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Abstract: This work presents an integrated robust adaptive control scheme that merges the 
fuzzy control algorithm with the Cerebellar Model Arithmetic Control (CMAC) for 
unknown systems. The presented adaptation mechanism is used to tune the weight 
parameters in the CMAC, such that a given ideal stable controller will be best 
approximated without prior off-line learning phase required. A robust controller is 
appended to compensate the approximation error of fuzzy CMAC for improving the 
robustness. Based on the Lyapunov stability analysis the tracking stability can be 
guaranteed. Demonstrative examples show that the performance of the proposed control 
schemes is satisfied.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Controller design can typically be roughly classified 
into the following two categories- (a) model-based 
orientation, (b) model-free or partially known 
orientation. Various control theories in the former 
category, based on the mathematical model of the 
controlled systems, have successfully been applied to 
a large class of control systems (SLOTINE and LI, 
1991; GOODWIN, et al., 2001). However, for 
complicated even in unknown systems, conventional 
methods may require much time to schedule their 
model. By contrast, the arising intelligent control 
methodologies provide an advisable solution based 
on human faculty of heuristics or learning (KIM and 
LEWIS, 2000; PENG and WOO, 2002; TAKAGI 
and SUGENO, 1985; LIN and CHIANG, 1997). 
Although this is an alternative way to handle ill-
modeled systems, extensive knowledge and 
experience is required. Two popular areas of research 
- fuzzy control and neural networks - are generally 
applied to the preceding control issues (JANG, et al., 
1997).  
 
Fuzzy control is a powerful control technique for 
representing human experience to control nonlinear 
and complicated processes (BERSTECHER, et al., 
2001). However, some difficulties in capturing the 

input-output membership functions exist, and 
especially in capturing the output membership 
function related to a control action. Accordingly, the 
membership functions should be automatically 
adjusted to compensate for the system uncertainty 
and the model approximated error when to adopt 
Fuzzy control scheme alone. 
 
The Cerebellar Model Arithmetic Control (CMAC) is 
one type of neural network control (ALBUS, 1975). 
The main advantage is its effective architecture and 
the general capacity for operation using table-look-up. 
From the perspective of practical implementation, 
can be easily coded using a microcontroller or 
FPGA/CPLD when the weight parameters of CMAC 
are determined. Two important issues related to 
CMAC parameters are the partitioning of the input 
variables and the determination of weight variables. 
The input variable partition has not been 
systematically studied as yet. Clearly, fine 
partitioning will yield good precision. The first 
question concerns the existence of a coarse but 
acceptable partition that does not increase the cost of 
realization or the computational load, and keeps the 
system performance independent of the partitioning. 
The second question regards how to determine 
properly the weights of CMAC. In general, the 
weight parameters can be best determined by an off-



line learning algorithm. Therefore, a high 
computational burden is required to achieve the 
desired accuracy. However, some pre-work on real-
time CMAC control without the learning phase has 
been performed to overcome this shortcoming 
(ALBUS, 1975; COMMURI and LEWIS, 1995). For 
example, initial weight values are determined 
beforehand, according to the sliding mode control, to 
meet a real-time control need. Furthermore, the 
optimal control design can also be applied to the 
CMAC neural network with no learning requirement 
(KIM and LEWIS, 2000).  
 
The purposes of this study were to merge the fuzzy 
control algorithm with the CMAC neural network, so 
as to construct a integrated robust adaptive fuzzy 
CMAC control system. Make it have the following 
several characteristics: (1) only two input variables 
for the CMAC to simplify the control design 
procedure, (2) no prior off-line learning phase 
required, (3) improving the robustness enough for 
resisting the presence of modeling uncertainties and 
external disturbance, (4) the system tracking stability 
and the error convergence can be guaranteed.  
 
 

2. STRUCTURE OF FUZZY CMAC 
CONTROLLER  

 
 

2.1 Basic CMAC 
 
In this study, it is assumed that the plant has only one 
control input and all its state variables are available. 
Thus, it is considered a CMAC function as:  

                                  ( )
CMAC

y = F s   (1) 

where F : RL → R1 is a nonlinear function. Using the 
following input-output mappings   

                                  (2) : ⇒G S A
 :

CMAC
P y⇒A  (3) 

where S is a continuous L-dimensional input space; 
A is an M-dimensional association space, and u is a 
scalar output. Function G(s) transforms each point s 
in the input space to an association vector 

, which comprises ( )= ∈a G s A M  constant value 
“1”. The function  projects the association 
vector  onto a vector of weights w  to yield a 
scalar output yCMAC 

( )P a
a

     

  (4) ( )
CMAC

Ty P= =a a w

Figure 1 illustrates two state variables of CMAC, 
assuming that the variation of interest of each state 
variable is divided into two regions. Variable 1s  is 
divided into A and B, and variable 2s  is divided into 
a and b. Notation Aa, Ab, Ba and Bb denote 
hypercubes. Shifting by a small interval yields 
different hypercubes. For example, C and D in the 
second row of 1s , c and d in the second column of 

2s  are potential shifted regions, yielding hypercubes 
Cc, Cd, Dc and Dd. Such shifting further yields Ee, 

Ef, Fe and Ff. Three layers of hypercubes have 12 
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Fig. 1. Hybercubes example of two input variables of 

CMAC. 
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Fig. 2. Example of the mapping of CMAC. 
 
elements which forms an assembly vector, [Aa 
Ab Ba Bb Cc Cd Dc Dd Ee Ef Fe Ff].  

,
T
m na

 
Additionally, the continuous variables are divided 
into 16 blocks. Block (m,n), a continuous input 
subspace was marked “S(m,n)” quantifying and 
covering the regions of variation,  
and 

1( 1)m s− ≤ ≤ m
n2( 1)n s− ≤ ≤ . If ( 1s , 2s ) = (0.1,0.5) ∈  S(1,1), 

then Aa =1, Cc =1 and Ee = 1 with  [1 0 0 0 1 0 
0 0 1 0 0 0] .  Clearly, the function G maps the input 
space S to an association space A. Figure 2 shows an 
example of the input (

1,1
T =a

1s , 2s ) = (2.2, 2.5) with a 
scalar output u. 

 
 

2.2 Fuzzy CMAC controller 
 
Suppose that a fuzzy system has N fuzzy rules, each 
of which has two input variables 1 2, .s s   

  (5) ( )
1 1 2 2: IF  is  and  is  THEN  is  i i i

iR s F s F u a wT

where the THEN-part is extracted from the 
conventional CMAC above. For instance, as for the 
above structure, the size of the association vector 

, 1,2, ,i i N=a  as 12 1×  is provided with reference 
to the weight vector . 
Defuzzification yields the output 

1 2 12[   ]Tw w w=w

FCMAC
y  as 
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Nwhere 
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1 2( ) ( ),  1,2, , .i ii F F
v s s iµ µ= ⋅ =  Define the 

following nonlinear mapping 
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The following parametric form of fuzzy CMAC is 
then 

( | )
FCMAC FCMAC

y u s w= = GAw  (8) 

where 

 [ ]1 2 Ng g g=G  (9) 
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Matrix A (determined by CMAC) and G(s) (IF-part 
of fuzzy rules) are typically fixed, but the weight 
vector w is adjustable herein. 
 
The determination of the rules (5) of this fuzzy 
system is now explicated. The fuzzy system is first 
developed as 

1 2      s ,     TIF s P and P THEN u= = = a w1

2

3

4

 (11) 

1 2  s     s ,     TIF N and P THEN u= = = a w  (12) 

1 2      s ,     TIF s N and N THEN u= = = a w  (13) 

1 2      s ,     TIF s P and N THEN u= = = a w  (14) 
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Fig. 3. Membership functions of 1,2s . 
 
Figure 3 shows the membership functions of fuzzy 
sets P (Positive) and N (Negative). Figure 4 depicts 
the relationship between the fuzzy sets and CMAC. 
Matrix is given by A

1 1 1 1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 0 1 1 1 1 1
1 0 0 0 1 1 1 1 1 1 1 1
1 0 1 1 0 0 1 1 1 1 1 1

⎡
⎢
⎢=
⎢
⎢
⎣

A

⎤
⎥
⎥
⎥
⎥
⎦

 (15) 

based on Fig. 4. The THEN-part of the fuzzy rules 
(11)-(14) is derived from Table 1, where 

 is taken the logical ‘or’ operation for 
each distinct class in CMAC, to include the 
information in the fuzzy rules. For example, the 

 class, four hypercubes should be 
considered in fuzzy rule (11); therefore 

, 1,2,3,4T
i i =a

1 2( , ) (P,P)s s =

[ ]1 111100011111T =a  for this rule. 
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Fig. 4. Relationship between fuzzy sets and CMAC. 

 
Table 1 Relationship between fuzzy rules and CMAC. 
 

Continuous 
Input 1 2( , )s s  

 
[Aa,Ab,Ba,Bb,Cc,Cd,Dc,Dd,Ee,Ef,Fe,Ff]

Class Quantif-
ication Hypercubes , 1,2,3,4T

i i =a

S(-1,-1) [100000011000] 
S(-1, 1) [100000010100] 
S(-1, 2) [010000010100] 
S( 1,-1) [100000010010] 
S( 1, 1) [100000010001] 
S( 1, 2) [010000010001] 
S( 2,-1) [001000010010] 
S( 2, 1) [001000010001] 

(P,P)

S( 2, 2) [000100010001] 

[111100011111]

(N,P) : : [110001011111]

(N,N) : : [100011111111]

(P,N) : : [101100111111]

 
 

3. ROBUST ADAPTIVE FUZZY CMAC 
CONTROLLER DESIGN 

 
Consider the following a nth-order system 

 ( ) ( 1)( , , , )n nx f x x x bu−= +  (16) 
 y x=  (17) 

where f is an unknown function; b is a given nonzero 
gain constant; u is the system input; y is the system 

output, and  is 
the state vector. The control goal is to design an 
adaptive fuzzy CMAC controller u such that the 
system output y can follow a desired output where 
the desired output and its derivatives are given and 
bounded. Define the error vector as 

[ ] ( 1)
1 2, , , , , ,

TT n
nx x x x x x −⎡ ⎤= = ⎣ ⎦x

dy

dy

  (18) [ ] ( 1)
1 2, , , , , ,

TT n
ne e e e e e −⎡= = ⎣e ⎤⎦

.

]

where  The following 
ideal control law under a given vector 

 with positive constant elements 

( 1)( ) ,  1,2, ,i
i de y y i n−= − =

[ 1 1, , , T
n nk k k−=k

, 1,2, ,ik i n=  can be easily found. 



 ( )* 1 ( )n T
du b f y−= − + + k e   (19) 

Applying the above control law to system (16) and 
suitably selecting k yields the error dynamic 

  (20) ( ) ( 1)
1 0n n

ne k e k e−+ + +

     

=

k
such that all roots of the characteristic polynomial 

 are in the open left half 
of the complicated plane. This result shows that the 
tracking error asymptotically approaches zero given 
a desired trajectory. Unfortunately, the function f and 
the gain b are not generally known exactly. Hence,  

1
1( ) n n

nh kλ λ λ −= + + +

the ideal control law (19) cannot be realized in 
practical applications.  
 
For the system output can follow a given desired 
trajectory, a fuzzy CMAC controller will be 
examined to perform the control task. According to 
the approximation theory, we use the fuzzy CMAC 
controller in (6) to rewrite the ideal control law as 

( )FCMACu u ε∗ = s w∗ +               (21) 

where  is the optimal weight vector, and  ε is the 
approximation error, satisfying 

∗w
Dε ≤  with a 

smallest positive constant D. It is worth noting that 
there are often uncertainties in f, and hence, the 
optimal weight vector w∗  and approximation error  ε 
may be unknown. In this case, we modify the control 
law as  

ˆ( )FCMAC ru u u= s w +                (22) 

where the weight vector   is updated on-line by the 
adaptive law, and the robust compensation ur is in a 
variable-structure (i.e., switching) manner. Both the 
adapaive law and robust compensation will be 
introduced in the following.  

ŵ

 
To simplify the FCMAC

u , define a switching variable as 
one input of the fuzzy CMAC, 

  (23) 1
Ts = c e

where is the coefficient vector, which 
can be derived by the concept of a sliding mode 
control. Define another input of fuzzy CMAC as 

[ 1, , T
nc c=c ]

]

  (24) 2 1
Ts s= = c e

The fuzzy CMAC developed above, can be 
employed in such a system because an n-dimensional 
state variable is transferred to only two input 
variables. Therefore, the fuzzy CMAC controller is 
more easily implemented than the conventional 
CMAC control. The robust controller must be 
designed to handle this approximation error and to 
guarantee the stability of the fuzzy CMAC control 
system. Additionally, the fuzzy CMAC must be 
constructed to approximate the ideal control (19).  
 
To achieve this objective, system (16) can be 
expressed as  

( )

1 ( )

( )

[ ]
     [( ) ( )]

      [ ]
FCMAC

FCMAC

n

n T
r d

n T
d r

x f b u u u
f b u u u b f y

y b u u u

∗ ∗

∗ −

∗

= + + −

= + + − + − + +

= + + + −

k e

k e

  (25) 

From Eq. (18), the equivalent vector has the form 

  (26) [
FCMAC ru u u∗= + − −e e bΛ

where 

1 1

0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 0 0 1

n nk k k−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

Λ , 

0
0

.
0
b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

b  

Manipulating Eq. (26) yields  

  (27) 
( )

   ( )
FCMAC FCMAC FCMAC

FCMAC FCMAC

r

r

u u u u u

u u uε

∗ ∗

∗

∗= + − − + −

= + − + −

e Λe b

Λe b b b

Consider the following Lyapunov function candidate; 

 1 1
2 2

TV
γ

= +e Pe φ φT  (28) 

where γ  is a constant positive convergence rate, 
∗ −φ w w , and P is an n  symmetric positive 

definite matrix that satisfies the following Lyapunov 
equation. 

n×

 T + = −Λ P PΛ Q  (29) 

Q is an n n×  positive definite matrix. Differentiating 
V with respect to time yields  

1 1 1 1
2 2 2 2
1 1   ( ) ( )
2
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2
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T T T T

T T T T
r

T T T T T
r

T T T T
r

V

u u u

u

u

γ γ

ε
γ

ε
γ

γ ε
γ

=−

∗

= + + +

= + + − + − +

=− + + + −

+ + − −

e Pe e Pe φ φ φ φ

e Λ P PΛ e e Pb φ φ

e Qe e PbGAφ φ φ e Pb e Pb

e Qe e PbGA φ φ e Pb

)

   (30) 

From (30), we select the adaptation law for the 
unknown weight w as 

                    (31) ( T Tγ= − = −φ w e PbGA

and the robust controller as  

  (32) sgn( )T
ru D= ⋅ e Pb

such that we have 1
2

TV , which indicates that 

the function V is non-increasing. So we have V

≤ − e Qe

∈L∞  
and hence meet , ∈e φ L∞ . From (27), we have 
∈e L∞  further. By integrating the inequality 
above, we can conclude that  . Using the 

properties 
V 2∈e L

∈e L∞ , 2∈e L  and applying Barbălat 
lemma, it is guaranteed that the tracking error e 
converges to zero asymptotically (i.e.,  as  ( ) 0t →e



t →∞ ). The closed-loop systems subject to the 
adaptive fuzzy CMAC control scheme are illustrated 
in Fig. 5 

 

     

 
 

4. ILLUSTRATIVE EXAMPLES 
 
This section applies the proposed robust adaptive 
fuzzy CMAC to control a one-link rigid robotic 
manipulator, the Duffing forced-oscillation system 
and a three-order process. 
 
 
4.1 One-link rigid robotic manipulator 
 
The dynamic model of this system is given in (LIN 
and PENG, 2004).  

  (33) 2  cos( )vml q bq ml g q u+ + =

where l is the link length; m is the mass, and q is the 
angular position under initial conditions (0) 0.2q =  
and . Let the state variables be(0) 0q = 1x q=  and 

2x q= ; the model (33) can be rewritten as 

                 1 1

2 2

0 1 0
(

0 0 1
x x

)f bu
x x
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

+  (34) 

where ( ) ( )2
2 11 cv os( )f ml x g l x= − −  and 

2(1 )b ml= . The parameters in Eq. (34) are 
. In many applications, the system 

parameters, such as the friction constant b, are 
usually unknown, so it is preferred here that the 
adaptive fuzzy CMAC control scheme is applied. 

1vm l g= = =

               (35) 1 1

2 2

0 1 0
( )

16 8 16
d d

d d

x x
r t

x x
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

under the initial condition [ ] [ ]1 2 0 0d dx x =   and r(t) 
is a periodic rectangular input with period 9T = sec.  
 

 
Fig. 6. Output-desired trajectories of the one-link 

rigid robotic manipulator. 

 
Fig. 7. Tracking error. 
 
The parameters of the controller are  10γ = , 1D = ,  

,  and . Figure 6 and 

7 show the output-desired trajectories and tracking 
error, respectively. 

[1,0]T=c [ ]1,2 T=k
15 5
5 5

⎡ ⎤
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⎣ ⎦

P ⎥

 
 
4.2 Duffing forced-oscillation system 
 
The dynamic model for this example, is given in 
(JIANG, 2002) 

 30.1 12cos( )x x x t u+ + − =  (36) 

This dynamic equation can be written as 

 1 2
3

2 2 10.1 12cos( )

x x

x x x t u

=

= − − + +
 (37) 

where the state variables are 1x x=  and 2 x x= . The 
proposed controller is now applied to cause the state 

1x  to follow the desired trajectory sin( )dx t=  under 
the initial condition . The 
parameters of controller are 

1 2(0) (0) 2x x= =
30γ = , 3D = , 

, k and , respectively. 

Figure 8 and 9 demonstrate the output-desired 
trajectories and tracking error, respectively. 

[1,0]T=c [ ]1,2 T=
15 5
5 5

⎡ ⎤
= ⎢
⎣ ⎦

P ⎥

 
 
4.3 Three-order process 
  
The dynamic equation of this system is taken from in 

 2.14 1.276 0.228 4.228x x x x u+ + + =  (38) 

+
+ +

+  
−  

ru

dy e

( , , , )n n

y  
 

( ) ( 1)x f x x x bu= +

e
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Robust Controller 
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Fig. 5. The closed-loop system architecture. 



Its state space model is 
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x
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3
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0.228 1.276 2.14 4.228

x
x x
x
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u
x

+

3

 (39) 

Clearly, this process is stable. The proposed 
controller can handle a system of order greater than 
three: three state variables are integrated into only 
one switching variable according to 

1 1 23 2s e e e= + + ; moreover, 2 1 23 2 3s e e e= + + . The 
control task is to track a square reference. The 
parameters of the controller are selected as 3D = ,   

0.1γ = , ,  and [3,2,1]T=c [1,2,3]T=k

 . (40) 
23 21 5
21 46 13
5 13 6

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

P ⎥
⎥

Figure 10 depicts the output-desired trajectory. From 
simulation results given above, can entirely reveal 
the simplification and effectiveness of the proposed 
control scheme. 

 
Fig. 8. Output-desired trajectory of the Duffing sys.  

 
Fig. 9. Tracking error. 

 
Fig. 10. Output trajectory of a third-order system 

with distinct reference setpoint. 

5. CONCLUSIONS 
 
A robust adaptive controller, which integrates a fuzzy 
algorithm and a conventional CMAC, was proposed 
for unknown systems. The conventional CMAC is 
incorporated in the THEN-part of the fuzzy rules, 
and is used to approximate an ideal controller. The 
robust controller is designed based on the residual 
part of the approximation error. To simplify the 
partition space, the input variables are integrated into 
only one switching variable by the concept of sliding 
mode control. The developed architecture can 
therefore be applied to higher dimensional control 
systems. The proposed way to design the control 
procedure is easier than the conventional design 
scheme and requires no preliminary off-line learning 
phase. Simulation results show that the proposed 
robust adaptive fuzzy CMAC control performs 
satisfactorily even in the presence of modeling 
uncertainties and external disturbances. 
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