
A FLEXIBLE SOFTWARE FOR REAL-TIME
CONTROL APPLICATIONS IN FUSION

EXPERIMENTS

G. De Tommasi ∗ F. Piccolo ∗∗ A. Pironti ∗

F. Sartori ∗∗

∗Associazione EURATOM/ENEA/CREATE
Dipartimento di Informatica e Sistemistica

Università degli Studi di Napoli “Federico II”
∗∗ EURATOM/UKAEA Fusion Association

Culham Science Centre
Abigdon, Oxon

OX14 3DB, United Kingdom

Abstract: JETRT is a framework of real-time software and simulation tools
designed to help development of control systems in the JET fusion experiment
environment. The main design choice is the complete separation of the target
application from the hardware and plant interfaces. This architecture has been
designed to maximize the reusability and to standardize the software development
cycle of real-time control systems. Thanks to this design choice development costs
have been reduced and even non-specialist programmers can easily contribute to
a real-time project. JETRT also provides a set of powerful debugging and testing
tools, some of them well integrated with the Matlab environment. This feature
allows to reduce significantly the time spent on the plant for the commissioning of
a new control system. Copyright c©2005 IFAC

Keywords: Real-time systems, object-oriented design and programming, software
tools.

1. INTRODUCTION

JET tokamak (Wesson, 2000), though it was
built more than twenty years ago, is still the
world’s biggest pulsed operated fusion experi-
ment, where several computers interact in order to
perform real-time control and monitoring services
(Lennholm et al. (1999), Puppin et al. (1996) and
Sartori et al. (2003)). Tokamaks are the most
promising confinement devices in the field of con-
trolled nuclear fusion: their principal object is the
containment of a thermonuclear plasma by means
of strong magnetic fields.
In such a complex environment achieving coding
practice standardization and separation between

the application software and its interfaces to the
external systems, is the key to minimize develop-
ment time and cost, and to maximize reusability
and efficiency.
JETRT has been designed to separate the al-
gorithmic part of a real-time control application
(User Application) from the interface software
(JETRTApp), and to standardize the software
development cycle. Portability among the desired
computer platforms has been considered as well,
leading to a further increase of code reusability
and to a reduction of the debugging efforts.
JETRT framework has been successfully used to
develop and test many systems among the Real
Time Data Network processing nodes (RTDN,



Felton et al. (1999)).
This paper gives an overview of the whole JETRT
framework and describes in more details the real-
time executor JETRTApp architecture. The next
section introduces the JET experiment. Section 3
deals with design choices and carries out a com-
parison between our approach and other design
methodologies and technologies for real-time sys-
tems. In section 4 an overview of the whole frame-
work is given. Section 5 introduces JETRTApp
architecture and timing issues, while the follow-
ing section deals with the User Application plug-
in. Eventually some concluding remarks are pre-
sented.

2. THE JET EXPERIMENT

In a fusion experiment, the main aim is to obtain a
plasma (a fully ionized gas) with the desired char-
acteristics. This result cannot be achieved simply
by pre-programming the actuators. Because of the
various types of instabilities manifested by the
gas, several corrective actions must be taken, and
their timing constraints must be always met: the
systems containing these tasks can be classified
as hard real-time systems, according with the op-
erational definition given in Liu (2000). At JET
typical sample times for control loops range be-
tween 50 µs (Vertical Stability System, Lennholm
et al. (1997)) and 1 ms (eXtreme Shape Controller,
Ambrosino et al. (2003) and Ariola et al. (2003)).
While several distinct systems take care of every
control and safety problems , the Real Time Data
Network has been designed to coordinate their
actions and to make possible the addition of fur-
ther processing node. RTDN is a digital mecha-
nism to exchange data between measurement sys-
tems, feedback controllers, and actuators based on
ATM-AAL5 protocol. Each source node produces
messages with typical rates range between 1000
and 20 messages per second.

JET is a pulsed machine: that means that every
20-60 minutes the plasma is formed and sus-
tained for about a minute. Because of this, all the
real-time applications operate into two different
modes:

• OFF-LINE, before the experiment they re-
ceive the instructions, while after they return
the collected information;

• ON-LINE, they perform real-time measure-
ment, control or protective actions.

The off-line interfaces are the source of much of
the technical complexity of the real-time applica-
tions. Before and after every pulse the Supervisor
countdown task sends to the system change of
state requests in order to synchronize the evo-
lution of the various JET subsystems. As soon

as the scientists have finished pre-programming a
new experiment, the Level-1 plant management
system sends a packet containing new parame-
ters. Finally, the information collected has to be
available for sending to GAP (General Acquisition
Program) data management system.
JETRT framework has also been created to help
working in this environment, answering the need
for a fast and reliable deployment of new systems.

3. JETRT DESIGN CHOICES

During its twenty years of life, several real-time
systems have been deployed at JET. Since the
very beginning, much of the code of a project was
recycled in the implementation of the next one
with the hope of saving development and testing
time. While this practice was proving to be very
helpful in reducing programming costs, it eventu-
ally appeared to have too many shortcomings:

• the hardware related details where inter-
mixed with the application specific ones. In
order to test the application on a different
system it was necessary to emulate the target
platform.

• Once a specific hardware platform had run
out of commercial life, the migration to a new
platform required an almost complete rewrite
of the code.

• Only the people with enough knowledge
of the target platform could benefit from
reusing the existing software.

• Allowing excessive freedom in writing a pro-
gram means that only the programmer is
very efficient in maintaining it.

At the same time it was observed that, in the on
line mode, all of the deployed systems, despite
their complexity, could actually be reduced to a
simple iterative model:

(1) Data acquisition.
(2) Processing.
(3) Output the results.

To realize this behaviour there isn’t need of a
complex and distributed control system, while a
simple single-processor architecture can be used.
The system architecture must satisfy two main
requirements:

(1) ensure enough processing power, so to allow
the satisfaction of the timing constraints;

(2) use as much COTS as possible.

In principle this model seems to be well suited for
a programmable logic controller (PLC) based ar-
chitecture: unfortunately none of this commercial
devices can assure the needed timing constraints
in terms of scan cycle of less than 1 ms (including
I/O processing). For this reason the selected ref-



erence platform uses other types of off-the-shelf
components, such as industrial processor cards
running RTOS and I/O boards, which can ensure
the timing requirements.
For example to attain the required 1 ms sample
time, the eXtreme Shape Controller has been de-
ployed on a VME board with a 400 MHz PowerPC
CPU running VxWorks (see Sartori et al. (2004)).
Once the standard hardware architecture has been
chosen the real-time application must be designed
to realize the iterative cycle introduced above
when on line, while, in off line mode, it has to
accomplish all the communications and ancillary
tasks, without any timing constraint. Off line
tasks are the same for all the JET applications,
therefore, once a real-time executor that performs
all of them has been developed, the definition of
the on line processing task is the only thing to
do when a new real-time application has to be
created.
Since the hardware has been selected a priori,
HW/SW design techniques, which have been suc-
cessfully applied in various application fields (see
Saoud et al. (2002)), are not necessary in the
JETRT framework. Similarly, because the archi-
tecture is not distributed, there isn’t need to use
technologies such as RTCORBA as has been done
in Tanabe et al. (2001).
Moreover, thanks to the simplicity of the proposed
iterative model and thanks to the single proces-
sor choice, developing a new real-time application
with JETRT framework is simpler than using
other frameworks (e.g. Janka (2002) and Moore
et al. (1999)). In fact, JETRT has proven to be
extremely beneficial for the projects development
providing the advantages of a simple and stan-
dardized application-programming model.

4. JETRT OVERVIEW

The JETRT framework is a cross-platform class-
library designed to speed up the development of
real-time control systems and providing validation
tools to ease the test and commissioning phases.
Usually most of the time developing a new real-
time system is spent testing the program. The
task is clearly hindered because of the limited de-
bugging facilities present in many target systems.
In fact, even if several products enhancing the
testing capabilities for the various platforms are
available from the market, in our experience the
problem mostly lies elsewhere. The commissioning
time is actually spent more on the algorithmic
part of the code rather than in the interfaces or
in the real-time synchronization, because while
the latter part can be tested at leisure in the
laboratory, the former needs the running of a
complete experiment in order to be tested. For
this same reason, the mathematical algorithms are

The user Application

plug-in

Fig. 1. JETRT framework overview

normally developed separately on specific simula-
tion environments like Matlab, where many test
and display facilities are available.

Having achieved the separation of the algo-
rithms (User Application) from the interfaces
(JETRTApp) it was then very easy to use the
same application as a plug-in within any simula-
tion environment, thus allowing the testing of the
code using the same tools used in the early math-
ematical development phases. This is the major
reason why the User Application must be written
as a portable application.
In Fig. 1 is depicted the overall architecture of the
JETRT framework. Special attention has been
given to the role of the User Application plug-
in and how the same piece of code that will be
used on the plant can be used with the test and
validation tools.
The open-loop simulator showed in Fig. 1 is the
most used testing tool. It uses the information
stored in the JET database containing the mea-
surements from old experiments, to reproduce the
data that the algorithm would have processed if
it had been running at that time. Despite not
been perfectly adequate for testing close loop sys-
tems, this method normally allows finding most
of the problems in the code, especially because
of the user friendliness of the debugger on an In-
tel/WinNT4 platform, compared to that of some
target platforms (Motorola PowerPC/VxWorks).
A more thorough test can be performed by loading
the application module into Simulink. In this en-
vironment it is either possible to compare directly
the original model of the system with its own im-



plementation, or to execute the User Application
code in close-loop using a model of the plant.
A data feeder based on the ATM Real-Time Data
Network (Felton et al., 1999) has been developed
to test the applications on their target platforms.
The feeder downloads, from the JET database,
all the experimental inputs needed from the User
Application and send them to JETRTApp via the
real-time network. The data feeder allows testing
a modified version of the User Application, which
differs only for the I/O boards configuration. Since
the real boards can be tested separately, the ap-
plication can be tested almost completely even on
the target platform.

5. JETRTAPP ARCHITECTURE

JETRTApp is a generic single-processor real-time
application, which has been designed using object-
oriented techniques. Its structure is very modu-
lar: it makes heavy use of threads to handle the
different interfaces and of plug-ins to allow both
working with different hardware and performing
different algorithms.
The block diagram of Fig. 1 shows the connections
of the real-time executor JETRTApp with the
JET external systems and the other JETRT com-
ponents. The I/O Drivers plug-in system allows
the customization of the data acquisition. It is a
collection of high level drivers that act as bridge
between the low-level drivers and JETRTApp.
The User Application implements the specific
real-time control and diagnostic algorithm.
The Runtime Data block is the information ex-
changed between JETRTApp and its plug-ins dur-
ing the real-time execution. The Configuration
File, is a structured text file whose hierarchi-
cal structure reflects the internal JETRTApp ob-
ject structure. At the system start-up, the file is
opened and its content passed to all the internal
components. Each object constructor routine ex-
tracts the relevant information and uses it to set-
up its parameters to create subcomponents and to
start any necessary thread. Following the setting
in the file, the system initializes the necessary I/O
Drivers, loads the desired User Application plug-
in, allocates the data collector memory and starts
the interfaces with the external systems. Once fin-
ished, it immediately begins the real-time periodic
actions while waiting for a pulse start sequence, an
operator or any other remote command.
Fig. 2 shows a block diagram of JETRTApp where
the five most important components can be easily
noticed:

• The Supervisor State Machine.
• The Real Time Thread.
• The Real Time Data Collector System.
• The External Boards Interface.

Fig. 2. Schematic of JETRTApp

• The Communication Threads.

The Supervisor State Machine is a finite state
machine used to manage the overall state of the
JETRTApp. It changes the state according to a
set of rules and in response to external (start of
the countdown, pulse trigger, end of JET pulse,
start of data collection) and internal events (errors
during the real-time computations). This state
controls the overall functioning of the program,
whether it is on-line or off-line, whether it is
ready to operate or not. It also synchronizes the
various threads within the application for instance
disabling the data collection and the Level-1 pa-
rameters processing during the real-time phase.
The Real Time Thread is responsible for the call-
ing of the User Application plug-in during the
JET pulse, while the Real Time Data Collector
System stores all the requested data sending them
to GAP after the end of pulse.
The External Boards Interface manages all the
I/O boards by the means of the I/O drivers plug-
in common interface.
The Communication Threads handles all the com-
munications between JETRTApp and the JET
computing environment. It starts a thread for each
system it is communicating to, and tries to keep
the socket open until the remote system shuts it
down. This means that there is a thread handling
the messages for each external system. This com-
ponent is a container for specific protocol message
handlers. As soon as a message is received, it is
dispatched to each of the handlers until one is
willing to accept it and complete the transaction.
The different subsystems are actually parts of the
JETRTApp object as shown in Fig. 3.

The JETSupervisorStateMachine object imple-
ments the Supervisor State Machine and JETSta-
tus is its state. CODASmessageReceiver manages
the communication threads. JETUserApp object
contains the User Application plug-in, which is



Fig. 3. UML diagram of the JETRTApp object

dynamically loaded at the object initialization.
It also interfaces to CODASmessageReceiver in
order to act as a message handler for the User
Application messages.

The SignalDataBase and RTDataCollectorGroup
objects implements the Real Time Data Collector
System. SignalsDataBase stores the information
about all the signals of interest for the external
data collection: a physical input or output, a cal-
culated measure, an internal state or an alarm.
During the on-line phase several data collectors
contained in the RTDataCollectorGroup object,
selectively store part of the information flowing in
the system. Each collector has different memory
allocation, a different selection of signals, and it
is configured to store data at varying rate during
different acquisition time windows or around spe-
cific events. The settings for the acquisition are
found in the Configuration File but can also be
changed as part of the GAP interface.
The AlarmsRelay object sends asynchronous mes-
sages to the external systems containing informa-
tion about limits, exceptions or generic alarms
that have occurred during the previous experi-
ment.
Eventually RTApplicationThread is the object
that runs and manages the real-time User Ap-
plication. It contains several important subcom-
ponents, such as the ones dedicated to the tim-
ing service: ExternalTimeTriggeringService and
InternalCPUTimingService.
In order to synchronize the activities of the many
real-time systems, the time information and the
real-time triggers are broadcast from the JET
central server via optical fiber. Since this system
provides the timing with only 1ms resolution,
it was necessary to find a method to measure
time more accurately while still maintaining syn-
chronization with JET. The solution was to use
any high-resolution time measuring available in
the platform, whether that was a CPU internal
counting register, or a chipset timer. The time
information was then composed of two parts:
the 1 ms precision time of start of the real-time
computation cycle and the higher resolution time

within the cycle. ExternalTimeTriggeringService
manages the external timing triggering synchro-
nization hardware while InternalCPUTimingSer-
vice provides the high-resolution information. Ex-
ternalTimeTriggeringService is also a container of
activities that have to be scheduled at a precise
JET time.

6. THE USER APPLICATION

The User Application is normally a highly sophis-
ticated mathematical code, implementing mea-
surement, control or diagnostic system. Most of
the time, the scientist writing the program does
not want to know the technical details of the
external world interfaces, since from their point
of view the algorithm is simply a function reading
some data and producing results. With this new
system, this is now possible, since these details are
hidden away in the JETRTApp. The interface of
the User Application determines the complexity
of the interaction between the user code and the
external world.
The present version of the User Application inter-
face implements the functions described in Table
1.
The User Application component has been imple-
mented as C++ dynamic loadable object. Thanks
to this separation only this plug-in has to be mod-
ified if a new real-time application is developed,
without affecting the rest of JETRTApp code.
Once the plug-in is loaded, it is initialized calling
Init(). The Level-1 parameters processing is left
completely to the application, which must pro-
vide a proper MessageProcessing() function. This
function can be used also to implement any other
custom specific protocol. The data acquisition is
active during the off-line phase. Data is collected
at a lower rate and passed to the User Application
using the OfflineProcessing() call. This call can be
used to either make sure that the system outputs
are set to safe values or simply to keep monitor-
ing the inputs. Before entering the on-line phase
Check() is called in order to verify the willingness
of the User Application to begin the real-time
action. If parameters are missing or invalid or if
some plant readings are wrong, the application
can abort the experiment. After the PulseStart()

API Functions

Init()
MessageProcessing()

Check()
PulseStart()

MainRealTimeStep()
SecondaryRealTimeStep()

SafetyRealTimeStep()
OfflineProcessing()

Menu()

Table 1. User Application API



is called and the experiment starts, JETRTApp
performs these cyclical operations: first the code
is synchronized to the JET timing, the acquisi-
tion is then completed, the MainRealTimeStep()
is called, then the data is written to the outputs,
the SecondaryRealTimeStep() is called and finally
the data is stored on the data collectors. If during
the on-line phase the User Application generates
a non-recoverable internal error (by using a spe-
cial call-back), then the system stops executing
the standard sequence, and instead just calls the
SafetyRealTimeStep() between the data input and
data output.

CONCLUSION

A software architecture designed to improve the
development of real-time control systems at JET
and to reduce the deploying time has been pre-
sented.
Thanks to the separation between the control al-
gorithm and all the common subsystems needed
by a real-time application, JETRTApp has stan-
dardized the development cycle to create a new
real-time system: only a new User Application
plug-in has to be written and several parameters
have to be set in the Configuration File.
JETRTApp code runs both on Motorola/VxWorks,
which is the plant platform, and on INTEL/
WinNT4 by simply recompiling it. The latter is
used as a powerful simulation and testing plat-
form, allowing even to run the User Application
within Matlab/Simulink environment. Therefore
it is easy to ensure that the code of a new system
is well tested before the deploying and this will
reduce the request operational time for the com-
missioning.
In 2003 JETRT has been successfully used to
develop the eXtreme Shape Controller (Albanese
et al. (2004)) and the Error Field Correction Coils
controller (Zanotto et al. (2004)).
The development work is by no means finished.
There are several new activities in progress.
JETRT framework is being ported to different
platforms, among which real time Linux RTAI.
Moreover a real-time Simulink executor concept
has been tested successfully for a simple system.
This system uses off-the-shelf tools such as the
Mathworks Real-Time Workshop to automatically
generate the User Application from a Simulink
diagram. Linux port is very interesting to look
for new and cheaper hardware solutions, based on
standard PCs rather than on expensive industrial
computer boards, while automatic generation of
the application plug-in is a step further into the
reduction of development time.

REFERENCES

Albanese, R. et al. (2004). Design, implementation
and test of the extreme shape controller (xsc)
in jet. In: 23rd SOFT. Venice, Italy.

Ambrosino, G., M. Ariola, A. Pironti and F. Sar-
tori (2003). A new shape controller for ex-
tremly shaped plasmas in jet. Fusion Engin-
nering and Design 66-68, 797–802.

Ariola, M., G. De Tommasi, A. Pironti and F. Sar-
tori (2003). Controlling extremely shaped
plasmas in the jet tokamak. In: 42nd Confer-
ence on Decision and Control. Maui, Hawaii.

Felton, R. et al. (1999). Real-time plasma control
at jet using atm network. In: Proceedings
of 11th IEEE NPSS Real Time Conference.
Santa Fe. pp. 175–181.

Janka, R. S. (2002). Specification and design
methodology for real-time embedded systems.
Kluwer Academic Publisher.

Lennholm, M. et al. (1997). Plasma vertical sta-
bilisation at jet using adaptive gain control.
In: Proceedings of the 17th SOFE Conference.
Vol. 1. pp. 539–542.

Lennholm, M. et al. (1999). Plasma control at jet.
In: 2nd IAEA Technical Commitee Meeting.
Lisbon.

Liu, J. W. S. (2000). Real Time Systems. Prentice
Hall.

Moore, M. L. et al. (1999). Complex control sys-
tem design and implementation. IEEE Con-
trol Systems pp. 12–27.

Puppin, S. et al. (1996). Real-time control of the
plasma boundary at jet. In: Proceedings of the
16th SOFT. Lisbon.

Saoud, S. Ben, D. D. Gajski and A.Gerstlauer
(2002). Co-design of embedded controllers for
power electronics and electric systems. In:
Proceedings of the 2002 IEEE International
Symposium on Intelligent Control. Vancou-
ver. pp. 379–383.

Sartori, F., A. Cenedese and F. Milani (2003).
Jet real-time object-oriented code for plasma
boundary reconstruction. Fusion Enginnering
and Design 66-68, 735–739.

Sartori, F. et al. (2004). The system architec-
ture of the new jet shape controller. In: 23rd

SOFT. Venice, Italy.
Tanabe, T. et al. (2001). Preliminary design of

muses control system based on rt-corba and
java. In: 8th International Conference on
Accelerator and Large Experimental Physics
Control Systems. San Jose, California.

Wesson, J. (2000). The science of JET. JET Joint
Undertaking. Abingdon, Oxon.

Zanotto, L., F. Sartori, M. Bigi, F. Piccolo and
M. De Benedetti (2004). A new controller for
the jet error field correction coils. In: 23rd

SOFT. Venice, Italy.


