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Abstract:  This paper considers the problem of the robot motion control in a presence of 
the major uncertainties such as the varying load. The proposed adaptive fuzzy system 
(FLS) is employed to estimate dynamic influence of the varying load and also the major 
part of the mechanism dynamics. Carefully designed membership functions and rules 
preserve the interpretability of FLS as each rule works toward estimation of the specific 
part of dynamics. The fuzzy estimator is implemented in the control scheme similar to the 
computed torque control. The effectiveness of the approach is demonstrated through the 
application on the three degree of freedom direct drive robot. Copyright © 2005 IFAC 
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Recently a soft computing based systems are used a 
lot in the motion control approaches. Most of those 
systems include some kind of the parameter 
adaptation, therefore they can also solve the problem 
of load variation. Those methods are fuzzy logic 
systems, artificial neural networks (NN) or 
combinations of different soft computing approaches 
(Wong, et al,. 1999), (Ha et al., 2001). An adaptive 
FLS is often a preferable choice because it can be 
constructed by using both linguistic and numerical 
information. It is also proven, that FLS are universal 
aproximators, so they are capable to approximate any 
real, continuous function on a compact set (Wang  L. 
X., 1994). Accordingly carefully designed adaptive 
FLS can be implemented as a ‘white box’ nonlinear 
online identification method for the robot dynamics. 
However using the adaptive FLS for solving this 
problem can be inappropriate in some cases because 
the FLS algorithm is often very computational 
demanding and consequently unsuitable for the real 
time applications. Therefore in the literature only a 
few real time application of adaptive fuzzy logic 
systems in the robot motion control can be found 
(Wu and Liu, 1996), (Chen and Chen, 1998), (Ha et 
al., 2001), (Boukezzoula et al., 2004). 

1. INTRODUCTION 
 
The unknown varying load is one of the major 
dynamic uncertainties in the robotic systems. Its 
influence on the accuracy of the robot motion control 
is much greater than the influence of the other 
parameter uncertainties and unmodelled dynamics 
and therefore presents a significant problem in the 
design of the robot motion control. Additionally all 
other dynamic influences with exception of load 
changes can be quite successfully identified in 
advance or online by using a number of conventional 
identification methods (Ljung, 1987, Armstrong 
1988), improved conventional identification methods 
(Grotjahn, et al., 2001) or a dynamic model 
described by Euler-Lagrange equations. Some 
recently proposed methods are also successful in 
identification of the friction with Stribeck effect 
(Kim, et al., 2004). 
A problem of varying payload can be solved by 
using a robust or an adaptive control (Narendra and 
Annaswamy, 1989) or also by using the disturbance 
estimators, as for example the first order PI estimator 
(Jezernik, et al., 1994) or the second order PI 
estimator (Curk and Jezernik, 2001). However those 
estimators give only the information about the torque 
needed to compensate changes, but give no 
information about the specific dynamic parameters as 
the system identification does.  

In this paper we propose an adaptive FLS for 
compensation of the robot dynamics in the 
decentralized control scheme with a structure similar 
to the conventional computed torque motion control 

     



scheme. Rules that are implemented in FLS have 
different number of the inputs and therefore each 
group of the rules estimates one part of the robot 
dynamics. For example some rules estimate the 
inertia effects, other rules the gravitation. The control 
algorithm does not present a high computational 
burden. Its effectiveness is demonstrated by the 
application on the three degree of freedom direct 
drive robot. Emphasis is on the cases of motion 
control where the mechanism load is changing.  

        q& .          (4) dqee &&&& ++= qvqp
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Here Kp and Kv are mxm diagonal matrixes of the 
velocity and position gains. For control (3) the 
complete dynamic model of the robot is necessary. 
Any discrepancy between the real and implemented 
parameters and the structure of dynamic model 
causes the position error, while using a very good 
estimation decouples and linearizes the system (1). 
This control method in practice often gives a poor 
result. As the goal of this work is to develop a FLS 
capable of estimating the mechanism dynamics 
which would be also applicable to other control 
schemes, we chose this simple control approach as 
the starting point for deriving our control algorithm. 
Next we carry out some necessary changes. 

This paper is organized as follows. Section II first 
defines the problem of the robot motion control. 
Then the proper control law is derived. Design of the 
FLS and the adaptation law is described in the 
Section III. An optimization of FLS (transparency, 
computational requirements) is achieved trough the 
introduction of the subsystems. In Section IV the 
application results are shown. Conclusions and the 
future work intentions are drawn in the Section V. 

To facilitate the derivation of the decentralized 
control scheme, we rewrite (1) for the k-th robot 
joint, k=1..m, as 
  

 
2. CONTROL PLANT AND MOTION CONTROL 

SCHEME 
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The dynamic model of a rigid direct drive robot 
mechanism, with m degrees of freedom can be 
described as 

 
where 

kkJ  is the constant inertia part and ( ) is 
the variable part of the joint inertia, and  are the 

coupling inertias.   Let us denote the whole dynamics 
of the robot joints (5), with exception of the constant 
part of the inertias as  
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where  is the vector of the 
positions of the robot joints,  is the velocity 
vector and  is the acceleration vector. 

 is the symmetric, positive definite matrix 
of the inertias of the robot mechanism and actuator’s 
rotors,  is the vector of the Coriollis and 
centrifugal torques,  is the vector of the 
gravitation torques, ) is the vector of the 
friction torques. τ  is the vector of the joint drive 
torques.  
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Considering (6) in (5) the model of the k-th robot’s 
joint with the joint drive torque as an inputs is 
 
                                 kkkkk wqJ += &&τ .                    (7) 

The problem of the motion control for a robot is 
equal to finding the control torques  in (1) so that 
the equilibrium point  defined as 

 is globally asymptotically stable. 
The error vector components are defined with 

τ
0=e

( ) ( )[ ] mTT
q

T
q tt 2, ℜ∈= eee &

  

Applying the computed torque control approach (3), 
(4) for the system (7) gives following control law 
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where  is by the FLS estimated part of the 
mechanism dynamics  (6). The error dynamics is 
then equal to 
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 The reference trajectory is smooth function 

prescribed with the position , velocity 
 and acceleration q

( ) mt ℜ∈dq
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From (9) it can be seen that for the system 
linearization and therefore a good tracing accuracy, it 
is necessary that following is fullfield 

Many nonlinear control algorithms were developed 
to solve this problem, from a sliding mode control, 
an adaptive control to the soft computing techniques 
and others. One possibility is also a conventional 
computer torque control (Schilling, 1990). The 
control torques in this scheme are calculated as 

 
                            ( ) 0ˆ =lim − kkt

ww .          (10) 

 
 In this case the system dynamics depends only from 

the chosen position and velocity gains. The 
development of the FLS estimator to fulfill (10) is a 
subject of the next section. 
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where   is a calculated acceleration cq&&

     



3. DESIGN OF FUZZY ESTIMATOR 
 
First let us consider the limitations that we have in 
the design of FLS. Our approach is decentralized 
control, so one FLS needs to be designed for the each 
robot joint. The inputs in each FLS can be only 
information regarding that joint status. Available 
information are measured position and velocity and 
desired trajectory.  
As the task of FLS is to estimate the joint dynamics 
(6) a suitable vector of the inputs of FLS seems to be   

[ ]d
kkk qqq &&& ,,=kx , where  is the desired acceleration 

used instead of the unknown actual acceleration. 
Fuzzy rule base on the k-th robot joint then consist of 
IF-THEN rules 

d
kq&&

l
kR  with the following general form: 

 
IF q  AND q  AND  THEN lq

kk X ,= lq
kk X ,&& = lq

k
d
k

d

Xq ,&&&& = l
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Superscript l refers to the l-th rule l=1..M. lq
kX , , , 

 are input fuzzy sets, 

lq
kX ,&

lq
k

d

X ,&&
kŵ  are output linguistic 

variables and l
ky  are the positions of output singleton 

fuzzy sets.  
We applied the following structure of the FLS: 
singleton output membership functions, singleton 
fuzzifier, product-operation rule of fuzzy implication 
and center of average deffuzifier. Bell shaped 
function form was chosen for input membership 
functions (MF). The output of the resulting FLS can 
be calculated as (Wang, 1994):   
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where li

kx ,  are the centers of the input MFs, l
ky  are 

positions of the output MFs, σ  determine the width 
of the bell function and  its slope.  refers to the 
i-th element of the vector of input variables. 

li
k
,

li
kb , i

kx

After choosing the structure of the FLS also the 
parameters have to be determined. Parameters of the 
input MFs were designed to cover all possible values 
of the inputs. For example the MFs for position are 
distributed over the area that is limited by the joint 
end switches. MFs for velocity and acceleration are 
concentrated over the interval of working values but 
also defined outside this interval. The problem 
appears when we try to set the positions of the 
singleton output MFs l

ky s. In the case when only one 
rule is fulfilled, they present the reference for the 
motor torque. As the complete dynamic model is not 
known and the additional disturbance of changing 
load can appear, it is obvious that these parameters 
must be adaptive. In order to derive adaptation law, 
we introduce a parameter vector [ ]TM

kk yy ,..,ˆ 1=kθ , 
which includes all adaptive parameters and a vector 

of the known nonlinear functions  
( ) ( ) ( ) ( )[ ]TM

k
l
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By using (14), the FLS (12) can be written in the 
parameter vector – regressor form (15), known from 
the classical theory of the system identification 
(Ljung, 1987). 
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We also rewrite the joint error dynamics (9) as: 
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where  is the parameter vector error. By 
introducing a new vector v=[0,1]

θθθ −= ˆ~

− kvk K,
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T and matrix 


 in (16) we obtain 
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This error equation falls into the class of ‘Error 
model 2’, as classified by (Narendra and 
Annaswamy, 1989). Suggested adaptive law that 
guarantees the global asymptotic stability is (18) 
 

( )xξθ efα−=&̂          (18) 
 
under the condition 
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where a new term for linear combination of position 
and velocity error is introduced 
 

       
kkkkk eaeafe &⋅+⋅= ,2,1
.         (20) 

 

ka ,1
 and  are positive parameters and α is a 

learning rate. The exact stability proof of the 
adaptation is given by (Rojko and Jezernik, 2004). 

ka ,2

FLS structure optimization: Because the developed 
algorithm must be calculated on-line, the 
computational complexity must be considered next. 
The size of the fuzzy model is an exponential 
function of number of its inputs. This problem is in 
literature often referred to as the curse of 
dimensionality. Beside high computational 
requirements this also causes the loss of the 
transparency, that is interpretability of the knowledge 
comprehended in the FLS. For example, if we chose 
for all rules form (11) then we can not say which 
dynamic effect is compensated by each rule and the 
rule base is not interpretable. But if we use for 
example in one set of rules for inputs only 
acceleration and position, then we know that this 
rules will compensate inertia torque, as this is only 
dynamic effect that depends only of those two signals 
(1). So our approach for reducing the complexity and 
improving interpretability was dividing FLS into the 

     



three fuzzy logic subsystems (FLSB), each for the 
approximation of one part of the actual joint 
dynamics. All three FLSBs have the structure that we 
already described and the same learning algorithm, 
but different number of inputs.     
First FLSB inputs are position and desired 
acceleration, [ ]d

kk qq &&,=k,1.FLSBx . Therefore its task is 
estimation of the varying part of the torque caused by 
inertia, which is a product of the position dependent 
inertia and acceleration. 
 

( )( d
kkkkkkkFLSB qJqJw &&⋅−=,.1ˆ )

)

                  (21) 
 
Second FLSB inputs are the position and velocity, 

] and it is designed for the estimation 
of the Coriollis, centrifugal forces and velocity 
dependent friction: 

[ kk qq &,=k,2.FLSBx

 
        w ( ) ( kktkkkkFLSB qqqqC && ,,,ˆ ,,.2 τ+= .         (22) 
 
The rules from the first two subsystems, where for 
the second input MF zero is considered, are working 
toward compensation of the gravitation effects. 
Third FLSB inputs are the actual position, velocity 
and desired acceleration, [ ]d

kkk qqq &&& ,,=k,3.FLSBx  and it is 
used to compensate the rest of the dynamics. 
Control scheme with main control algorithm (8), 
fuzzy dynamic estimation (12), (13) with presented 
subsystems (FLSB)  and the implemented adaptation 
law (18) is shown in the Fig.2. 
 

 
4. APPLICATION 

 
The algorithm was implemented on a three-degree of 
freedom Puma like configuration direct drive robot, 
Fig.1. (Jezernik, et. al. 1997). Robot is equipped with 
AC motors with resolvers and has a transputer based 
multiprocesor controller. The sampling time of the 
controller is 2 ms. Joint velocities are not measured, 
but calculated by simple differentiation from the 
measured position. The controller parameters are 
mostly chosen by trial and error method and satisfy 
the stability condition (19). Position gains were set to 
Kp,1,2,3=[1000, 2400, 1200], velocity gains to 
Kv1,2,3=[64, 98, 70] and parameters of average inertia 
matrix to J=diag([3.5, 2.5, 0.13]) kgm2.  
FLSs implemented in the decentralized control of 
each robot joint have the same form and use the rules 
from the Table 1. Membership functions of the input 
variables are shown on Fig.3. Adaptation parameters 
were set to ak=1=[44,0.7] for the first robot joint, to 
ak=2=[50,1] for the second and to ak=3=[7,0.2] for the 
third robot joint and for all joints αk=1,2,3=1. Note that 
small values of the learning factors ak=1,2, ak=2, 2 and 

ak=3,2 were applied. Those parameters are multiplied 
by the velocity errors and then used in the adaptation 
(18), (20). This can be problem as the information 
about the joint velocities and therefore also velocities 
errors are quite noisy and can destabilize the 
adaptation. By using small values of the parameters 
we minimize this possibility. Additionally we also 
stop adaptation in cases when the position error is 
very small as for example at idle. This approach is 

known as a dead zone technique (Narendra and 
Annaswamy,1989) and guarantees the stability of 
adaptation also when the system is not persistently 
excited. Our dead zone area is limited with the value 
of linear combination of the position and velocity 
error 510−<kfe  that we defined in (20). 
Experiment 1: With first experiment we test the 
control stability and tracking accuracy for the slower 
movement with the variable load. The reference 
trajectory was point-to-point movement with the end 
position 0.8 rad, maximal velocity 0.04 rad/s and 
maximal acceleration 0.5 rad/s2, the same for all 
three robot joints, Fig. 4. The load of 5 kg has been 
attached and released three times. Fig. 5. shows the 
robot tips position error, with shaded areas for loaded 
robot and clear areas for unloaded. At the end of 
shaded area the load is released and again applied at 
the beginning of next shaded area. At those moments 
(the moments of load change) the position error has 
peaks, but it returns to the normal value after short 
transition time. Notice that the amplitude of the 
position error by the load change increases with time. 
This is because the robot arm is lifting, so the 
influence of the load gravitation is also increasing. 
Total applied controller torques for the second and 
the third robot joint are depicted in Fig. 6. High 
torque values for the second joint are because this 
joint is not balanced and is together with third joint 
and its motor quite heavy. From this test it can be 
concluded that a good tracking accuracy and stability 
of the proposed scheme is preserved also in the 
presence of the major uncertainties, in our case the 
variable load. For a comparison, when a non adaptive 
control method (as computed torque control) is 
applied for the same test, then each time the robot is 
loaded the position error increases and stays high 
until the load is released. 
Experiment 2: In this experiment we study the 
variation of the adaptive parameters, to find out if 
each group of the rules works toward estimating one 
specific part of the dynamics, as it was planned in the 
design of the FLS. First we performed the fast 
movement. Then when the robot was idle at the joints 
end position of 0.8 rad, we included the variable load 
of 5kg. The only dynamic effect that must be 
compensated at idle is gravitation due to the joints, 
motors and the changing load weights.  
Fig. 7. and Fig. 8. show the adaptation of the 
parameters of the FLS for the 2. robot. From those 
two pictures can be seen that the most variable 
parameters belong to the rules R2 and R5, which are 
both depicted with short line-dot type of line. The 
small variation is also noticeable for parameters of R7 
and R12. Fulfillment for both R2 and R5 depends from 
the fulfillment of the MF for position zero, while the 
inputs for velocity and acceleration are either not 
used or the MF zero is considered. The fulfillment of 
the rule R7 depends from the MF for position positive 
and the MFs for velocity and acceleration zero. The 
only dynamic effect that depends only from robot 
position is gravitation, so this three rules should 
clearly cover most of the load change effect. A minor 
changes also appear in the some other rule’s 
parameters. The reason is that the MFs cover a wide 
interval of the input values.  

     



Based on this experiment, it can be concluded, that 
the proposed FLS rule base enables distinction which 
dynamic effect is compensated by each group of  the 
rules at least for gravitation. Therefore regardless of 
the complicated nonlinear problem, the proposed 
FLS still reflects the physical background of the 
problem and enables the inclusion of the linguistic 
knowledge for the initial parameter setting.   
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5. CONCLUSION 

 
In this paper we proposed an adaptive fuzzy logic 
system for estimation of robot dynamics, including 
varying payload. Unlike other adaptive FLS for 
identification of robot dynamics the proposed FLS 
preserve the transparency and therefore enables the 
use of linguistic knowledge for initial setting of 
adaptive parameters. Implemented fuzzy subsystems 
estimate specific part of dynamics and also optimize 
the number of needed rules and its inputs. This 
makes the algorithm less computational demanding 
and suitable for real-time implementation. For the 
test we employ the FLS instead of Lagrange dynamic 
model in the decentralized motion control scheme 
similar to the computed torque approach. 

 Fig. 2.   Motion control scheme with FLS estimation 
              of dynamics 
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 The presented application results show the features 
of the proposed algorithm. The direct drive robot has 
been used as the test object, as it have no gears that 
can reduce the influence of the load changes and 
dynamics on the motors and therefore present an 
extra challenge for the motion control design. 

 
Fig. 3.   Membership functions of input variables  

position, velocity and acceleration of FLS 
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1. R1 negative - negative 
subsystem R2 zero - zero 

 R3 positive - positive 
2. R4 negative negative - 
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subsystem R8 negative zero zero 

 R9 zero negative positive 
 R10 zero zero zero 
 R11 zero zero positive 
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Fig. 4. Reference position, velocity and acceleration,  
           point to point movement 
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Table 1 Rule base 

  Fig. 5. Experiment 1; Robot tip's position error: test 
           of varying payload between robot motion Fig. 1.   Direct drive robot 
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