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Abstract: This paper gives a brief introduction to the theory of dynamic games as devel-
oped mostly by control theorists and engineers and presents some economic applications of 
this theory. The paper shows how the theory of dynamic games can be applied to problems 
of economic policy-making with heterogeneous policy-makers, whose behavior is charac-
terized by strategic interactions. In particular, for the case of macroeconomic policy-
making in a monetary union, it is illustrated how strategic interactions between govern-
ments of the union’s member countries responsible for national fiscal policies and the 
common central bank responsible for the union’s monetary policy can be studied in a fruit-
ful way, using concepts and results from dynamic game theory as applied to a macroeco-
nomic model. Copyright © 2005 IFAC 
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1. INTRODUCTION 1 
 
Starting in the late 1960s, concepts, theories and 
methods of optimum control theory have been ap-
plied to economic problems. Especially in the 1970s 
and 1980s, there was an intensive dialogue between 
control engineers and applied mathematicians on the 
one hand and economists on the other, which has 
brought a lot of insights from control and systems 
theory into economics. More recently, however, it 
has increasingly been recognized that many problems 
of economic policy cannot be solved by uncritical 
adoption of optimum control concepts. In particular, 
economic policy problems are typically characterized 
by a multitude of decision-makers with non-identical 
interests. Moreover, disillusion with Keynesian activ-
                                                           
1 This research was financially supported by the Jubiläums-
fonds of the Austrian National Bank (project no. 9152). 
Thanks are due to Doris A. Behrens and Engelbert Dockner 
for their collaboration in some of the research on which 
this paper is based and to Tamer Başar and Gustav Feicht-
inger for helpful general discussions. The usual caveat 
applies. 

ist policies have raised severe doubt about the possi-
bilities of controlling an economy in a similar way as 
a physical object such as a rocket, for instance. 
Hence, economists have started to look for alterna-
tive sources of inspiration for their scientific work, 
such as biology, applied business and management, 
or psychology, for instance. 
 
Nevertheless, there is still a need for a framework for 
quantitative economic policy problems. In this paper, 
we argue that dynamic game theory, which also 
originated from engineering and extends optimum 
control theory, can provide such a framework. We 
give a brief history of (Section 2) and introduction 
into dynamic game theory (Section 3) and sketch 
some of its applications in economics (Section 4). By 
means of a simple model (Section 5), we then show 
in more detail how the dynamic game approach can 
be used to derive insights into macroeconomic policy 
problems in the context of a monetary union (Section 
6). Sensitivity analysis opens up the possibility of 
drawing more general conclusions from numerically 
specified simple models (Section 7). Section 8 con-
cludes.       



2. THE DEVELOPMENT OF DYNAMIC GAME 
THEORY 

 
The theory of dynamic games has basically two 
roots: dynamic optimization, in particular optimum 
control theory, and (static) game theory. The former 
originated in the engineering and applied mathemat-
ics scientific communities, while the latter arose from 
the collaboration of mathematicians and economists 
(most prominently, John von Neumann and Oskar 
Morgenstern). For many years, game theory was 
mainly a playing field for mathematicians due to its 
high degree of abstraction and complexity. Starting 
with the 1980s, however, its value for applied analy-
ses in the social sciences and economics in particular 
was increasingly recognized, with three of its most 
distinguished researchers even honored by the Nobel 
Prize in 1993 (John C. Harsanyi, John F. Nash and 
Reinhard Selten). Eventually dynamic games have 
also found their way into textbooks of traditional 
(predominantly static) game theory; see, for instance, 
Fudenberg and Tirole, 1992). 
 
In contrast to one-agent optimization problems (in 
the dynamic case: optimum control problems) and 
team decision problems (in the dynamic case: decen-
tralized control problems), for a game the presence of 
at least two decision-makers with different objectives 
is constitutive. In the dynamic case, we can distin-
guish between differential games (with time being a 
continuous variable) and difference games (in dis-
crete time). Figure 1 gives a schematic picture of the 
genesis of dynamic game theory.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Genesis of dynamic games 

3. DYNAMIC GAME THEORY:  
A BRIEF OVERVIEW 

 
Specifying a dynamic game requires the following 
model elements (see Başar, 1986; Başar and Olsder, 
1999; Mehlmann, 1988; Dockner et al., 2000, for 
more details): 
 
1. A set of players (decision-makers, agents): 

{ } ⊂∈= NN i,n,...,,21 ù. 
 
2. A time interval on which the game is defined. 

While time is considered a discrete variable for 
difference games { }( )T,...,,10=T , differential 
games are formulated in continuous time: 

[ ] ⊂= TT ,T,0 ú. The time horizon T can also be 
infinite or endogenous. 

 
3. Control variables (decision, policy, instrument 

variables) for each player: NU ∈⊂ i,iiu , where 

iU  is the control space of player i. We write 

( )′′′= nuuu ...1 as a vector. Due to the dynamics of 
the game, the control variables are time-
dependent: ( ) T∈t,tiu . Let ( ) T∈∀∈ tUt iiu , 
where iU  is the action space of player i. In the 
dynamic game, the control trajectories (control 
functions) { ( ) T∈t,tiu } are elements of the deci-
sion spaces iU . 

 
4. In stochastic dynamic games there exists a distur-

bance (noise) variable W∈w . It is assumed that 
( ) T∈∀∈ tWtw ; the probability distribution of w 

is common knowledge of all players. 
 
5. The information pattern (structure) of the game 

can be written as a vector, ( )′′′= n...ηηη 1 , or de-
fined as a set-valued function. Here ( )tiη  is the 
information of player i in T∈t  about n,...,uu1  
and w (information structure of player i); ii Ω∈η , 
where iΩ is the information space of player i. The 
information structure of the game can be defined 
as a mapping ( ) ( )iiii Ω→× ∈∈ NN WU XX:η  that 
has to fulfill certain causality properties. 

 
6. For each player N∈i  strategy variables, 

ii Γ∈γ , are defined as mappings ii u→ηγ : , 
where iΓ  is the strategy space of player i. 

 
7. Objective functionals (loss, payoff, cost func-

tions) iL  are defined for each player N∈i  as 
mappings ( ) →×∈ WUN iiiL X: ú. They can also be 
transformed to cost functionals on ii Γ∈NX  by 

 
 ( ) ( )( ) ( )( )( )[ ]wwuwu ,,,...,,L,...,J nnini ηγηγγγ 111 E= , (1) 

which leads to objective functionals in the strate-
gic (normal) form of the dynamic game. 
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Apart from the solution concept, the elements given 
so far already contain a complete description of the 
dynamic game. However, as in systems theory gener-
ally, a state variable x is usually introduced in addi-
tion, which summarizes the information about the 
development of the system. We define it by 
 

( ) ( ) ( ) ( ) ( )( ) ( ) 01 00 xxwuuxXx =><= ,t,t,,,...,,,tt n τττττ , (2) 
 
where X is a mapping ( ) ΧWΧUT N →××× ∈ iiX:X  
with causality properties and Χ∈x . 0x is the initial 
state, which is either given or (in a stochastic game) 
can be part of w. Let ( ) τ∈∀∈ tXtx , where X is 
called the state space and is a subset of a finite-
dimensional vector space. Sometimes also X is called 
state space; we call X the trajectory space of the 
game; its elements are the admissible state trajecto-
ries ( ){ }T∈t,tx , which are defined for given trajec-
tories of the control and disturbance variables and 
given initial state. 
 
Additional stochastic variables, NY ∈∈ i,iiy , the 
observation (measurement, output) of player i, are 
related to the state variable x. Here 
 

( ) ( ) ( ) ( ) ( )( ) ΤN ∈∈≤= ττττττ ,i,t,,,...,,,tt nii wuuxYy 1 . (3) 
 
Again, iY  is a mapping fulfilling some causality 
assumptions, ( ) NYWΧUT N ∈→××× ∈ i,iiii X:Y , 
and ( ) Τ∈∀∈ tYt iiy , where iY  is the observation 
space of player i.  
 
Essential for the interpretation is now the relation 
between the information structure of player i and his 
observations: Let ( )′′′= n...yyy 1 ; then the information 
available to player i at time t to determine his (her) 
decision ( )tiu  is given by 
 
 ( ) ( )( )t,,tt ii ≤= ττyCη , (4) 
 
where the mapping ( ) NYT N ∈Ω→× ∈ i,iiii X:C  is 
again causal.  
 
As the state variable x can be expressed by means of 
u and w, the objective functionals can also be defined 
using x as ( ) →××∈ WΧUN iii X:L úi, N∈i , where 

iL  can be transformed to iL . iL  is then part of the 
extensive-form description of the game. 
 
The possibility of an endogenous determination of 
the time horizon of the dynamic game can be taken 
into account by the following definitions of a game’s 
termination and its playability: Let ,XS ⊂  
ú+ [ ) ×⊂Λ∞= S, ,0 ú+ with Λ  called terminal set 
(target set) and ( ) Λ∉00 ,x . Then we say that a dy-
namic game for a given n-tuple of strategies is ter-

minated at time ∈T ú+ if and only if 
{ ∈= tT min ú+ ( )( ) }Λ∈t,tx: , and 0>T  is called 

terminal time of the dynamic game corresponding to 
the given n-tuple of strategies. Simple examples 
already show that not all dynamic games need to be 
terminated. Therefore we call an n-tuple of strategies 
playable in ( )00 ,x  for a given n-person dynamic 
game with terminal set Λ  iff it generates a state 
trajectory ( ){ ∈t,tx ú+} for which there is a ∞<1t  
such that ( )( ) Λ∈11 t,tx ; the trajectory ( ){ }tx  then is 
terminated in 1t . 
 
An important special case, on which most analytical 
results are known, is the dynamic game with perfect 
state information. Such a game is characterized by 
the following properties for all N∈i : 
 
1. ( )( ) ( )∫=< tt,,t

0
dττττ ααX . 

2. ( ) ( ) ( )( ) ( )tt,,...,,,t ni xuuxY =≤ττττ 1 . 
3. There is a function ( )...gi  for which 

( ) ( )( )∫= T
ii ,gL

0
dτττ αα . 

 
This is a deterministic game; the probability distri-
bution over W is degenerated to a (0,1)-distribution. 
In this case the state equation can be represented as a 
differential equation (for a differential game) 
 
 ( ) ( ) ( ) ( )( ) ( ) 01 0 xxuuxfx == ,t,...,t,t,tt n&  (5) 
 
or a difference equation (for a difference game) 
 
 ( ) ( ) ( ) ( )( )t,...,t,t,tt nuuxfx 11 =+ . (6) 
 
Here it has to be assumed that this equation has a 
unique solution for all admissible control trajectories 

( ){ } NT ∈∈ i,t,tiu . This is fulfilled under the usual 
information structures, for instance, if the functions 

( )...f  and ( ).iγ  are continuous and uniformly Lip-
schitz in their respective arguments. In a dynamic 
game with perfect state information, the states are 
observed directly by all players, ( ) ( ) N∈∀= itti xy , 
and the objective functionals can be written as 
 
 ( ) ( ) ( )( )∫= T

nii tt,...,t,t,tg
0 1 duuxL  (7) 

 
in the continuous-time case (with obvious modifica-
tions for the discrete-time case).  
 
A more general representation of the state trajectory 
in the continuous-time case exists for certain sto-
chastic differential games under additional assump-
tions about the function f and the stochastic distur-
bance process ( ){ }0≥t,tw . In particular, if ( ){ }tw  is 
a Wiener process, the state equation can be written as 
stochastic differential equation in Itô form 



 ( ) ( ) ( ) ( )( ) ( )( ) ( )tt,ttt,...,t,t,tt n wxuuxfx ddd 1 σ+= . (8) 
 
A unique solution of this equation exists for a given 
n-tuple of admissible control trajectories under con-
ditions analogous to the deterministic case if, in addi-
tion, ( )...σ  is non-singular, continuous and uniformly 
Lipschitz. 
 
Some examples of special information patterns for 
dynamic games are (the first five refer to dynamic 
games with perfect state information): 
 
1. Feedback information pattern:  

( ) ( )( ) ( ){ } N∈=≤= i,tt,,tt ii xyC ττη . 
2. Closed-loop perfect-memory information pat-

tern: ( ) ( ){ } N∈≤= i,t,ti ττxη . 
3. Closed-loop no-memory information pattern:  

( ) ( ) ( ){ } N∈= i,ti τx,x 0η . 
4. Open-loop information pattern: ( ) { } N∈= i,ti 0xη . 
5. ε -delayed closed-loop information pattern:  

( ) { }
( ){ }




<−≤≤
≤≤

=
,tt,

,t
ti εεττ

ε
for0

0for0

x
x

η ,  

with 0>ε fixed; N∈i . 
6. Stochastic closed-loop perfect-memory informa-

tion pattern with total measurement sharing: 
( ) ( ){ } N∈≤= i,t,ti ττyη . 

7. Stochastic feedback information pattern with full 
exchange of observations: ( ) ( ){ } N∈= i,tti yη . 

8. Stochastic feedback information pattern without 
measurement sharing: ( ) ( ){ } N∈= i,tt ii yη . 

9. Stochastic closed-loop perfect-memory informa-
tion pattern with delayed measurement sharing: 

( ) ( ) ( ){ } NN ∈≠∈−≤′′≤= i,ij,j,t,;t,t jii εττττ yyη . 
 
A dynamic game can be described in extensive form 
by giving N , T , X  or X , iU  or iU , W , η , iΓ , 

iL  ( )N∈ifor  and the state equations (5), (6), or 
(7). If the assumptions about the unique solvability of 
these differential (difference) equations are fulfilled, 
a unique solution of the respective functional differ-
ential (difference) equation can be determined for 
every fixed n-tuple of strategies ii Γ∈ ∈NXγ , in the 
deterministic continuous-time case, for example, 
 
 ( ) ( ) ( ) ( )( ) N∈Γ∈= i,,,t,...,,t,t,tt iin γγγ xxxfx 1& . (9) 
 
Then the respective control trajectories ( ){ }tiu  can be 
determined as ( ) ( ) N∈= i,.,. ii xu γ . This is then 
substituted, together with the (assumed) unique re-
sulting state trajectory ( ){ }tx  into the iL -functions, 
assuming integrability of ig  in (7); in the stochastic 
case, the expected value for the random variables has 
to be taken. For fixed statistics of w and 0x , from 
this we get mappings →Γ××Γ nii ...J : ú, N∈i  as 
in (1). The strategy spaces iΓ  and the cost function-

als N∈i,J i , fully characterize the normal form 
description of the dynamic game, in which the infor-
mation aspects of the game are suppressed. When 
defining solution concepts for dynamic games, one 
usually starts from the normal form, making it possi-
ble to use the same definitions as for static games for 
(both deterministic and stochastic) dynamic games, 
too. 
 
In particular, an n-tuple of strategies ii* Γ∈ ∈NXγ  is a 
(non-cooperative) Nash equilibrium solution iff 
 

 ( )
ii

i
i

ii i,J*
Γ∈

∈∀= ∗

γ
γγγ ,min  arg N  (10) 

 
where ( ) ( )*,, niiii

i γ,...,γ,γγ,...,γγγ ∗∗∗≡ +−
∗

111 . For 

212 Γ×Γ∈∗= γ,n  is a Stackelberg equilibrium 
solution with player 1 as leader and player 2 as 
follower iff 
 

 ( )
( )22211

2111 supmin arg
γγγ

γγγ
R

,J*
∈Γ∈

=  (11) 

and 
 ( )*R* 122 γγ ∈ , (12) 
 
where ( ) ( ) ( ){ }22122121212 : Γ∈∀≤Γ∈≡ 2γγγγγγγ ,Jˆ,JˆR  is 
the reaction set of the follower. When ( ).R2  is a 
singleton, a unique reaction function 212 : Γ→ΓR  of 
the follower can be defined as 
 

 ( ) ( )
22

1121212 min  arg
Γ∈

Γ∈∀=
γ

γγγγ ,,JR  (13) 

 
and conditions (11) and (12) can be replaced by 
 

 ( )( )
11

12111  min  arg
Γ∈

=
γ

γγγ R,J*  (14) 

and 
 ( )** 122 γγ R= . (15) 
 
In this case, the “leader” in the Stackelberg equilib-
rium obtains a result which is no worse than that of 
any Nash equilibrium solution of the game. This is 
no longer true if ( ).R2  is not a singleton, i.e. when the 
mapping 2R  is not unique; then condition (10) pro-
tects the leader only against the worst choice from 

( )12 γR . The concept of a Stackelberg equilibrium 
solution can be extended to games with 2>n , with 
the possibility of introducing several hierarchical 
levels. The Stackelberg solution has an equilibrium 
property as the Stackelberg equilibrium solution of a 
(static or dynamic) game is equivalent to a (the so-
called strong feedback) Nash equilibrium solution of 
a related dynamic game (Başar and Haurie, 1984). 
 
When defining solution concepts of a dynamic game 
starting from the extensive instead of the normal 



form description of the game, other equilibrium 
solutions can be defined according to the information 
pattern assumed, such as open-loop or closed-loop 
Nash and Stackelberg equilibrium solutions, feed-
back equilibria, equilibria in memory strategies, etc. 
These equilibria then may have certain desirable 
properties such as subgame perfection or (strong or 
weak) time consistency or not. Particular assump-
tions about the possibilities of commitment can be 
made for the players at time 0=t , which then corre-
spond to these different solution concepts (cf. Başar, 
1989; Dockner and Neck, 1988, among others). 
Moreover, there are several non-cooperative (e.g., the 
consistent conjectural variations equilibrium) and 
cooperative solution concepts; for the latter, the as-
sumption is that the players follow joint strategies 
backed by a binding agreement. Cooperative solu-
tions usually are efficient (Pareto optimal): An n-
tuple of strategies ii Γ∈∗ ∈NXγ  is efficient iff 
 
 ( ) ( ) NN ∈∀Γ∈∀≤∗ ∈ iJJ iiii Xγγγ . (16) 
 
Efficient solutions are usually obtained by solving an 
optimal control problem. Non-cooperative equilib-
rium solutions are generally inefficient; the question 
as to when and how efficient non-cooperative equi-
libria of dynamic games are possible is the object of 
much research. Another focus of intensive interest 
lies on problems of analytical and/or numerical com-
putation of various equilibrium solutions of dynamic 
games. 
 
 

4. SOME ECONOMIC APPLICATIONS OF 
DYNAMIC GAME THEORY  

 
It is easy to see that dynamic games are very appro-
priate for many economic problems. The classical 
microeconomic oligopoly problem, in which two or 
more (but not many) firms compete against each 
others, is a typical game situation as these firms have 
obviously conflicting interests, although these inter-
ests are not necessarily completely antagonistic. For 
example, each firm aims at increasing its profit, pos-
sibly at the expense of its competitors, but all of them 
may be interested in increasing their entire market, 
i.e., in inducing consumers to buy more of their 
products. This means that their situation can be best 
described as a non-zero-sum game – a model that is 
more complicated than a zero-sum game, in which 
each player’s gains are exactly the other player’s 
losses. The same is true for a large variety of eco-
nomic (and even most other social) problems.  
 
Dynamic analyses have also found their ways into 
economics already many decades ago. For instance, 
for the oldest mathematical model in economics, 
Cournot’s monopoly model, dynamic counterparts 
and variants were developed already in the 1920s and 
1930s, using dynamic optimization methods (includ-
ing optimum control theory). Since the oligopoly is 
the just the extension of the monopoly market from 

one supplier to two, it was to be expected that dy-
namic oligopoly models were developed as soon as 
there were mathematical tools available to solve such 
models. Hence it comes to no surprise that dynamic 
games find a wide area of applications in many areas 
of economics. For a recent overview, see (Dockner et 
al., 2000), who give an extensive account of dynamic 
games in the fields of capital accumulation, oligopoly 
and industrial organization, marketing, and resources 
and environmental economics. 
 
In the area of macroeconomics and the theory of 
stabilization policy, there are also several possibili-
ties to introduce decision-makers with different inter-
ests (see, among others, Petit, 1990). In particular, 
different policy-making institutions, which are re-
sponsible for specific policy instruments and/or ar-
eas, may differ with respect to their preferences. On 
the national level, there may be conflicts between the 
government (which is usually responsible for fiscal 
policy) and the central bank, to which monetary pol-
icy is entrusted. For example, central banks are often 
highly adverse against inflation, while governments 
frequently put more emphasis on goals like full em-
ployment or high GDP growth. In an international 
context, governments of different countries may have 
different objectives, and problems of international 
policy coordination may arise. In this case, policy-
makers of different countries may pursue primarily 
their own national interests and do not care about 
spillovers of their actions to other countries or even 
engage in “beggar-thy-neighbor”-policies. Stabiliza-
tion theory even sometimes considers conflicts of 
interest between the government of a country and the 
(aggregate) private sector of that country or at least 
between the decisions of a country’s policy-makers 
and the preferences of the majority of its citizens. 
Several other possibilities of divergent interests of 
policy-makers are conceivable, and dynamic game 
theory is a very appropriate tool to analyze (and 
sometimes help resolving) the resulting conflict 
situations. 
 
An especially interesting problem of strategic inter-
actions arises in the case of a monetary union, of 
which the European Economic and Monetary Union 
(EMU) is a prominent example. In a monetary union, 
national currencies (national central banks) are com-
pletely replaced by a common currency (common 
central bank). This implies that the exchange rate 
between the members of a monetary union is no 
longer available as an instrument of adjustment. In 
the following sections of this paper, we consider the 
design of stabilization policies for a small macroeco-
nomic model of a monetary union consisting of two 
countries. We confine ourselves to the simple case of 
a monetary union consisting of two symmetric coun-
tries, i.e. countries of identical size with identical 
model parameters. It will be shown that the results of 
different solution concepts for a dynamic game be-
tween the common central bank and national fiscal 
policy-makers can provide insights into the structure 
of a policy conflict and its consequences under dif-
ferent assumptions about policy-makers’ behavior in 



such a union. More details can be found in Neck and 
Behrens (2004b); see also Neck and Behrens 
(2004a).  
 
Dynamic game models are usually much more com-
plex than optimum control problems; hence only in 
rare cases analytical solutions for these models are 
available. Therefore, even for small macroeconomic 
models, numerical solutions or approximations to 
them are the best one can hope for. Here we use the 
OPTGAME algorithm (Behrens and Neck, 2003a) to 
analyze the macroeconomic policy problem for the 
two-country monetary union. The OPTGAME algo-
rithm is designed for approximating solutions of 
dynamic games with a finite planning horizon. It 
solves discrete-time LQ (linear-quadratic) games, 
and approximates the solutions of nonlinear-
quadratic difference games by iteration. At present, 
the algorithm calculates the open-loop and the feed-
back Nash equilibrium solution and the cooperative 
Pareto-optimal solutions for an arbitrary number of 
players; extensions to other solution concepts are 
being implemented.  
 
 

5. THE MODEL 
 
In the following description of the macroeconomic 
model, capital letters indicate nominal values, while 
lower case letters correspond to real values. The 
superscripts d and s denote demand and supply, re-
spectively. The model consists basically of short-run 
deviations from an exogenous long-run growth path 
due to Keynesian features of goods and financial 
markets. The two countries under consideration are 
linked both through national goods markets (exports 
and imports of goods and services) and through the 
integrated money (and, implicitly, other financial) 
markets. Three active policy-makers are considered: 
the governments of the two countries and the com-
mon central bank of the monetary union.    
 
The goods market for each country is modeled by a 
short-run income-expenditure equilibrium relation 
(IS curve). Real output in country i (i = 1,2) at time t 
(t = 1,...,T) is given as the sum of the long-run equi-
librium level of  real output, ity , and the short-term 
deviation there from, ity~ , i.e., 
 
 ititit yyy ~+=  (16) 
where 
 ( ) )1(1 −+= tiit yy θ , 0iy  given, (17) 

 

 
( ) ( ) , 

~~~
ititijtiiti

it

itjti
it zfyr

P
PP

y +−+−−
−

= ηρθγ
δ

 (18) 

 
for i ≠ j (i , j = 1,2). Pit (i = 1,2) denotes country i’s 
general price level, rit (i = 1,2) country i’s real interest 
rate, and itf

~
 (i = 1,2) country i’s (short-term devia-

tion from a zero) real fiscal surplus (if negative, its 
fiscal deficit). itf

~
 (i = 1,2) in (18) is country i’s fiscal 

policy instrument, i.e. its control variable. The natu-
ral real growth rate, θ ∈ [0,1], is assumed to be equal 
to the natural real rate of interest. The parameters δi, 
γi, ρi, ηi, i = 1,2, in (18) are assumed to be positive. 
The variables z1t and z2t are non-controlled exogenous 
variables and represent exogenous demand-side 
shocks on the goods market. 
 
For t = 1,...,T, the current real rate of interest for 
country i (i = 1,2) is given by 
 
 itEtit XRr −= , (19) 
 
where REt denotes the common nominal rate of inter-
est determined by the common central bank of the 
monetary union, and Xit (i = 1,2) represents country 
i’s rate of inflation. The long-run equilibrium and the 
natural (nominal and real) interest rate, θ== itt rRE , 

are “inflation-free”, i.e. itX = 0  for i = 1,2.  
 
The general price levels and inflation rates for i = 1,2 
and t = 1,...,T are determined according to an expec-
tations-augmented Phillips curve, i.e. the rate of 
inflation depends positively on expected inflation and 
on goods market excess demand: 
 
 ( ) given,      ,1 0)1( itiitit PPXP −+=  (20) 
 
 iti

e
itit yXX ~ξ+= ,  (21) 

 
where ξ1 and ξ2 are positive parameters. e

itX  (i = 1,2) 
denotes the rate of inflation of country i (i = 1,2) 
expected to prevail during time period t, which is 
formed at (the end of) time period t – 1, t = 1,...,T. 
Inflationary expectations are formed according to the 
hypothesis of adaptive expectations: 
 
 ( ) ( ) ( ),1 11

e
tiitii

e
it XXX −− −+= εε   (22) 

 
where εi ∈ [0,1] for i = 1,2 are positive parameters 
determining the speed of adjustment of expected to 
actual inflation.  
 
We also define average variables for output and in-
flation in the monetary union as 
 
 ( ) [ ]1,01   ,21 ∈−+= ωωω ttEt yyy , (23) 
 
 ( ) [ ]1,01   ,21 ∈−+= ωωω ttEt XXX . (24) 
 
Real money demand in country i (i = 1,2) is the sum 
of long-run and short-run real money demand: 
 
 d

it
d

it
d
it mmm ~+= . (25) 

 



Short-run real money demand is determined by a 
Keynesian money demand function: 
 
 ( )θλκ −−= tiiti

d
it ERym ~~ . (26) 

 
Here κi , λi  (i = 1,2) are positive parameters and REt 
denotes the common nominal interest rate. In accor-
dance with the long-run equilibrium relations, 

itit yy = , 0~ =ity , 0=itX  and θ=itr  (i = 1,2), 
long-run equilibrium money demand is given by 
 
 iti

d
it ym κ= . (27) 

 
This leaves us with the following relationship for the 
long-run demand for money in country i (i = 1,2): 
 
 ( ) )1(1 −+== tiiit

d
itit

d
it yPmPM θκ . (28) 

 
In a monetary union, the sum of the countries’ 
money demands has to be equal to the monetary 
union’s money supply. Here we assume the money 
market always to clear in the short-run, too, and 
hence  
 
 d

t
d
t

s
Et MMM 21 += . (29) 

 
This leads to the LM curve for the monetary union:  
 

( )( )θλλκκ −+−+= Ettttttt
s
Et RPPPyPyM 2211222111 . (30) 

 
The government budget constraint is given as an 
equation for government debt of country i (i = 1,2), 
 
 ( ) given,   ,1 0)1()1( iEtiittitEit DB~FDRD β−−+= −−  (31) 
 
where the nominal fiscal surplus of country i (i = 1,2) 
is determined by the identity 
 
 ititititit fPfPF

~
== . (32) 

 

EtB~  denotes the short-term deviation of high-
powered money, EtB , from its long-run equilibrium 
level, EtB . The long-run (equilibrium) stock of high-
powered money is assumed to grow at the constant 
natural rate θ. Hence, 
 
 ( ) EttEEtEtEt BBBBB ~1~

)1( ++=+= −θ . (33) 
 

EtB~  is the control variable of the monetary union’s 
common central bank. This change in high-powered 
money, EtB~ , is distributed as seigniorage to the two 
countries according to given positive parameters 
β1 ∈ [0,1] and β2 := 1–β1 . Assuming a constant 
money multiplier, ψ, the broad money supply of the 
monetary union is given by 

 Et
s
Et BM ψ= . (34) 

 
Both national fiscal authorities are assumed to care 
about stabilizing inflation, output, debt, and fiscal 
deficits of their own countries, i.e., they aim at zero 
inflation, natural output growth, zero government 
debt and a balanced budget at each time t. The com-
mon central bank is interested in stabilizing inflation 
and output in the monetary union and in a low vari-
ability of its supply of high-powered money. Hence, 
the individual objective (loss) functions of the na-
tional governments (i = 1,2) and of the common cen-
tral bank are given by 
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where all weights α are positive numbers ∈ [0,1]. 
The joint objective function for the calculation of the 
cooperative Pareto-optimal solution is given by  
 

 ,µµµ 2211 EE JJJJ ++=  
( 0,µ ,µ ,µ 21 ≥E 1µµµ 21 =++ E ). (37) 

 
The parameters of the model are specified in the 
simplest possible way for a symmetric monetary 
union (Table 1). For the parameter εi, Table 1 gives 
the value for our benchmark case; it will be varied 
later on. The target values assumed for the objective 
variables of the players are given in Table 2; they are 
basically the long-run equilibrium values of the re-
spective variables. The initial values of the state 
variables of the dynamic game model are shown in 
Table 3. 
 

Table 1: Parameter values for a symmetric monetary 
union, i = 1,2 

 

T θ 
δi, γi, 
ρi, εi, 
ω, βi 

iξ  iλ  ψ 
ηi, 
κi, 
α’s 

µi, 
µE 

20 0.03 0.5 0.25 0.15 2.0 1.0 0.33
 
 
Table 2: Target values for a symmetric monetary un-

ion, i = 1,2 and t = 1,...,T, 
 

ity  Ety  itX EtX  itD  itf
~

 EtB~  

( ) tθ+1 ( ) tθ+1 0 0 0 0 0 



Table 3: Initial values (t = 0) for a symmetric monetary 
union, i = 1,2 

 

iy  iy~  iP  
iX  iD  ER  EB  if

~  EB~  

1 0 1 0 0 θ 1 0 0 
 
Equations (16) – (37) constitute a nonlinear dynamic 
game with a finite planning horizon, where the objec-
tive functions are quadratic in the paths of deviations 
of state and control variables from their respective 
desired values.  
 
 

6. SOME RESULTS OF FISCAL AND 
MONETARY POLICY GAMES 

 
Next, we discuss the results of various solution con-
cepts of this dynamic game. We assume a temporary 
positive symmetric demand shock influencing the 
economies of the two countries in the same way. In 
particular, we assume that autonomous real output 
(GDP) in both economies rises by 1.5 % of GDP 
above the long-run equilibrium path for the first four 
periods and less (declining) for the next three peri-
ods: 00 =iz , 015.04321 ==== iiii zzzz , 01.05 =iz , 

005.06 =iz , 0025.07 =iz , and 0=itz  for t ≥ 8, i = 1,2.  
 
Without policy intervention, the demand side shock 
leads to higher output and to higher inflation during 
the first periods (compared to the long-run equilib-
rium path), but lower output and inflation afterwards 
(see the path denoted as “uncontrolled” in Figures 3 
and 4). The uncontrolled dynamic system adjusts in 
dampened oscillations, approaching the long-run path 
only slowly. The small size of the deviations of na-
tional output and inflation from their equilibrium 
paths shows that, even without policy intervention, 
there is sufficient negative feedback in the system to 
reduce the impact of the shock on output to not more 
than one fifth of the original shock in the case of a 
temporary symmetrical shock. The main mechanism 
working into this direction is the strong reaction of 
the rate of interest, which rises from 3 % to values 
around 6 % in the first four periods, but falls quickly 
afterwards to its long-run value of 3 %. Due to the 
symmetry of the economies and of the shock, the 
reactions of all variables are identical in both econo-
mies.  
 
When policy-makers are assumed to react on this 
shock according to their preferences as expressed by 
their objective functions, outcomes depend on the 
assumptions made about the behavior of all the other 
policy-makers. Here we consider two non-
cooperative equilibrium solutions of the resulting 
dynamic game, namely the open-loop Nash and the 
feedback Nash equilibrium solution, and one coop-
erative solution, the Pareto-optimal collusive solution 

(assuming identical weights, µ i = 1/3, i = 1,2,E for 
the three players).  

 
For the three solution concepts considered, Figures 2 
and Fig. 3 show the trajectories of the control vari-
ables – real fiscal surplus for either country and addi-
tional high-powered money for the central bank, 
respectively.  Figures 4 and 5 show the trajectories of 
the state (and target) variables’ deviations from long-
run equilibrium output and inflation, respectively. 
The common nominal rate of interest exhibits a be-
havior very similar to the uncontrolled case. For 
obvious reasons, all country-specific variables of our 
symmetrically modeled monetary union show exactly 
the same time paths for both countries.  
 
As can be seen from Figures 2 – 5, both fiscal and 
monetary policies react on the positive demand shock 
in a restrictive and hence counter-cyclical way: both 
countries create a fiscal surplus during the first six 
periods and alternate between periods of fiscal deficit 
and surplus afterwards, and the central bank de-
creases its supply of high-powered money during the 
first five years and increases it afterwards. This re-
sults in a reduction of additional output (and hence of 
excess demand loss) and inflation for the first four 
years as compared to the uncontrolled solution; in 
fact, in the cooperative solution inflation is nearly 
reduced to one half of its uncontrolled values. Oscil-
lations of these variables are dampened more 
strongly than in the uncontrolled solution. This state-
ment holds for later periods, too. 
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Fig. 2. Country i’s fiscal surplus for i = 1, 2 and  

ε = 0.5 
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Fig. 3. Additional high-powered money for ε = 0.5 
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Fig. 4. Country i’s output-deviation from its long-run 
equilibrium level for i = 1, 2 and ε = 0.5 
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Fig. 5. Country i’s inflation rate for i = 1, 2 and  

ε = 0.5 
 
The magnitude of the (absolute) values of the instru-
ments involved is rather small: the fiscal sur-
plus/deficit created is to the order of one tenth (or 
less) of one percentage point of GDP, for example. 
Also changes of the monetary base in periods 1 to 4 
amount to only about 0.25 percent of its stock. These 
small policy reactions are due to the strong self-
stabilizing forces of the model used, acting especially 
through the interest rate channel.  
 
When we compare the non-cooperative (Nash) equi-
librium solutions and the cooperative (Pareto-
optimal) solution, another interesting observation can 
be made: All show the same qualitative behavior, and 
the two non-cooperative Nash equilibrium solutions 
are rather close together in terms of all control and 
state variables. The Pareto-optimal collusive solution, 
although not too distant from the other two, entails 
more active policy-making (higher fiscal surplus and 
money reduction in the first periods). This policy-
mix does not change the path of the rate of interest 
(higher fiscal surplus decreases, lower money supply 
increases the (short-run) interest rate, ceteris pari-
bus), but does so for the paths of output and inflation: 
both are closer to their long-run values and hence 
contribute more to reaching the common goal in the 
cooperative than in the non-cooperative solutions.  
 
 

7. SENSITIVITY ANALYSIS 
 
Given these insights, one can conduct a sensitivity 
analysis of the results, i.e., investigate whether the 
results change substantially if some elements of the 

model and/or of the objective function change. For 
instance, it is of interest how the dynamics of the 
model and the results of the policy game depend on 
the way inflationary expectations are formed. To do 
so, we retain the assumption of adaptive expecta-
tions, i.e., equation (22), but vary the parameter εi  
between 0 and 1 by considering the different solutions 
for εi = 0 (static expectations), εi = 0.25, εi = 0.5 (the 
previous benchmark case), εi = 0.75, and εi = 1 (my-
opic expectations). Again, we assume the same value 
of εi for both countries i =1, 2 in each of these cases. 
 
Detailed results on the reactions of the model’s vari-
ables can be found in Neck and Behrens (2004b). 
Here  only the main results are summarized. Consider 
first the uncontrolled solution, i. e. the development 
of the variables without intervention of the monetary 
union’s policy-makers. For both the actual and the 
expected rate of inflation, the following pattern of 
dependence upon εi  can be observed: as εi  increases, 
oscillations of these variables become wider (larger 
amplitude) and faster (shorter period). Expected 
inflation lags behind actual inflation, except for the 
case of εi  = 0, where inflation is just determined by 
excess demand. Oscillations of output, price level 
and inflation are more pronounced (less dampened) 
when inflationary expectations react on actual infla-
tion and contribute to determining the trajectory of 
actual inflation. In this case, these variables converge 
more slowly towards the long-run equilibrium path. 
Output oscillations exhibit higher frequency, too, the 
larger is εi . With stronger reactions of expectations 
to actual inflation, the overall effects on the price 
level are stronger. Inflation lags behind output in the 
present model, instead of the parallel movement of 
these two variables prevalent in the model without 
inflationary expectations.  
 
If we include policy-makers’ strategic interactions 
and consider the solutions of the dynamic game with 
different values of the inflationary expectations pa-
rameter, we find that the optimal reactions of fiscal 
policy and monetary policy in different solution con-
cepts yield similar trajectories for the control and the 
endogenous variables, with even smaller differences 
between paths from models with different values of  
εi .  The counter-cyclical behavior of all policy in-
struments (controls) holds for all values of  εi . They 
are applied more vigorously for increasing values of 
εi , due to larger deviations of the target variables 
from their desired values. There is a trade-off be-
tween control and target variables: higher deviations 
of the latter in the uncontrolled solution call for more 
active policies, which in turn imply larger instrument 
costs. This trade-off is less favorable if inflationary 
expectations react more strongly to actual inflation. 
 
The time paths of the target variables output and 
inflation in the different dynamic game solutions 
resulting from these policies are also qualitatively 
similar for different εi -models. Excess demand, 



actual and expected inflation are still oscillating, 
hence these variables are not fully counteracted by 
policies, due to the trade-off between control and 
target variables. The qualitative pattern of depend-
ence of oscillations’ amplitude and frequency is the 
same as in the uncontrolled case. But policy actions 
smooth the time paths of these variables. This is 
particularly true for output deviations, which are 
reduced rather quickly after exhibiting a peak in the 
first period. 
 
For the rates of inflation, the amplitudes of the first 
oscillations are reduced to roughly one half of those 
in the uncontrolled case, and even more towards the 
end of the planning horizon. Expected inflation again 
lags behind actual inflation when εi  is positive. A 
higher value of εi  makes stabilization of inflationary 
expectations, inflation and output more costly than in 
the benchmark case. Equilibrium and optimal time 
paths of the target variables vary more strongly for 
high values of εi than for low values (or even εi = 0). 
The differences between the non-cooperative and the 
cooperative solutions are minor; in particular, the 
qualitative behavior is similar in all cases considered.  
 
Apart from the investigation of the effects of the 
adaptation parameter in the equation determining 
inflationary expectations, we did a lot of further sen-
sitivity analysis in order to check how robust the 
conclusions of the model are with respect to parame-
ter values. For example, as shown in Neck and 
Behrens (2004a), we investigated the effect of the 
influence of expected on actual inflation. Moreover, 
since the length and size of the assumed demand 
shock were arbitrary, several scenarios with different 
time patterns of shocks were tried. The results are 
mostly as expected: for a one-period shock, counter-
cyclical policies are short-lived, with a quick adjust-
ment of the system to the equilibrium path. A nega-
tive shock of the same absolute size as the positive 
shock of Section 6 results in time paths for all vari-
ables that deviate nearly exactly as much from the 
long-run path as in the benchmark solution of Section 
6, but in the opposite direction.  
 
Sensitivity analyses for several parameters yield 
interesting results, especially as more variation be-
tween the member countries of the monetary union 
can be introduced in this way. For example, we var-
ied the slope of the Phillips curve (the short-run ag-
gregate supply curve) from ξ1,2 = 0.25 to ξ1 = 1 and 
ξ2 = 0.1. This serves also to model an asymmetric 
transmission of a symmetric shock. Country 1 exhib-
its a faster reaction of prices and inflation on the 
shock than before, country 2 a slower one. The reac-
tion of the output gap (deviation from long-run level) 
and inflation in country 1 is both faster and shorter-
lived than in country 2, hence higher price flexibility 
(a steeper short-run supply curve) acts like an auto-
matic stabilizer. This scenario calls for stronger reac-
tions of policy-maker 2 (the less effective one) and 
slightly weaker reactions of (the more effective) 

policy-maker 1 than in the benchmark scenario, 
whereas the reaction of the central bank is nearly 
unchanged. Country 1 stabilizes quicker and with 
smaller amplitude than country 2 (and both countries 
in the benchmark scenario).  
 
Another scenario examines the sensitivity with re-
spect to the parameters λi  , which are changed from 
0.15 to λ1 = 0.15 (as before) and λ2 = 0. This as-
sumes an interest-inelastic demand for money in coun-
try 2, which makes country 2’s fiscal policy less effec-
tive. In the uncontrolled solutions, the objective vari-
ables output and inflation deviate considerably less 
from the equilibrium paths than in the benchmark 
scenario, showing that this rather “classical” scenario 
exhibits strong self-stabilizing forces. This, together 
with the lower effectiveness of fiscal policy, implies a 
smaller reaction of the budget surplus than in the 
benchmark case; also monetary policy is less active 
here. Nevertheless, due to the automatic stabilizers, the 
system becomes more stable here than in the bench-
mark solution.  
 
Further scenarios investigated do not differ from the 
benchmark solution with respect to the uncontrolled 
solution, but only through their policy reactions. For 
example, we assumed the fiscal multipliers in the two 
countries to be different: η1 = 1.5 and η2 = 0.5.  This 
scenario results in a less active fiscal policy-maker in 
country 1 and a more active one for country 2, both 
compared to the benchmark. The central bank is nearly 
not affected but follows virtually the same policy 
strategy than in the benchmark. A final scenario as-
sumes a different objective function than in the 
benchmark scenario: the central bank is assumed to be 
only concerned about price stability in the union and 
not about output. Interestingly, the controls and the 
controlled objective variables are nearly the same as in 
the benchmark scenario.  
 
To summarize, the most striking result of this sensitiv-
ity analysis are the small differences between the dif-
ferent scenarios. More variation can be generated only 
when supply shocks and/or asymmetric shocks will 
enter the picture. Due to lack of space, however, these 
extensions are beyond the scope of this paper.  
 
 

8. CONCLUDING REMARKS 
 
In this paper, an introductory overview of dynamic 
game theory and of some application to economic 
problems was given. It was shown that dynamic 
games provide adequate models for situations with 
several decision-makers having distinct preferences, 
which are very common in economics and other 
social sciences. Moreover, dynamic games are natu-
ral extensions of optimum control problems, which 
are all too familiar to the engineering community. 
Hence, further developments and applications of 
dynamic game theory and applications can provide 



another chance for mutually fruitful dialogues be-
tween economists and control engineers. 
 
More specifically, we have applied dynamic game 
theory and the OPTGAME algorithm to a simple 
macroeconomic model of fiscal and monetary poli-
cies in a two-country monetary union and obtained 
some insights into the design of economic policies in 
the case of a symmetric excess demand shock. In 
particular, optimal policies of both the governments 
and the common central bank are counter-cyclical but 
not very active, at least for the model under consid-
eration. The outcomes of the different solution con-
cepts of dynamic game theory are rather close to each 
other. In all cases, there are trade-offs between the 
vigor of policy actions and the smoothing effect on 
target variables. If private agents’ inflationary expec-
tations react more strongly to actual inflation, this 
complicates the stabilization task of macroeconomic 
policies in the monetary union.  
 
The model considered here refers to a very simple 
monetary union of two symmetric countries only. In 
order to derive results that are valid for a particular 
monetary union, one can extend the model (for ex-
ample, to a larger number of member countries of the 
monetary union) and calibrate parameters for that 
particular union. For example, Haber et al. (2002) use 
a large calibrated model of the global economy (the 
MSG2 model) to obtain insights into the policy con-
flicts between the governments (fiscal policy) and the 
central bank (the European Central Bank; monetary 
policy) in the European Economic and Monetary 
Union. A related approach is pursued by van Aarle et 
al. (2002). Hence, dynamic game applications may 
gain realism and even lead to results that are off 
direct interest to actual policy-makers looking for 
advice in designing policy actions. This is again a 
fruitful field for interdisciplinary cooperation be-
tween mathematicians, engineers and economists. 
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