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∗∗ Universitá di Padova, 35131 Padova, Italy
meme@dei.unipd.it http://www.dei.unipd.it/∼ meme

Abstract: We consider the infinite time linear-quadratic control problem from a
behavioral point of view. The performance functional is the integral of a quadratic
differential form. A characterization of the stationary trajectories and of the local
minima with respect to (left) compact support variations, as well as their relation
to stability, are obtained. Finally, several theorems are derived that describe the
optimal LQ trajectories with specified initial, and possibly terminal, conditions.
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1. INTRODUCTION

Linear-quadratic (LQ) control, together with Kal-
man filtering and the theory of the Riccati equa-
tion, are the main ingredients that led to the
paradigm shift in control theory in the 1960’s.
Also recent advances, as the double Riccati equa-
tion solution of the H∞ problem, are in this vein.
The starting point of these developments is an
input/state/output model for the plant, and a
performance functional that is the integral of a
memoryless quadratic function of the input and
the state. However, often one does not start from
such a situation: the model may contain high or-
der derivatives, algebraic equations, and even the
input/output structure may be unclear. Further-
more, it is often useful to incorporate, for example,
derivatives of the control variables in the cost.
The aim of the research that led to the present
paper is to approach the LQ problem without
assuming any special representation for the plant,
and considering a performance functional that is

the integral of an arbitrary quadratic expression
in the system variables and their derivatives.

The goal of this paper is to present some results
on LQ control from a behavioral point of view. We
start by explaining the mathematical notions that
enter into the formulation: the model of the plant,
a linear differential behavior, and the performance
functional, a quadratic differential form.

Denote by Lw the set of linear differential systems
with w real variables. Thus Σ ∈ Lw (or B ∈ Lw)
means that Σ = (R, Rw,B) is a continuous-time
dynamical system with w real-valued signal vari-
ables, whose behavior B consists of the solutions of
a system of linear constant-coefficient differential
equations, i.e. there exists R ∈ R•×w[ξ] such that
B is the set of solutions of

R(
d

dt
)w = 0. (Ker)

The behavior specified by this system of differen-
tial equations is defined as



B = ker
(
R(

d

dt
)
)

:= {w ∈ C∞(R, Rw) | R(
d

dt
)w = 0}.

The C∞-assumption is made for convenience of
exposition. From a modeling point of view, it is
often more logical to take solutions in Lloc(R, Rw),
and interpret the differential equation (Ker) in the
sense of distributions. We refer to (Willems, 1991)
and (Polderman and Willems, 1998) for details.

A quadratic differential form (QDF) is a quadratic
form in the components of a map w ∈ C∞(R, Rw)
and its derivatives. Two-variable polynomial ma-
trices lead to a compact notation and a convenient
calculus for QDF’s. A two-variable polynomial
matrix Φ ∈ R w1×w2 [ζ, η] is a finite sum

Φ(ζ, η) = Σ
r,s

Φr,sζ
rη s,

with Φr,s ∈ R w1×w2 for all r, s ∈ N. R w1×w2 [ζ, η]
stands in one-to-one relation with the set of maps

LΦ : C∞(R, Rw1)× C∞(R, Rw2) → C∞(R, R),

defined, for Φ ∈ R w1×w2 [ζ, η], by

LΦ(w1, w2) := Σ
r,s

(
d r

dt r
w1)>Φr,s(

d s

dt s
w2).

LΦ is the bilinear differential form induced by Φ.

The dual of Φ(ζ, η) = Σ
r,s

Φr,sζ
rη s is defined by

Φ?(ζ, η) := Σ
r,s

Φ>r,sζ
sη r.

Φ is said to be symmetric if Φ = Φ?. Denote the
symmetric elements of R w× w[ζ, η] by R w× w

S [ζ, η].
R w× w

S [ζ, η] stands in one-to-one relation with the
quadratic forms in w and its derivatives. Associate
with Φ(ζ, η) = Σ

r,s
Φr,sζ

rη s ∈ R w×w
S [ζ, η], the

quadratic differential form

QΦ(w) := LΦ(w,w) = Σ
r,s

(
d r

dt r
w)>Φr,s(

d s

dt s
w).

Note that QΦ : C∞(R, Rw) → C∞(R, R). We use
QΦ as standard notation for the QDF induced
by Φ ∈ R w×w

S [ζ, η]. We refer to (Willems and
Trentelman, 1998) for an in-depth study of QDF’s.

The (infinite-time) LQ problem, the subject of this
paper, is to characterize the trajectories w in a
given plant behavior B ∈ Lw that are stationary
or optimal with respect to the infinite integral of
a given QDF QΦ(w) induced by Φ ∈ R w×w

S [ζ, η].
The behavior B formalizes the constraints im-
posed by the plant on the trajectories w. The
QDF QΦ specifies, through its integral, the per-
formance criterion. This formulation allows, for
example, to start with model specifications which
are not in state space form and to incorporate
(higher) derivatives of the control input in the
cost functional. It has also the classical state space
formulation as a special case.

We discuss the following problems in this paper.
The formulations below are meant to be informal.
Precise statements will be given later.

1. Characterize the trajectories in B that render∫ +∞
−∞ QΦ(w) dt stationary with respect to compact

support variations in B.
2. Characterize the stable stationary trajectories
in B, i.e. the stationary trajectories that go to
zero as t → +∞.
3. Characterize the trajectories in B that are
local minima for

∫ +∞
−∞ QΦ(w) dt with respect to

compact support variations in B.
4. Characterize the trajectories in B that are
local minima for

∫ +∞
−∞ QΦ(w) dt with respect to

left compact support variations in B.
5. Characterize the infimum of

∫ +∞
0

QΦ(w) dt over
all w ∈ B with constraints on the initial values
of the derivatives dk

dtk w(0). Characterize when this
infimum is a minimum and the minimizing trajec-
tories.
6. Characterize the infimum or minimum of∫ +∞
0

QΦ(w) dt when, in addition to the initial con-
ditions, there are stability constraints, requiring
w and certain of its derivatives to go to zero as
t → +∞.

The basic point of view on which the present
article is based was first articulated in (Willems,
1993). It was further developed in (Parlangeli
and Valcher, 2004), where an overview of papers
following this approach is given. Two related
earlier publications are (Ferrante and Zampieri,
2000) and (Weiland and Stoorvogel, 2000). There
is also the work of Kučera and his co-workers

(
see

for example (Kucera, 1991), (Hunt, et al. , 1992),
and (Hunt, et al. , 1994)

)
, which also starts from

polynomial matrix descriptions for solving the LQ
problem. We are presently preparing a full paper
(Willems and Valcher, 2005) where an extensive
discussion of related work will be given.

An important issue is that the behavior B ad-
mits many representations, the most important
ones being kernel, image, state, and latent vari-
able representations. We will meet some of these
representations shortly. In principle, therefore, we
would like to have algorithms that, starting from
any of these representations and Φ as data, re-
turn a suitable representation of the stationary
or optimal trajectories. Unfortunately, because of
space limitations, we have to leave these aspects to
(Willems and Valcher, 2005). Another important
question which we will not deal with here, is the
synthesis problem: implement the optimal trajec-
tories as an interconnection of the plant B ∈ Lw

and a controller, i.e. find C ∈ Lw such that B ∩ C
consists exactly of the optimal trajectories.

2. CONTROLLABILITY
One of the properties of behaviors which is very
convenient, in particular for LQ problems, is con-



trollability. Recall that B ∈ Lw is said to be
controllable if for any w1, w2 ∈ B there exists a
T ≥ 0 and a w ∈ B such that w(t) = w1(t)
for t < 0, and w(t) = w2(t − T ) for t ≥ T .
Denote by Lw

cont the controllable elements of Lw.
It turns out that B ∈ Lw

cont if and only if there
exists M ∈ Rw×•[ξ] such that

w = M(
d

dt
)` (Im)

represents B. Concretely, (Im) is called an image
representation of B if

B = im
(
M(

d

dt
)
)

:= {w ∈ C∞(R, Rw) | ∃ `

∈ C∞(R, Rcoldim(M)) such that w = M(
d

dt
)`}.

The representation (Ker) is called a kernel rep-
resentation, while the representation (Im) of a
(controllable) element of Lw is called an image
representation. The image representation (Im) is
said to be observable if for any w ∈ B there
exists a unique ` ∈ C∞(R, Rcoldim(M)) such that
(Im) holds. It can be shown that every element
B ∈ Lw

cont actually has an observable image repre-
sentation. (Observable) image representations are
very convenient: the laws governing the system
are then expressed through M , while the driving
variable ` is completely free. We often use the
compact support elements of B. If the image
representation is observable, then w ∈ B has
compact support if and only if the corresponding
` ∈ C∞(R, Rcoldim(M)) has also compact support.

On the other extreme from controllability, we find
the autonomous systems. B ∈ Lw is said to be
autonomous if

[ w1, w2 ∈ B and w1(t) = w2(t) for t < 0 ]
⇒ [ w1 = w2 ].

B ∈ Lw is autonomous if and only if it is finite-
dimensional, equivalently, if and only if it admits
a kernel representation (Ker) with R square and
det(R) 6= 0.

Our notion of stability pertains to autonomous
systems. B ∈ Lw is said to be stable if

[w ∈ B ] ⇒ [w(t) → 0 for t → +∞ ].

Clearly [B stable ] ⇒ [B autonomous ]. We will
need the ‘stable’ or ‘Hurwitz’ part of a behavior.
P ∈ Rw×w[ξ] is said to be Hurwitz if det(P ) 6= 0
and if the roots of det(P ) are in the open left half
of the complex plane: {λ ∈ C | Real(λ) < 0}. Let
B ∈ Lw be autonomous, and define

BHurwitz := {w ∈ B | w(t) → 0 as t → +∞}.

It is easy to see that BHurwitz ∈ Lw. A kernel
representation of BHurwitz can be obtained from a
kernel representation (Ker) of B as follows. If R ∈
Rw×w[ξ] is square, and det(R) 6= 0, then R = R′RH

for some R′, RH ∈ Rw×w[ξ], with RH Hurwitz, and

the roots of det(R′) in the closed right half of the
complex plane: {λ ∈ C | Real(λ) ≥ 0}. RH is
called a Hurwitz factor of R. A Hurwitz factor is
unique up to pre-multiplication by a unimodular
matrix U ∈ Rw×w[ξ]. It is easy to see that BHurwitz

has RH

(
d
dt

)
w = 0 as kernel representation.

In order to avoid difficulties which are not ger-
mane to our aims, we will assume in this paper
that the plant is controllable. The controllability
assumption has a very effective consequence for
LQ problems. Indeed, by using an image represen-
tation (Im) for B, considering the induced two-
variable polynomial matrix Φ′ with

Φ′(ζ, η) = M>(ζ)Φ(ζ, η)M(η),

and replacing QΦ(w) by QΦ′(`) in the performance
functional, we obtain an LQ problem in which
the dynamic variable w is replaced by the uncon-
strained variable `.

Hence, throughout this paper, we will assume
that B = C∞(R, Rw). If the behavior is B ∈
Lw

cont,B 6= C∞(R, Rw), one can use the (observ-
able) image representation (Im), replace Φ(ζ, η)
by M>(ζ)Φ(ζ, η)M(η), derive conditions on `,
and transfer these to conditions on w using (Im).

3. THE STRUCTURE OF QDF’S

In this section, we collect a number of useful
notions and results concerning QDF’s. We need
this background material in order to obtain an
uninterrupted development of the LQ problems.

3.1 Factorization of QDF’s

A two-variable polynomial matrix Φ ∈ R w×w
S [ζ, η]

can be factored in terms of one-variable polyno-
mial matrices as

Φ(ζ, η) = P>(ζ)P (η)−N>(ζ)N(η)

with P,N ∈ R•×w[ξ], corresponding to an expan-
sion of QΦ into sums and differences of squares,

QΦ(w) = ||P
(

d

dt

)
w||2 − ||N

(
d

dt

)
w||2.

There always exists a factorization (Willems and
Trentelman, 1998) with the rows of

[
P
N

]
linearly

independent over R. We call such a factorization
canonical. It corresponds to a Sylvester-like ex-
pansion of QΦ(w) into a minimal number of sums
and differences of squares. Canonical factoriza-
tions play an important role in the sequel. We
therefore introduce the notation

GΦ :=
[

P
N

]
, ΣΦ :=

[
Irowdim(P ) 0

0 −Irowdim(N)

]
,

Φ(ζ, η) = GΦ(ζ)>ΣΦGΦ(η).
(1)

It is easy to see that in a canonical factorization,
ΣΦ is unique, while GΦ is unique up to pre-
multiplication by a non-singular matrix.



Canonical factorizations lead to the absolute value
of Φ and QΦ, denoted as |Φ| and Q|Φ|, and defined
through a canonical factorization (1) as

|Φ|(ζ, η) := P>(ζ)P (η) + N>(ζ)N(η),

= G>
Φ(ζ)GΦ(η)

Q|Φ|(w) =: ||P
(

d

dt

)
w||2 + ||N

(
d

dt

)
w||2.

The absolute value of QΦ is a generalization of
the absolute value of a matrix. Note the relation
between canonical factorizations of Φ and |Φ|:

G|Φ| = GΦ and Σ|Φ| = Irowdim(GΦ). (2)

3.2 Positivity of QDF’s

Various forms of non-negativity of QDF’s play
an essential role in this paper. Non-negativity
of QDF’s is one of the main issues studied in
(Willems and Trentelman, 1998), and we collect
the main notions here for easy reference.

Definition 1. Let Φ ∈ R w×w
S [ζ, η]. The QDF QΦ,

or simply Φ, is said to be

(i) non-negative (denoted QΦ ≥ 0, or Φ ≥ 0) if
QΦ(w) ≥ 0 (i.e. QΦ(w)(t) ≥ 0 ∀ t ∈ R) for all
w ∈ C∞(R, Rw),
(ii) average non-negative (denoted

∫ +∞
−∞ QΦ dt ≥

0) if
∫ +∞
−∞ QΦ(w) dt ≥ 0 for all w ∈ C∞(R, Rw) of

compact support, and
(iii) half-line non-negative (denoted

∫ 0

−∞ QΦ dt ≥
0) if

∫ 0

−∞ QΦ(w) dt ≥ 0 for all w ∈ C∞(R, Rw) of
compact support.

We need also a strict form of non-negativity. We
will use one in terms of the absolute value of a
QDF.

Definition 2. Let Φ ∈ R w×w
S [ζ, η]. The QDF QΦ,

or simply Φ, is said to be

(i) strictly positive (denoted QΦ � 0, or Φ � 0)
if ∃ ε > 0 such that QΦ−ε|Φ| ≥ 0,
(ii) strictly average positive (denoted

∫ +∞
−∞ QΦ dt

� 0) if ∃ ε > 0 such that
∫ +∞
−∞ QΦ−ε|Φ| dt ≥ 0,

and
(iii) strictly half-line positive (denoted

∫ 0

−∞ QΦ dt

� 0) if ∃ ε > 0 such that
∫ 0

−∞ QΦ−ε|Φ| dt ≥ 0.

Obviously, half-line non-negativity or half-line
strict positivity implies average non-negativity or
strict positivity. Obtaining verifiable conditions
on Φ for these various forms of non-negativity
of QDF’s is one of the main issues studied in
(Willems and Trentelman, 1998). In particular,
Φ ≥ 0 is equivalent to non-negative definiteness

of the matrix formed by the coefficient matrices
expressing Φ(ζ, η) in powers of ζ and η. Further,

[ Φ ≥ 0 ] ⇔ [ Φ can be factored as

Φ(ζ, η) = P>(ζ)P (η) with P ∈ R•×w[ξ] ].

This corresponds to writing QΦ(w) as a sum of
squares ||P

(
d
dt

)
w||2. Also, in proposition 5.2 of

(Willems and Trentelman, 1998), it is proven that

[
∫ +∞

−∞
QΦ dt ≥ 0 ] ⇔ [ Φ(−iω, iω) ≥ 0 ∀ ω ∈ R ],

while in theorem 9.3 a condition for verifying
strict half-line positivity in terms of the Pick
matrix is given.

3.3 The factorization equation (FE) and the
dissipation inequality (DinE)

In this section we discuss some results about one-
and two-variable polynomial matrices. We limit
ourselves to the main points. Details and proofs
can be found in (Willems and Trentelman, 1998).

Consider the maps
• : Rw1×w2 [ζ, η] → Rw1×w2 [ζ, η],
• : Φ(ζ, η) 7→ Q•

Φ
:= (ζ + η)Φ(ζ, η),

and ∗ : Rw1×w2 [ξ] → Rw2×w1 [ξ],
∗ : P (ξ) 7→ P ∗(ξ) := P>(−ξ).

P ∗ is called the para-hermitian conjugate of P . If
P = P ∗, we call P para-hermitian. P (iω), ω ∈ R,
is then hermitian.

These operators have natural interpretations and
entanglements in terms of QDF’s. For instance,

d

dt
QΦ(w) = Q•

Φ
(w).

Consider now the factorization equation

Y = F ∗F, i.e. Y (ξ) = F>(−ξ)F (ξ) (FE)

viewed as an equation in the unknown F ∈
R•×w[ξ] with Y ∈ Rw×w[ξ] given, and the dissi-
pation inequality

•
Ψ ≤ Φ, (DinE)

viewed as an equation in the unknown Ψ ∈
R w×w

S [ζ, η] with Φ ∈ R w×w
S [ζ, η] given.

These equations are central equations in the field,
and they have natural interpretations in terms of
QDF’s. In fact, (DinE) is equivalent to

d

dt
QΨ(w) ≤ QΦ(w)

for all w ∈ C∞(R, Rw). (DinE) is called the dissipa-
tion inequality because in the theory of dissipative
systems QΦ(w) corresponds to the supply rate,
QΨ(w) to the storage function, and Q

(Φ−
•
Ψ)

(w)



to the (non-negative) dissipation rate. It is well-
known that (FE) has a solution F ∈ R•×w[ξ] for
a given Y ∈ Rw×w[ξ] if and only if Y = Y ∗ and
Y (iω) ≥ 0 for all ω ∈ R. However, in the sequel,
we need this equation under a somewhat stronger
positivity requirement. The following factoriza-
tion result is well-known.

Proposition 3. Let Y ∈ Rw×w[ξ] and consider the
factorization equation (FE). The following are
equivalent.

(1) Y = Y ∗ and Y (iω) > 0 for all ω ∈ R,
(2) there exists a Hurwitz polynomial matrix

H ∈ Rw×w[ξ] such that Y (ξ) = H>(−ξ)H(ξ)
(this is called a Hurwitz factorization of Y ).

Note that we use the term ‘Hurwitz factor’ as
meaning something different from ‘Hurwitz fac-
torization’. This is only slightly confusing since if
H>(−ξ)H(ξ) is a Hurwitz factorization of Y (ξ),
then H(ξ) is a Hurwitz factor of Y (ξ).

For (DinE) we record the following result.

Proposition 4. (Trentelman and Willems, 1997)
Let Φ ∈ R w×w

S [ζ, η] and consider the dissipation
inequality (DinE). The following are equivalent.

(1)
∫ +∞
−∞ QΦ ≥ 0,

(2) Φ(−iω, iω) ≥ 0 for all ω ∈ R,
(3) Φ(−ξ, ξ) can be factored as Φ(−ξ, ξ) =

F>(−ξ)F (ξ) for some F ∈ R•×w[ξ],
(4) there exists Ψ ∈ R w×w

S [ζ, η] such that (DinE)
is satisfied.

There is a close relationship between the factoriza-
tion equation (FE) and the dissipation inequality
(DinE). In fact, every solution F of (FE) with
Y (ξ) = Φ(−ξ, ξ) leads to a solution of (DinE),
through

Ψ(ζ, η) =
Φ(ζ, η)− F>(ζ)F (η)

ζ + η
.

The right-hand side of this equation is a (two-
variable) polynomial matrix, since

Φ(−ξ, ξ)− F>(−ξ)F (ξ) = 0.

Conversely, if (DinE) holds, then

Φ(ζ, η)− (ζ + η)Ψ(ζ, η) ≥ 0.

It can therefore be factored as F>(ζ)F (η), leading
to a solution of (FE) with Y (ξ) = Φ(−ξ, ξ).

In particular, assume that

Φ(−iω, iω) > 0 for all ω ∈ R. (3)

Define HΦ by the Hurwitz factorization

Φ(−ξ, ξ) = H>
Φ (−ξ)HΦ(ξ), (4)

and Ψ−
Φ by

Ψ−
Φ(ζ, η) =

Φ(ζ, η)−H>
Φ (ζ)HΦ(η)

ζ + η
. (5)

We used the notation Ψ−
Φ because it can be

shown that every other solution of (DinE) satisfies
Ψ−

Φ ≤ Ψ, i.e. Ψ−
Φ is the minimum of the solutions

of (DinE). This yields the following important
relation:

d

dt
QΨ−

Φ
(w) = QΦ(w)− ||HΦ(

d

dt
)w||2 (6)

for all w ∈ C∞(R, Rw).

3.4 Observability of QDF’s

Much of the rich structure of linear behaviors
also applies to QDF’s, for example, observability,
and image and state representations. The QDF
Φ ∈ R w×w

S [ζ, η] generates the (nonlinear) behavior

BΦ := im(QΦ) = {v ∈ C∞(R, R) |
∃ w ∈ C∞(R, Rw) such that v = QΦ(w)}.

Consider the image representation

z = GΦ(
d

dt
)w (7)

corresponding to a canonical factorization (1).
Note that (7), combined with

v = z>ΣΦz (8)

can be viewed as an image representation of BΦ,
consisting of a linear system followed by a mem-
oryless quadratic map. QΦ, or Φ, is observable
if the image representation (7) is observable. In
section 7 of (Willems and Trentelman, 1998) a
number of equivalent conditions for observability
of Φ ∈ R w×w

S [ζ, η] are given. By replacing GΦ, if
need be, by a G′

Φ such that z = G′
Φ( d

dt )f is an ob-
servable image representation of im

(
GΦ( d

dt )
)
, we

can always obtain an observable image representa-
tion of BΦ. In this sense, therefore, assuming QΦ

observable, often entails no real loss of generality.

3.5 State representations of QDF’s

In the theory of behavioral systems, much at-
tention has been paid to algorithms for state
construction. In particular, in (Rapisarda and
Willems, 1997) algorithms are given to construct,
starting from R in the kernel representation (Ker)
or from M in the image representation (Im), a
polynomial matrix Xker

R ∈ R•×w[ξ] or X im
M ∈

R•×coldim(M)[ξ] such that

R(
d

dt
)w = 0, x = Xker

R (
d

dt
)w (9)

and
w = M(

d

dt
)`, x = X im

M (
d

dt
)` (10)

are minimal state representations of the behavior
of (Ker) or (Im), respectively. The resulting differ-
ential operators Xker

R ( d
dt ) and X im

M ( d
dt ) are called



state maps. A state representation has the (defin-
ing) property that if (w1, x1) and (w2, x2) satisfy
the state differential equations (9) or (10), and if
x1(0) = x2(0), then their concatenation at t = 0,
(w1, x1) ∧0 (w2, x2), belongs to the Lloc-closure
of the behavior, consisting of the (w, x)’s respec-
tively satisfying (9), or that are generated by some
` through (10). See (Rapisarda and Willems, 1997)
for details, for example, for the notion of minimal-
ity and its relation to observability.

There is an essential difference between the min-
imal state maps Xker

R ( d
dt ) and X im

M ( d
dt ), as far as

uniqueness is concerned. The polynomial matrix
X im

M is unique up to pre-multiplication by a non-
singular matrix. The polynomial matrix Xker

R , on
the other hand, is much further from being unique.
Indeed, a minimal state map Xker

R for (Ker) is
unique up to the operation

Xker
R 7→ SXker

R + V R,

with S ∈ Rrowdim(Xker
R )×rowdim(Xker

R ) non-singular,
and V ∈ Rrowdim(Xker

R )×rowdim(R)[ξ]: i.e. there
is uniqueness up to a pre-multiplication by a
non-singular matrix, and addition to each of the
rows of an arbitrary element of the R[ξ]-module
generated by the rows of R. This also leads to
state representations of the behavior BΦ. Indeed,
by representing the image representation (7) in
state form, we obtain a state representation of BΦ.
So, if X im

GΦ
( d

dt ) is a state map for (7), we obtain

v = z>ΣΦz, z = GΦ(
d

dt
)w,

x = X im
GΦ

(
d

dt
)w. (11)

This representation of BΦ has the property that
if v1, v2 ∈ BΦ result from w1, w2 such that
X im

GΦ
( d

dt )w1(0) = X im
GΦ

( d
dt )w2(0), then v1 ∧0 v2

belongs to the Lloc(R, R) − closure of BΦ. Hence
X im

GΦ
( d

dt )w acts as a state for the nonlinear behav-
ior BΦ.

3.6 Relations among state spaces

We are interested in the relation between the state
spaces of BΦ

(
see (11)

)
and of the (autonomous)

system with kernel representation HΦ( d
dt )w = 0,

with the polynomial matrix HΦ defined by (4).

Proposition 5. Assume that Φ ∈ R w×w
S [ζ, η] satis-

fies (3). Define HΦ and QΨ−
Φ

by (4) and (5).

(1) Let X im
GΦ

induce a minimal state map for the
image representation (7) associated with a canon-
ical factorization of Φ. Then Ψ−

Φ ∈ R w×w
S [ζ, η] can

be factored as

Ψ−
Φ(ζ, η) =

(
X im

GΦ
(ζ)

)>
K

(
X im

GΦ
(η)

)
with K = K> ∈ R•×• a constant matrix.

(2) There exists a polynomial matrix Xker
HΦ

∈
R•×w[ξ] whose rows are in the R-span of the rows
of X im

GΦ
, which induces a state map for

HΦ(
d

dt
)w = 0, (12)

i.e. such that

HΦ(
d

dt
)w = 0, x = Xker

HΦ
(

d

dt
)w (13)

is a state representation.

(3) If, in addition,

degree
(
det

(
Φ(−ξ, ξ)

))
=

2 rowdim(X im
GΦ

) (14)

(this is the case if e.g.
∫ +∞
−∞ QΦ dt � 0),

then there exists a state representation (13) with
Xker

HΦ
= X im

GΦ
.

Proof. (1) In (Trentelman and Willems, 1997) it
is proven that every storage function, hence in
particular Ψ−

Φ , is a memoryless state function, i.e.
the dissipation inequality (DinE) is of the form
d
dt |x|

2
K ≤ |v|2ΣΦ

, with K = K> a constant matrix,
and x the state of the image representation (7).
Part (1) follows.
(2) It follows from theorem 6.2 of (Trentelman and
Willems, 1997) that in the system

v = GΦ(
d

dt
)w h = HΦ(

d

dt
)w

h is a memoryless function of (X im
GΦ

( d
dt )w,w).

Hence the state of

v = GΦ(
d

dt
)w 0 = HΦ(

d

dt
)w,

which equals the state of (12), is a sub-vector of
the state X im

GΦ
( d

dt )w.
(3) Note that (4) implies

degree
(
det

(
Φ(−ξ, ξ)

))
= 2 degree

(
det

(
HΨ(ξ)

))
.

Hence (14) implies

degree
(
det(HΨ)

)
= rowdim(X im

GΦ
).

Since the dimension of the state space of (12)
equals degree

(
det

(
HΨ

))
, (14) implies that the di-

mension of this state space equals rowdim(X im
GΦ

).
The result follows. �

In words, this proposition states that the storage
function Ψ−

Φ ∈ R w×w
S [ζ, η] is a memoryless function

of the state of BΦ. Further, that the state of (12)
is a sub-vector of the state of BΦ, and finally that
under condition (14), there corresponds exactly
one initial state of (12) (and consequently exactly
one solution) to each initial state of BΦ.

Note that in the notation used in the above
proposition, (6) may be written as

d

dt
||X im

GΦ
(

d

dt
)w||2K = QΦ(w)− ||HΦ(

d

dt
)w||2 (15)

for all w ∈ C∞(R, Rw).



3.7 A state convergence lemma

In the proof of theorem 14, we need the following
technical result about non-negative QDF’s. It
states that if QΦ is nonnegative, then the state of
BΦ goes to zero whenever

∫ +∞
0

QΦ(w) dt < +∞.

Lemma 6. Let Φ ∈ R w×w
S [ζ, η]. Assume that Φ ≥

0. Let Φ(ζ, η) = P>(ζ)P (η) be a canonical fac-
torization of Φ, and assume that X im

P ∈ R•×w[ξ]
induces a minimal state map for the system with
image representation v = P ( d

dt )w. Then

[
∫ +∞

0

QΦ(w) dt < +∞ ]

⇒ [ X im
P (

d

dt
)w(t) → 0 as t → +∞ ].

Proof. In an input/output partition of v for the
image representation v = P ( d

dt )w, the statement
of the lemma is equivalent to the claim that for
the controllable and observable state system

d

dt
x = Ax + Bu, y = Cx + Du, v =

[
u
y

]

[
∫ +∞

0

(||u||2 + ||y||2) dt < +∞ ]

⇒ [x(t) → +∞ as t → +∞ ].

This is proven in section 23, theorem 2 of
(Brockett, 1970), for the case D = 0, but the proof
applies to the general case as well. �

We now have the required background material,
and return to the main story line: LQ problems.

4. STATIONARITY

Consider, for a given w ∈ C∞(R, Rw) and Φ ∈
R w×w

S [ζ, η], the map

∆ ∈ C∞(R, Rw)
7→

(
QΦ(w + ∆)− QΦ(w)

)
∈ C∞(R, R).

Obviously,

QΦ(w + ∆)− QΦ(w) = 2 LΦ(∆, w) + QΦ(∆).

Hence this functional is the sum of a linear and a
quadratic term in ∆.

Definition 7. Let Φ ∈ R w×w
S [ζ, η] be given. The

trajectory w ∈ C∞(R, Rw) is said to be stationary
with respect to

∫ +∞
−∞ QΦ dt, if the linear term in

∆ in the integral∫ +∞

−∞

(
QΦ(w + ∆)− QΦ(w)

)
dt

vanishes for all ∆ ∈ C∞(R, Rw) of compact sup-
port: ∫ +∞

−∞
LΦ(∆, w) dt = 0.

Equivalently,∫ +∞

−∞

(
QΦ(w + ∆)− QΦ(w)

)
dt

=
∫ +∞

−∞
QΦ(∆) dt

Denote the set of stationary trajectories with
respect to Φ by SΦ.

Theorem 8. (Stationarity). Consider Φ ∈
R w×w

S [ζ, η]. The stationary behavior SΦ consists
of all w ∈ C∞(R, Rw) that satisfy

Φ(− d

dt
,

d

dt
)w = 0. (SΦ)

Proof. Consider w,∆ ∈ C∞(R, Rw), with ∆ of
compact support. Integration by parts yields∫ +∞

−∞
LΦ(∆, w) dt

=
∫ +∞

−∞
∆>(

Φ(− d

dt
,

d

dt
)w

)
dt.

For w to be stationary, this integral needs to be
zero for all ∆ ∈ C∞(R, Rw) of compact support.
Hence (SΦ) must hold. �

Note that in the case w = 1, Φ(−ξ, ξ) is
an even polynomial. The stationary behavior
Φ(− d

dt ,
d
dt )w = 0 is hence time-reversible (not

surprising, since the definition of stationarity does
not involve a time direction). Also, the dynamic
order of SΦ is typically twice the order of the
largest derivative appearing in QΦ. This is char-
acteristic of what happens in the variational prin-
ciples of mechanics. The consideration of (two-
sided) compact support variations makes this sit-
uation, as we shall see, very different from the one
encountered in optimal control, where stability is
one of the main issues.

Example. Consider
∫ +∞
−∞

(
w2 ± ( d

dtw)2
)
dt, i.e.

Φ(ζ, η) = 1 ± ζη. Hence Φ(−ξ, ξ) = 1 ∓ ξ2. The
stationary behavior is given by the hyperbolic flow
w − d2

dt2 w = 0, or the harmonic oscillator w +
d2

dt2 w = 0.

We now define what we mean with stability. We
will deal with convergence to zero of w (later
we also consider convergence to zero of the state
trajectory). In the behavioiral theory it is common
to consider convergence to zero of some latent
variables, but we will not deal with this here.

Definition 9. Let Φ ∈ R w×w
S [ζ, η] be given. The

stationary trajectory w ∈ SΦ is said to be stable if
w(t) → 0 as t → +∞. Denote the set of stationary
trajectories with respect to Φ that are stable by
Sstable

Φ .

It is not difficult to specify what Sstable
Φ is.



Theorem 10. (Stable stationary trajectories).
Consider Φ ∈ R w×w

S [ζ, η]. Assume det
(
Φ(−ξ, ξ)

)
6=

0. Let H ∈ Rw×w[ξ] be a Hurwitz factor of
Φ(−ξ, ξ). Then Sstable

Φ , the set of w ∈ SΦ that
satisfy w(t) → 0 as t → +∞, consists of those
w ∈ C∞(R, Rw) that satisfy

H(
d

dt
)w = 0. (Sstable

Φ )

Proof. Obvious. �

The question of how to compute H from Φ will be
taken up in (Willems and Valcher, 2005).

In theorem 14 we will see that these stable station-
ary trajectories also emerge as local minima with
respect to variations with left compact support.

5. LOCAL MINIMA

We examine when and in what sense (stable)
stationary trajectories are local minima.

5.1 Compact support variations

Definition 11. Let Φ ∈ R w×w
S [ζ, η] be given. The

trajectory w ∈ C∞(R, Rw) is said to be a local
minimum for

∫ +∞
−∞ QΦ dt with respect to compact

support variations if∫ +∞

−∞

(
QΦ(w + ∆)− QΦ(w)

)
dt ≥ 0

for all ∆ ∈ C∞(R, Rw) of compact support. Denote
the set of local minima for

∫ +∞
−∞ QΦ with respect

to compact support variations by Smin
Φ .

The question which trajectories are local minima
with respect to compact support variations is easy
to deal with.

Theorem 12. (Local minima with respect to
compact support variations). Consider Φ ∈
R w×w

S [ζ, η]. Smin
Φ is either empty or equal to SΦ.

Smin
Φ = SΦ if and only if QΦ is average non-

negative, equivalently

Φ(−iω, iω) ≥ 0 for all ω ∈ R. (16)

Proof. Let w,∆ ∈ C∞(R, Rw), with ∆ of compact
support. There holds∫ +∞

−∞

(
QΦ(w + ∆)− QΦ(w)

)
dt

=
∫ +∞

−∞
2LΦ(∆, w) dt +

∫ +∞

−∞
QΦ(∆) dt.

For this to be non-negative for all ∆ ∈ C∞(R, Rw)
of compact support, the first term on the right
hand side needs to be zero, and the second term
needs to be non-negative for all ∆ ∈ C∞(R, Rw)
of compact support. Hence w ∈ C∞(R, Rw) is
a local minimum if an only if w ∈ SΦ and

∫ +∞
−∞ QΦ(∆) dt ≥ 0 for all ∆ ∈ C∞(R, Rw) of com-

pact support, i.e.
∫ +∞
−∞ QΦ dt≥ 0. Equivalently, by

proposition 4, if and only if (16) holds. �

From the expression of the stationary trajectories
or the local minima given in theorem 8 it is
apparent that stationarity of w has no bearing
on whether w(t) → 0 as t → +∞. Theorem 12
gives an explicit condition under which stationary
trajectories are local minima. This theorem also
makes clear that variational principles do not deal
with local minima, but merely with stationary
trajectories. In (Willems and Valcher, 2005) we
will point to ways in which minimality (with
respect to a more restricted class of variations)
may nevertheless be recovered. It turns out that
under a somewhat stronger condition than the one
given in theorem 12, we are able to prove (see
theorem 14) that the stable stationary trajectories
are the local minima with respect to left compact
support variations.

5.2 Left compact support variations

We discuss the local optimality with respect to
variations that have left compact support.

Definition 13. Let Φ ∈ R w×w
S [ζ, η] be given. The

trajectory w ∈ C∞(R, Rw) is said to be a local
minimum for

∫ +∞
−∞ QΦ dt with respect to left com-

pact support variations if∫ +∞

−∞

(
QΦ(w + ∆)− QΦ(w)

)
dt ≥ 0 (17)

for all ∆ ∈ C∞(R, Rw) with left compact support,
i.e. for all ∆ ∈ C∞(R, Rw) for which there exists
T0 ∈ R such that ∆ has support on the half-
line [T0,+∞). Denote the set of local minima
for

∫ +∞
−∞ QΦ with respect to left compact support

variations by Sonesided
Φ .

Up to now, we only considered infinite integrals
with integrands of compact support. No con-
vergence issues occurred. However the integrand
of the integral (17) has support on a half-line
[T0,+∞). A priori this infinite integral could be
finite or infinite, but it could also not exist as an
infinite integral. In the specification of Sonesided

Φ

in definition 13 and the characterization obtained
in theorem 14, this integral exists and must be
≥ 0 or +∞. In stronger versions of theorem 14
(with weaker assumptions on Φ), one could have
to resort to a third possibility, requiring, instead
of (17), that

lim inf
T→+∞

∫ T

−∞

(
QΦ(w + ∆)− QΦ(w)

)
dt ≥ 0.

It is clear that if w is a local minimum with
respect to left compact support variations, then



it is a local minimum with respect to compact
support variations. In particular, for the set of
local minima for left compact support variations
to be non-empty we need that

∫ +∞
−∞ QΦ≥ 0. But,

as can be expected, we need a stronger non-
negativity of the QDF in the left compact support
case.

It is easy to prove that Sonesided
Φ is empty if Φ

is not half-line non-negative. In the next theorem,
the pièce de résistance of this paper, we show that
strict half-line positivity implies that a local min-
imum with respect to compact support variations
is a local minimum with respect to left compact
support variations if and only if it is also stable.

Theorem 14. (Local minima with respect to
left compact support variations). Consider
Φ ∈ R w×w

S [ζ, η]. If QΦ is not half-line non-negative,
then Sonesided

Φ is empty. If QΦ is strictly half-line
positive, then Sonesided

Φ = Sstable
Φ .

If QΦ is strictly half-line positive and observable,
Sonesided

Φ can be computed as follows. Since (3)
holds, Φ admits a Hurwitz factorization as (4).
Then Sonesided

Φ , the set of w ∈ C∞(R, Rw) that are
local minima with respect to left compact support
variations for Φ, is given by (12).

Proof. (17) shows that w ∈ Sonesided
Φ if and only

if ∫ +∞

−∞

(
2LΦ(∆, w) + QΦ(∆)

)
dt ≥ 0

for all ∆ ∈ C∞(R, Rw) with left compact sup-
port. Linearity and time-invariance of Sonesided

Φ

are immediately clear from this expression. Hence
Sonesided

Φ is empty if and only if 0 /∈ Sonesided
Φ ,

whence if and only if QΦ is not half-line non-
negative.

Assume now that QΦ is strictly half-line posi-
tive and observable (generalization to the non-
observable case is straightforward). Then (3)
holds. Hence Sonesided

Φ ⊆ Smin
Φ = SΦ. SΦ is then

given by the autonomous system Φ(− d
dt ,

d
dt )w =

0. SΦ is hence finite-dimensional, without oscil-
latory modes (which would correspond to roots
of det

(
Φ(−ξ, ξ)

)
on the imaginary axis). Conse-

quently, Sonesided
Φ is a linear shift-invariant sub-

space of the finite-dimensional behavior SΦ. Our
aim is to show that it consists exactly of the
elements w ∈ SΦ such that w(t) → 0 as t → +∞.

Let expλ denote the exponential with parameter
λ ∈ R, i.e. expλ : t ∈ R 7→ eλt ∈ R. We will
prove that expλ a, with 0 6= a ∈ Rw and λ > 0
does not belong to Sonesided

Φ . Subsequently, we will
prove that expλ a ∈ SΦ with λ < 0 does belong to
Sonesided

Φ . In other words, we prove that increasing
exponentials do not, and decreasing exponentials
in SΦ do belong to Sonesided

Φ . For simplicity, we
consider only real exponentials — the complex

case is analogous, but requires more complicated
notation.

To prove that expλ a with 0 6= a ∈ Rw, λ > 0,
cannot belong to Sonesided

Φ , consider the integral∫ T

−∞

(
QΦ(expλ a + expλ′ b)− QΦ(expλ a)

)
dt

with b ∈ Rw and λ > λ′ > 0. This integral equals

2b>Φ(λ′, λ)a
e(λ+λ′)T

λ + λ′

+ b>Φ(λ′, λ′)b
e2λ′T

2λ′
. (18)

Observability of Φ implies (see corollary 3, item 3
of (Trentelman and Willems, 1997)) that Φ(λ′, λ)a
cannot be identically zero for all λ′ with λ > λ′ >
0. Take in (18) Φ(λ′, λ)a 6= 0, and choose b = αa,
with α ∈ R. It is easy to see that, for a suitable α,
(18) approaches −∞ as T → +∞. We have hence
shown that for w = expλ a with 0 6= a ∈ Rw and
λ > 0, a suitable ∆ = expλ′ b with b ∈ Rw and
λ′ > 0, yields∫ +∞

−∞

(
QΦ(w + ∆)− QΦ(w)

)
dt = −∞.

This ∆ does not have left compact support, but
both w(t) and ∆(t) → 0 as t → −∞. By suit-
ably approximating ∆ by a ∆′ with left compact
support, we obtain∫ +∞

−∞

(
QΦ(w + ∆′)− QΦ(w)

)
dt = −∞.

This shows that Sonesided
Φ does not contain in-

creasing exponentials.

Next, we set out to show that decreasing exponen-
tials in Smin

Φ belong to Sonesided
Φ . Assume there-

fore that expλ a, a 6= 0, satisfies HΦ( d
dt ) expλ a =

0. Since HΦ is Hurwitz, λ < 0. Let ∆ ∈ C∞(R, Rw)
have left compact support. We need to show that∫ +∞

−∞

(
QΦ(expλ a+∆)−QΦ(expλ a)

)
dt ≥ 0. (19)

Note that we may as well assume that ∆ has
support on [0,+∞). Now replace expλ a by a
trajectory ŵ ∈ C∞(R, Rw) of left compact support
(hence ŵ(t) = 0 for t sufficiently small) that
coincides with expλ a for t ≥ 0, i.e. ŵ(t) =
(expλ a)(t) for t ≥ 0. Since this does not change
the integrand of (19), we need to show that∫ +∞

−∞

(
QΦ(ŵ + ∆)− QΦ(ŵ)

)
dt ≥ 0. (20)

We will show that (20) is either +∞, or finite and
≥ 0. This integral is the difference of∫ +∞

−∞
QΦ(ŵ + ∆) dt

and the finite integral∫ +∞

−∞
QΦ(ŵ) dt.



Since QΦ is strictly half-line positive, there exists
ε > 0 such that∫ T

−∞
QΦ(ŵ + ∆) dt ≥ ε

∫ T

−∞
Q|Φ|(ŵ + ∆) dt

for all T ∈ R. There are 2 possibilities: either∫ +∞

−∞
Q|Φ|(ŵ + ∆) dt = +∞,

in which case (20) is also +∞, or∫ +∞

−∞
Q|Φ|(ŵ + ∆) dt < +∞. (21)

We now consider the case that (21) holds. This
implies, by lemma 6, that X im

G|Φ|
(ŵ + ∆)(t) → 0

as t → +∞. Hence X im
G|Φ|

(expλ a + ∆)(t) → 0 as
t → +∞. But, by (2), X im

GΦ
= X im

G|Φ|
. Therefore

X im
GΦ

(expλ a + ∆)(t) → 0 as t → +∞. Now
integrate (15) twice from 0 to T , once with w =
expλ a + ∆ and once with w = expλ a, to obtain∫ T

0

(
QΦ(expλ a + ∆)− QΦ(expλ a)

)
dt

= ||
(
X im

GΦ
(

d

dt
)(expλ a + ∆)

)
(T )||2K

− ||X im
GΦ

(
d

dt
)(expλ a)

)
(T )||2K

+
∫ T

0

(
||HΦ(

d

dt
)∆||2

)
dt.

Let T → +∞, and conclude∫ +∞

0

(
QΦ(expλ a + ∆)− QΦ(expλ a)

)
dt

=
∫ +∞

0

(
||HΦ(

d

dt
)∆||2

)
dt ≥ 0.

The proof is complete. �

Recapitulating, we have shown that the functional∫ +∞
−∞ QΦ(w) dt has the solutions of Φ(− d

dt ,
d
dt )w =

0 as its stationary points with respect to compact
support variations. These stationary points are lo-
cal minima with respect to compact support vari-
ations if and only if QΦ is average non-negative.
Roughly speaking, there are local minima with
respect to left compact support variations if and
only if QΦ is (strictly) half-line non-negative. If
this is the case, then the stable stationary trajec-
tories are the local minima with respect to left
compact support variations.

Variational principles are about stationary points.
In optimal control, on the other hand, stability is
crucial. Stability can be ‘artificially’ imposed, by
looking for the stable local minima with respect to
compact support variations. But, as we have seen
in theorem 14, stability can be made to emerge
‘naturally’ through the local minima with respect
to left compact support variations.

We end this section with a remark about the
dimensions of the behaviors. If det(Φ(−ξ, ξ)) =
0, then dim(SΦ) = ∞, and therefore, if, in
addition, (14) holds, dim(Smin

Φ ) = ∞. In the case
det

(
Φ(−ξ, ξ)

)
6= 0,

dim(SΦ) = degree
(
det

(
Φ(−ξ, ξ)

))
≤ 2 rowdim(X im

GΦ
)

Using the results of theorem 5, it can furthermore
be shown that, if (3) holds, and

degree
(
det

(
Φ(−ξ, ξ)

))
= 2 rowdim(X im

GΦ
)

then there passes, through every non-zero initial
state X im

GΦ
( d

dt )w(0), exactly one element of Smin
Φ

that is stable (w(t) → 0 as t → +∞) and exactly
one that is anti-stable (w(t) → 0 as t → −∞). If

degree
(
det

(
Φ(−ξ, ξ)

))
< 2 rowdim(X im

GΦ
),

then replace ‘exactly one’ by ‘at most one’.

6. LQ OPTIMAL TRAJECTORIES

In this section, we consider LQ trajectory op-
timization with initial and terminal conditions.
Guided by controllability and image representa-
tions, we assume in this section again that w ∈
C∞(R, Rw) is free. The question which we consider
is to minimize (or find the infimum of)∫ +∞

0

QΦ(w) dt (22)

under certain conditions on w and its derivatives
at t = 0, and on their limits as t → +∞.

The following is a general way of specifying initial
conditions. Let I ∈ R•×w[ξ] and a ∈ Rrowdim(I) be
given, and consider the initial conditions

I(
d

dt
)w(0) = a. (23)

Effectively, this constrains the initial values of w
and its derivatives to belong to an affine subspace
with finite co-dimension. Note that without loss
of generality, we can assume that the rows of I
are linearly independent over R.

Consider now the problem of finding the minimum
or infimum of (22) subject to the initial conditions
(23) and possibly conditions on the limits of w
and some of its derivatives as t → +∞. It is clear
that a necessary condition for the infimum to be
> −∞ is that Smin

Φ is non-empty, i.e. (see theorem
12) that (16) holds. We will assume however that
the slightly stronger condition (3) holds. In this
case Φ(−ξ, ξ) admits the Hurwitz factorization
(4), leading to HΦ and, through (5), to Ψ−

Φ .

Our dynamic LQ minimization problem leads to
the following static LQ problem. Consider the
quadratic functional QΨ−

Φ
(w)(0) subject to the

constraints (23), with w(0), d
dtw(0), d2

dt2 w(0), . . .
viewed as independent variables. The infimum



of this functional may be −∞. If it is > −∞,
e.g. if QΨ−

Φ
≥ 0, then the minimum exists.

It is easy to see that the set of minimizing
w(0), d

dtw(0), d2

dt2 w(0), . . . is then also a linear
variety. Denote the infimum and minimum by
inf(Ψ−

Φ , I, a) and min(Ψ−
Φ , I, a), respectively. The

set of minimizing w(0), d
dtw(0), d2

dt2 w(0), . . . is an
affine sub-variety of (23). Hence it is given by
an affine subspace, which can be expressed by
an matrix/vector equation requiring equality of
a matrix acting on the initial conditions and a
vector. Of course, this matrix and vector depend
on Ψ−

Φ , I, a. We denote this equation by

I?
(Ψ−

Φ ,I,a)
(

d

dt
)w(0) = a?

(Ψ−
Φ ,I,a)

. (24)

Assume, again without loss of generality, that
also the rows of I?

(Ψ−
Φ ,I,a)

∈ R•×w[ξ] are linearly

independent. Note that if e.g. I = X im
GΦ

, then
this static minimization problem simply yields
(23) for (24), since X im

GΦ
( d

dt )w(0) determines, by
proposition 5, part (1) QΨ−

Φ
(w)(0).

We introduce a bit of more notation. Let F ∈
R•×w[ξ]. Define the span over R of the rows of F ,
and the R[ξ]-module generated by the rows of F
by respectively

rowspan R(F ) := {f ∈ R1×w[ξ] |
∃ α ∈ Rrowdim(F ) such that f = α>F},

rowmodule R[ξ](F ) := {f ∈ R1×w[ξ] |
∃ α ∈ Rrowdim(F )[ξ] such that f = α>F}.

Theorem 15. (LQ optimal trajectories with
initial and terminal constraints). Assume
that Φ ∈ R w×w

S [ζ, η] satisfies (3), and define HΦ

and QΨ−
Φ

by (4) and (5). Let X im
GΦ

induce a min-
imal state map for the image representation (7)
associated with a canonical factorization of Φ.

1. The infimum of
∫ +∞
0

QΦ(w) dt over all w ∈
C∞(R, Rw), subject to the initial conditions (23)
and the stability conditions X im

GΦ
( d

dt )w(t) → 0 as
t → +∞, equals inf(Ψ−

Φ , I, a).

2. It is a minimum if and only if inf(Ψ−
Φ , I, a) >

−∞ and

[α>I?
(Ψ−

Φ ,I,a)
∈ rowmodule R[ξ](HΦ),

α ∈ R
rowdim(I?

(Ψ−
Φ

,I,a)
)

]

⇒ [α>a?
(Ψ−

Φ ,I,a)
= 0 ]. (25)

3. The minimizing trajectory is unique iff
(i) inf(Ψ−

Φ , I, a) > −∞,
(ii) (25) holds, and
(iii) rowspan R(I?

(Ψ−
Φ ,I,a)

) + rowmodule R[ξ](HΦ)

= R1×w[ξ]. (26)

Proof. Integrating (15) from t = 0 to t = +∞,
yields, since X im

GΦ
( d

dt )w(t) → 0 as t → +∞,

∫ +∞

0

QΦ(w) dt

= −QΨ−
Φ
(w)(0) +

∫ +∞

0

||HΦ(
d

dt
)w||2 dt.

Part 1 of the theorem follows immediately from
this expression and the following lemma.

Lemma 16. Let H ∈ Rw×w[ξ] be Hurwitz. Assume
that the rows of I are linearly independent over R.
Then the infimum of

∫ +∞
0

||H( d
dt )w||

2 dt over all
w ∈ C∞(R, Rw), and subject to initial conditions
as (23), equals 0.

Proof of lemma 16. This result follows from
proposition 11 (v) of (Willems, e.a., 1986).

We now turn to parts 2 and 3 of theorem
15. This requires imposing conditions such that
HΦ( d

dt )w = 0 subject to (24) has a (unique)
solution. This leads to the question under what
conditions there exists a (unique) solution to a
system of differential equations as R( d

dt )w = 0,
which satisfies initial conditions like (23)? This is
covered in the following lemma.

Lemma 17. There exists a solution to (Ker) that
satisfies (23) if and only if

[ α>I ∈ rowmodule R[ξ](R), α ∈ Rrowdim(I) ]

⇒ [α>a = 0 ].

This solution is unique if and only if, in addition,
the behavior B ∈ Lw described by (Ker) is au-
tonomous, and

rowspan R(I) + rowmodule R[ξ](R) = R1×w[ξ].

Proof of lemma 17. The proof is straightforward.
It will be given in (Willems and Valcher, 2005). �

The proof of part 2 and 3 of theorem 15 is an
immediate consequence of this lemma. �

Theorem 18. (LQ optimal trajectories with
initial constraints). Assume that Φ ∈ R w×w

S [ζ, η]
is observable and strictly positive, and define
HΦ and QΨ−

Φ
by (4) and (5). The infimum of∫ +∞

0
QΦ(w) dt over all w ∈ C∞(R, Rw), subject

to the initial conditions (23), equals inf(Ψ−
Φ , I, a).

It is a minimum if and only if in addition (25)
holds. This minimum is unique if and only if, in
addition, (25) and (26) hold.

Proof. It follows from lemmas 6 and 17 that (22)
= +∞, unless X im

GΦ
( d

dt )w(t) → 0 as t → +∞. The
result then follows from theorem 15. �

Theorem 18 is rather involved due to the general-
ity of the initial conditions (23) considered. If the
initial conditions specify X im

GΦ
( d

dt )w(0) = x0, as is
the case in the classical LQ theory, then we obtain
the following result.



Theorem 19. (LQ optimal trajectories with
initial and terminal state constraints). As-
sume that Φ ∈ R w×w

S [ζ, η] satisfies (3), and define
HΦ and QΨ−

Φ
by (4) and (5). Let X im

GΦ
induce a

minimal state map for the image representation
(7) associated with a canonical factorization of Φ.
Assume also that (14) holds.

Then the infimum of
∫ +∞
0

QΦ(w) dt over all
w ∈ C∞(R, Rw), subject to the initial conditions
X im

GΦ
( d

dt )w(0) = x0 and the stability condition
X im

GΦ
( d

dt )w(t) → 0 as t → +∞, is equal to
QΨ−

Φ
w(0), which is uniquely specified by x0. If,

in addition, (14) holds, then there exists a unique
minimum, given by the unique solution of

HΦ(
d

dt
)w = 0, X im

GΦ
(

d

dt
)w(0) = x0

Proof. This is a special case of theorem 18. �

Of course, it is again possible to replace the
stability condition X im

GΦ
( d

dt )w(t) → 0 as t → +∞
by strict positivity of Φ. Note that in all the results
the stability requirement can always be replaced
by dk

dtk w(t) → 0 as t → +∞, for all k ∈ N.

7. CONCLUSIONS

In this paper we have discussed the LQ prob-
lem from a behavioral point of view. We assume
throughout that the plant is controllable and
given in image representation. The performance
functional is the integral of a QDF.

We obtained a differential equation for the sta-
tionary trajectories. This immediately yields a
specification of the stable stationary behavior.
The stationary trajectories are local minima with
respect to compact support variations if and only
if the QDF is average non-negative. Furthermore,
if the QDF is strictly half-line positive, then the
stable stationary trajectories are the local minima
with respect to left compact support variations.

We also considered the problem of characteriz-
ing the optimal LQ trajectories with initial and
terminal constraints. This leads to an auxiliary
static LQ problem involving the initial condition
constraints and the minimal storage function, a
QDF. The dynamic LQ problem has a minimum
if and only if this static problem has a minimum,
and in addition one of the minimizing elements is a
possible initial condition for a differential equation
involving the Hurwitz factor induced by the QDF.

In a future publication (Willems and Valcher,
2005), we will obtain algorithms that start from
a kernel, image, latent variable, or state represen-
tation of the plant, and return a specification of
the stationary or optimal behavior. We will also
discuss the synthesis problem, i.e. achieving the
optimal behavior as the intersection of the plant
behavior and the behavior of a controller.
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