:



µi(y) , vi + ν(y − zi), y ∈ Xi, (2.8)

for all i ∈ NN−1, where vi is the feedforward
component of the control law and ν(y − zi) is
feedback component of the control law µi(·). A
suitable choice for the tube cross–section R is any
RCI set with a ν : R → U such that R is RPI for
system Ax+Bν(x)+w and constraint set (Xν ,W ),
where Xν , X∩{x | ν(x) ∈ U}. The sequence {zi}
is the sequence of tube centers and is required to
satisfy (2.2), subject to tighter constraints than
those in (2.2), as discussed in the sequel.

3. CONSTRUCTION OF A SIMPLE TUBE

3.1 Optimized tube cross–section

To reduce conservativeness we minimize an appro-
priate norm of the set R by exploiting a relevant
result recently established in (Raković, 2005). Let
Mi ∈ R

m×n, i ∈ N and for each k ∈ N let
Mk , (M0,M1, . . . ,Mk−2,Mk−1). An appropri-
ate characterization of a family of RCI sets for
(2.1) for unconstrained case, for constraint set
(Rn, Rm,W ), is given by the following sets for
k ≥ n:

Rk(Mk) ,

k−1
⊕

i=0

Di(Mk)W (3.1)

where the matrices Di(Mk), i ∈ Nk, k ≥ n are
defined by:

D0(Mk) , I,

Di(Mk) , Ai +

i−1
∑

j=0

Ai−1−jBMj , i ≥ 1 (3.2)

where Mk satisfies:

Dk(Mk) = 0 (3.3)

Since the couple (A,B) is assumed to be con-
trollable, such a choice exists for all k ≥ n. Let
Mk denote the set of all matrices Mk satisfying
condition (3.3):

Mk , {Mk | Dk(Mk) = 0} (3.4)

Theorem 1. (Raković, 2005) Given any Mk ∈ Mk

and the corresponding set Rk(Mk) there exists
a control law ν : Rk(Mk) → R

m such that
Ax + Bν(x) ⊕ W ⊆ Rk(Mk), ∀x ∈ Rk(Mk), i.e.
the set Rk(Mk) is RCI for the system (2.1) and
constraint set (Rn, Rm,W ).

The feedback control law ν : Rk(Mk) → R
m in

Theorem 1 is a selection from the set valued map:

U(x) , MkW(x) (3.5)

where Mk ∈ Mk and the set of disturbance
sequences W(x) is defined for each x ∈ Rk(Mk)
by:

W(x) , {w | w ∈ Wk, Dw = x}, (3.6)

where Wk , W × W × . . . × W and D =
[Dk−1(Mk) . . . D0(Mk)]. A ν(·) satisfying The-
orem 1 can be defined, for instance, as follows:

ν(x) , Mkw
0(x) (3.7a)

w0(x) , arg min
w

{|w|2 | w ∈ W(x)} (3.7b)

The function w0(·) is piecewise affine, being the
solution of a parametric quadratic programme;
thus, the feedback control law ν : Rk(Mk) →
R

m is piecewise affine (being a linear map of a
piecewise affine function). The set Rk(Mk) and
the feedback control law ν(·) are parametrized by
the matrix Mk. It is shown in (Raković, 2005)
that a suitable Mk can be obtained by solving an
optimization problem. The optimization problem
is:

P̄k : (M0
k, α0, β0, δ0) =

arg min
Mk,α,β,δ

{δ | (Mk, α, β, δ) ∈ Ω̄} (3.8)

where the constraint set Ω̄ is defined by:

Ω̄ , {(Mk, α, β, δ) | Mk ∈ Mk, Rk(Mk) ⊆ αX,

U(Mk) ⊆ βU,

(α, β) ∈ [0, 1] × [0, 1],

qαα + qββ ≤ δ} (3.9)

with Rk(Mk) defined by (3.1), U(Mk) defined by:

U(Mk) ,

k−1
⊕

i=0

MiW (3.10)

with weights qα and qβ reflecting a desired con-
traction of state and control constraint sets. The
solution M0

k to problem P̄k (which exists if Ω̄ 6= ∅)
yields a set R0

k , Rk(M0
k) and feedback control

law ν0(x) = M0
kw

0(x) satisfying:

R0
k ⊆ α0

X, ν0(x) ∈ U(Mk) ⊆ β0
U, (3.11)

for all x ∈ R0
k. It follows from Theorem 1 and the

discussion above that the set R0
k, if it exists, is RPI

for system x+ = Ax + Bν0(x) + w and constraint
set (Xν0 ,W ), where Xν0 , α0

X ∩ {x | ν0(x) ∈
β0

U}.

3.2 Tube Terminal Set

The parametrization for the state tube X moti-
vates the introduction of a set of sets of the form
Φ , {z ⊕R | z ∈ Zf} (Φ is a set of sets, each of
the form z⊕R where R is a set) that is set robust
control invariant.

Definition 3. A set of sets Φ is set robust control
invariant (SRCI) for system x+ = Ax + Bu + w
and constraint set (X, U,W ) if for any set X ∈ Φ:
(i) X ⊆ X and, (ii) there exists a set Y ∈ Φ such



that for all x ∈ X, there exists a u ∈ U such that
Ax + Bu ⊕ W ⊆ Y .

We assume that:
A1: (i) The set R is a RCI set for system (2.1) and
constraint set (αX, βU,W ) where (α, β) ∈ [0, 1)×
[0, 1), (ii) The control law ν : R → βU is such
that R is RPI for system x+ = Ax + Bν(x) + w
and constraint set (Xν ,W ), where Xν , αX ∩ Xν

where Xν , {x | ν(x) ∈ βU} (ν(·) exists by A1

(i)).

Let Uν , Z, V be defined as follows:

Uν , {ν(x) | x ∈ R}, Z , X ⊖R, V , U ⊖ Uν .
(3.12)

We also assume:
A2: (i) The set Zf is a CI set for the nominal
system (2.2) and constraint set (Z, V), (ii) The
control law ϕ : Zf → V is such that Zf is PI for
system z+ = Az + Bϕ(z) and constraint set Zϕ,

where Zϕ , Z ∩ {z | ϕ(z) ∈ V}. (ϕ(·) exists by
A2 (i)).

We can now establish the following relevant result:

Theorem 2. Suppose that A1 and A2 are satis-
fied. Then Φ , {z ⊕ R | z ∈ Zf} is a set robust
control invariant for system x+ = Ax + Bu + w
and constraint set (X, U,W ).

PROOF. Let X ∈ Φ, then X = z ⊕R for some
z ∈ Zf . For every x ∈ X we have x = z +

y, where y , x − z ∈ R. Let the control law
θ : Zf ⊕R → U be defined by θ(x) , ϕ(z)+ ν(y)
and let u = θ(x). Then x+ = Ax + Bθ(x) +
w = A(z + y) + B(ϕ(z) + ν(y)) + w = Az +
Bϕ(z) + Ay + Bν(y) + w. It follows from A2

that Az + Bϕ(z) ∈ Zf and, by A1, we have
Ay+Bν(y)+w ∈ R, ∀(y, w) ∈ R×W,. Hence we
conclude that Ax+Bθ(x)+w ∈ Y, ∀(x,w) ∈ X×
W where Y , z+ ⊕R ∈ Φ. The fact that X ⊆ X

follows from A1 and A2 because Zf⊕R ⊆ X. The
fact that u = θ(x) ∈ U for all x ∈ X and every
X ∈ Φ follows from A1 and A2 since ϕ(z) ∈ U⊖
Uν ⊆ (1 − β)U, ∀z ∈ Zf and ν(y) ∈ βU, ∀y ∈ R
implying that u = θ(x) ∈ U, ∀x ∈ X and every
X ∈ Φ.

The terminal set Xf is defined by:

Xf , Zf ⊕R (3.13)

where the sets R and Zf satisfy A1 and A2.
With this choice for terminal set the domain of
attraction is enlarged (compared to the case when
Xf = R).

4. SIMPLE TUBE CONTROLLER

We are now ready to propose a robust optimal
control problem, whose solution yields the tube
and the corresponding control policy satisfying
the set of constraints specified in (2.4) – (2.6)
providing that there exists RCI set R = R0

k =
Rk(M0

k), k ∈ N (for the system x+ = Ax +
Bu + w and constraint set (αX, βU,W ), with
(α, β) ∈ [0, 1) × [0, 1)) defined in (3.1) with the
corresponding feedback control law (3.6) – (3.7).
We define:

Z , X ⊖R, V , U ⊖ U(M0
k) (4.1)

where R , R0
k = Rk(M0

k), Rk(M0
k) and U(M0

k)
are defined in (3.1) and (3.10), respectively. In
order to insure satisfaction of (2.4) – (2.6) and use
of the simple tube–policy parametrization (2.7) –
(2.8) we require that the trajectory of the nominal
model (the sequence of tube centers) satisfies the
tighter constraints (4.1). We assume in the sequel
that A1 and A2 hold so that the terminal set Zf

for the nominal model can be any CI set satisfying
A2. Let the set VN (x) of admissible control–states
pairs for nominal system at state x be defined as
follows:

VN (x) , {(v, z) | (φ̄(k; z,v), vk) ∈ Z × V,

k ∈ NN−1, φ̄(N ; z,v) ∈ Zf , x ∈ z ⊕R} (4.2)

It is clear that the set VN (x) is a polyhedral set
providing that Zf is a polyhedral set. An appro-
priate cost function can be defined as follows:

VN (v, z) ,

N−1
∑

i=0

ℓ(zi, vi) + Vf (zN ), (4.3)

where for all i, zi , φ̄(i; z,v) and ℓ(·) is the stage
cost and Vf (·) is the terminal cost, that can be
chosen to be :

ℓ(x, u) , ‖Qx‖p + ‖Ru‖p, p = 1, 2,∞ (4.4a)

Vf (x) , ‖Px‖p, p = 1, 2,∞ (4.4b)

where P , Q and R are matrices of suitable di-
mensions. We assume additionally, as is stan-
dard (Mayne et al., 2000), that:
A3: The terminal cost satisfies Vf (Az +Bϕ(z))+
ℓ(z, ϕ(z)) ≤ Vf (z) for all z ∈ Zf .

If p = 2 and Q = Q′ > 0, P = P ′ > 0 and
R = R′ > 0 the resultant optimal control problem
is a quadratic programme (Mayne et al., 2005),
since the set VN (x) is polyhedral, defined by :

PN (x) : V 0
N (x) , min

v,z
{VN (v, z) |(v, z) ∈ VN (x)}

(4.5)
and its unique minimizer is:

(v0(x), z0(x)) , arg min
v,z

{VN (v, z) |(v, z) ∈ VN (x)}

(4.6)
The domain of the value function V 0

N (·), the
controllability set, is:



XN , {x | VN (x) 6= ∅} (4.7)

For each i let Vi(x) and Xi be defined, respec-
tively, by (4.2) and (4.7) with i replacing N . The
sequence {Xi} is a monotonically non-decreasing
set sequence, i.e. Xi ⊆ Xi+1 for all i. Given any
x ∈ XN the solution to PN (x) defines the corre-
sponding optimal simple tube:

X0(x) = {X0
i (x)}, X0

i (x) = z0
i (x) ⊕R, (4.8)

for i ∈ NN , and the corresponding control policy
π0(x) = {µ0

i (·) | i ∈ NN−1} with

µ0
i (y;x) = v0

i (x)+ν(y−z0
i (x)), y ∈ X0

i (x) (4.9)

where, for each i, z0
i (x) = φ̄(i; z0(x),v0(x)). The

following result (Langson et al., 2004) follows
easily from the construction of a simple tube:

Proposition 2. Let x ∈ XN and let (v0(x), z0(x))
be defined by (4.6). Let the control policy π0 ,

{µ0
i (·) | i ∈ NN−1}, where each µ0

i : Xi → U

is defined by (4.9), be applied to actual system
(2.1). Then φ(i;x, π,w) ∈ φ̄(i; z0(x),v0(x)) ⊕
R for all i ∈ NN and all w ∈ W. Moreover,
(φ(i;x, π0,w), µ0

i (φ(i;x, π0,w);x)) ∈ X × U, i ∈
NN−1 and φ(N ;x, π0,w) ∈ Xf .

A result analogous to Proposition 2 holds for any
arbitrary couple (v, z) ∈ VN (x). The solution of
PN (x) allows for a variety of controller implemen-
tations. Here we follow a useful proposal recently
made in (Mayne et al., 2005) and consider the
following implicit robust model predictive control
law κ0

N (·) yielded by the solution of PN (x):

κ0
N (x) , v0

0(x) + ν(x − z0(x)) (4.10)

where ν(·) is defined in (3.6) – (3.7). We es-
tablish some relevant properties of the proposed
controller κ0

N (·) by exploiting the results reported
in (Mayne et al., 2005). First we recall the follow-
ing definition:

Definition 4. A set R is robustly exponentially
stable (Lyapunov stable and exponentially attrac-
tive) for x+ = Ax + Bκ(x) + w, w ∈ W , with a
region of attraction X if there exists a c > 0 and
a γ ∈ (0, 1) such that any solution x(·) of x+ =
Ax + Bκ(x) + w with initial state x(0) ∈ X , and
admissible disturbance sequence w(·) (w(i) ∈ W
for all i ≥ 0) satisfies d(x(i),R) ≤ cγid(x(0),R)
for all i ≥ 0.

Proposition 3. (i) For all x ∈ R, V 0
N (x) = 0,

z0(x) = 0, v0(x) = {0, 0, . . . , 0} and κ0
N (x) =

ν(x). (ii) Let x ∈ XN and let (v0(x), z0(x)) be
defined by (4.6), then for all x+ ∈ Ax+Bκ0

N (x)⊕
W there exists (v(x+), z(x+)) ∈ VN (x+) and

V 0
N (x+) ≤ V 0

N (x) − ℓ(z0(x), v0
0(x)). (4.11)

The main stability result follows (see Theorem 1
in (Mayne et al., 2005)):

Theorem 3. Suppose that XN is bounded, then
the set R is robustly exponentially stable for
controlled uncertain system x+ = Ax+Bκ0

N (x)+
w, w ∈ W . The region of attraction is XN .

The proposed controller κ0
N (·) results in a set

sequence {X0
0 (x(i))}, where:

X0
0 (x(i)) = z0(x(i)) ⊕R, i ∈ N (4.12)

and z0(x(i)) → 0 exponentially as i → ∞. The
actual trajectory x(·) , {x(i)}, where x(i) is
the solution of x+ = Ax + Bκ0

N (x) + w at time
i ≥ 0, corresponding to a particular realization
of an infinite admissible disturbance sequence
w(·) , {wi}, satisfies x(i) ∈ X0

0 (x(i)),∀i ∈ N.
Theorem 3 implies that X0

0 (x(i)) → R as i → ∞
exponentially in the Hausdorff metric.

5. NUMERICAL EXAMPLE

Our illustrative example is a double integrator:

x+ =

[

1 1
0 1

]

x +

[

1
1

]

u + w (5.1)

with w ∈ W ,
{

w ∈ R
2 | |w|∞ ≤ 0.5

}

, x ∈ X =
{x ∈ R

2 | x1 ≤ 1.85, x2 ≤ 2} and u ∈ U =
{u | |u| ≤ 2.4}, where xi is the ith coordinate of
a vector x. The cost function is defined by (4.4)
with Q = 100I, R = 100; the terminal cost Vf (x)
is the value function (1/2)x′Pfx for the optimal
unconstrained problem for the nominal system.
The horizon is N = 21. The design parameters for
the minimization problem P̄k (See (3.10)) defining
the components of feedback actions of control
policy are k = 5, qα = qβ = 1. The optimization
problem P̄k, which in this case is a linear program,
yielded the following matrix M0

k:

M0
k =

[

−0.3833 0 0.15 0.233 0
−1 0 0 0 0

]′

(5.2)

The tube cross-section is constructed by using
the set R = Rk(M0

k). The sequence of the sets
Xi, i = 0, 1, . . . , 21, where Xi is the domain of
V 0

i (·) and the terminal set Xf = Zf ⊕ R where
Zf satisfies A2 and is the maximal positively in-
variant set (Blanchini, 1999) for system z+ = (A+
BK)z under the tighter constraints Z = X⊖R and
V = U⊖U(M0

k) where K is unconstrained DLQR
controller for (A,B,Q,R), is shown in Figure 1. A
RMPC tube {X0

0 (x(i)) = z0
0(x(i))⊕R} for initial

state x0 = (0.5,−8.5)′ is shown in Figure 2 for a
sequence of random admissible disturbances. The
dash-dot line is the actual trajectory {x(i)} due to
the disturbance realization while the dotted line
is the sequence {z0

0(x(i))} of optimal initial states
for corresponding nominal system.
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6. CONCLUSIONS

The main contribution of this note is a simple
tube controller that ensures robust exponential
stability of R, a RCI set – the ‘origin’ for the un-
certain system. The complexity of the correspond-
ing robust optimal control problem is marginally
increased compared with that for conventional
model predictive control. A set of necessary ingre-
dients ensuring robust exponential stability has
been identified. The proposed scheme is com-
putationally simpler than the schemes proposed
in (Löfberg, 2003; van Hessem and Bosgra, 2003;
Kerrigan and Alamo, 2004; Langson et al., 2004)
and it has an advantage over schemes proposed
in (Kouvaritakis et al., 2000; Chisci et al., 2001;
Mayne and Langson, 2001; Smith, 2004; Mayne
et al., 2005) because the feedback component of
control policy, which is piecewise affine, results in
a smaller tube cross–section.
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