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Abstract: In this paper a nonlinear system identification methodology based
on a polynomial NARMAX model representation is considered. Algorithms for
structure selection and parameter estimation are presented and evaluated. The goal
of the procedure is to provide a nonlinear model characterized by a low complexity
and that can be efficiently used in industrial applications. The methodology is
illustrated by means of an automotive case study, namely a variable geometry
turbocharged diesel engine. The nonlinear model representing the relation between
the variable geometry turbine command and the intake manifold air pressure is
identified from data and validated. Copyright c©2005 IFAC
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1. INTRODUCTION

Industrial applications present challenging prob-
lems to face when dynamic models are required for
the control of nonlinear systems. In model based
control input-output nonlinear models can be ei-
ther developed from physics principles or obtained
from a system identification procedure. The first
approach is the most adequate but, in practice, it
often involves some main problems :

• it is difficult to set the correct values for
the physical parameters, in order to get a
relevant model for a specific application ;

• the identification of the physical parameters
from data is not trivial, due to the structure
of the nonlinear equations ;

• the models based on theoretical fundamen-
tals can be very complicated and their use
for control purposes is not straightforward.

1 This paper is submitted as regular paper to IFAC05.
2 Corresponding author.

An alternative solution, as in the linear case, is
to use system identification algorithms : input-
output nonlinear models, which have not necessar-
ily a physical counterpart, are identified from data
in order to obtain a control model. Several classes
of nonlinear models are available for nonlinear
system identification. A first classification can be
done with respect to prior knowledge : “black-box
models”are commonly defined as those models
whose structure is chosen with no physical insight
about the system. These models can be seen as
nonlinear mappings from observed data to the
output space (a direct mapping or a concatenation
of mappings). See (Sjöoberg et al., 1995) for an
exhaustive discussion.

The polynomial NARMAX model representation
is a black-box nonlinear model set that can be
applied to a wide class of nonlinear systems and
that can be easily integrated in a simple parame-
ter estimation and structure selection procedure.
In this paper a methodology to identify a polyno-



mial NARMAX model of a nonlinear system from
data is presented, based on recursive parameter
estimation and model structure selection.

The paper is organized as follows : in section 2
the NARMAX system identification procedure is
illustrated. In section 3 a diesel engine system,
used to test the procedure, is briefly described.
The results obtained in this application are pre-
sented in section 4 and commented in section 5.

2. NARMAX SYSTEM IDENTIFICATION

2.1 NARMAX representation

The NARMAX model formulation was introduced
in (Leontaris and Billings, 1987) as an exten-
sion for nonlinear systems of the linear ARMAX
model, and is defined as

y(t) = F (y(t − 1), . . . , y(t − ny),

u(t − 1), . . . , u(t − nu),

e(t − 1), . . . , e(t − ne)) + e(t)

(1)

where y(t), u(t) and e(t) represent the output, the
input and the system noise signals respectively;
ny, nu and ne are the associate maximum lags
and F (·) is a nonlinear function.

The NARMAX representation is a well-known
tool for nonlinear modeling which includes sev-
eral other nonlinear representations such as block-
structured models and Volterra series. This class
of models has the appealing feature to be linear-
in-the-parameters, so that a straight implementa-
tion of least-squares techniques can be applied.

Expanding F (·) in (1) as a polynomial of degree
L (where L is the degree of the nonlinearity) the
expression of a polynomial NARMAX model is
obtained as follows

y(t) =
n∑

i=1

θixi(t) + e(t) (2)

where

n =
L∑

i=0

ni, n0 = 1

ni = ni−1
(ny + nu + ne + i − 1)

i
, i = 1 . . . L

(3)

and

θi = ith model parameter

x1(t) = 1

xi(t) =

p∏

j=1

y(t − nyj)

q∏

k=1

u(t − nuk)

r∏

m=1

e(t − nem)

(4)

i = 2, . . . , n, p, q, r ≥ 0, 1 ≤ p + q + r ≤ L

(5)

1 ≤ nyj ≤ ny, 1 ≤ nuk ≤ nu, 1 ≤ nem ≤ ne

(6)

The choice of a polynomial expression for the re-
gressor is based on the possibility to derive nonlin-
ear control algorithms for a nonlinear polynomial
model as a direct extension of classic linear pole-
placement control problem.

2.2 Input signal design

Input signal design is a very important step for
nonlinear system identification. As for the linear
case, the input signal should be persistently excit-
ing. All the frequencies of interest for the system
should be excited, and the input signal should
cover the whole range of operation. A simple and
effective implementation is realized by means of a
concatenated set of small-signal tests. Small am-
plitude perturbing signals may be superposed to
the different operating levels, exciting all dynamic
modes of the system. Increasing and decreasing
level amplitudes have to be considered in order to
take into account direction dependent dynamics.

Different classes of signals can be employed for
the identification process as multi-sine signals,
maximum length binary sequences (MLBS) and
classic pseudo-random signals. Documentation
about identification signal design can be found in
(Schroeder, 1970; Godfrey, 1993).

2.3 Structure selection

Structure selection is a key problem in a black-box
system identification. A survey of the structure
identification methods is in (Haber and Unbe-
hauen, 1990), and an overview on the different
approaches to nonlinear black-box modeling is in
(Sjöoberg et al., 1995). When the system to iden-
tify is nonlinear a direct estimation based on (2)
generally leads to an over-parameterized model.
If the values of ny, nu, ne and L are increased
to obtain a good accuracy, an excessively com-
plex model will result together with a numerical
ill-conditioning. A procedure is needed to select
terms from the large set of candidates to provide
a parsimonious model. A simple and effective pro-
cedure is based on error reduction ratio (ERR)
defined in (Billings et al., 1989) as

ERRi =
g2

i

∑N

k=1 w2
i (t)

∑N

k=1 y2
i (t)

(7)



where gi(k) are the parameters and wi(k) the
regressors of an auxiliary model constructed to be
orthogonal over the data records:

y(t) =

n∑

i=1

giwi(t) + e(t) (8)

A model is found selecting the relevant terms
from the full model set following a forward-
regression algorithm (for more details see (Billings
and Chen, 1989)): at each step the parameter
with the highest ERRi is added to the current
model, following the principle that a parameter
which reduces the variance more than the others
is more important. An information criterion, could
be used to stop the procedure, as the Akaike
Information Criterion (Akaike, 1974), defined as

AIC = Nloge(σ
2
ǫ (θp) + kp (9)

where σ2
ǫ is the variance associated to the p–

terms model and k is a penalizing factor. Several
techniques have been proposed in the literature
for selecting the best model structure, some of
these are enhancements of the ERR algorithm or
are used in conjunction with it as in (Aguirre and
BIllings, 1995; Piroddi and Spinelli, 2003).

2.4 Parameter estimation

At the end of the selection process, a recursive
identification is run with the selected parameters.
An output error predictor is used, expressed in the
form :

ŷ(t + 1) = θ̂T x(t) (10)

where θ is defined in (2) and x is the same as in (4)
but it now depends on the current and previous
predicted outputs. At each instant t the parameter
vector is updated with the adaptation algorithm :

θ̂(t + 1) = θ̂(t) + F (t + 1)x(t)ε0(t + 1) (11)

where F is an adaptive matrix gain and ε0 is the
a-priori prediction error :

ǫ0(t+1) = y(t+1)−ŷ0(t+1) = y(t+1)−θ̂T (t)x(t)
(12)

More details can be found in (Landau et al., 1998).

2.5 Model validation

A statistical validation of the identified NARMAX
model is performed with high order correlation
functions defined in (Billings and Voon, 1986;
Billings and Zhu, 1994) to detect the presence of
unmodelled terms in the residuals of the nonlinear

Fig. 1. The VGT/EGR diesel engine.

model. If the identified model is adequate, the
following conditions should be satisfied by the
prediction errors

Φǫǫ(k) = δ(k) (i.e. an impulse)

Φuǫ(k) = 0 ∀k

Φǫ(ǫu)(k) = 0 k ≥ 0 (13)

Φu2′ ǫ(k) = 0 ∀k

Φu2′ ǫ2
′ (k) = 0 ∀k

where Φxy(k) indicates the cross–correlation func-
tion between x(t) and y(t), δ(k) is the Kronecker
delta, u2(t) is the the mean value of u2(t) and
u2′

(t) = u2(t)−u2(t). If at least one of the correla-
tion functions is well outside the confidence limits,
a new model has to be identified. It is necessary, in
order to check the ability of the model to represent
system dynamics, to validate the estimated model
on a new set of data (validation data) different
from the set used for the identification (learning

data).

Model prediction ability has to be assessed, to-
gether with statistical tests, with signals that may
catch system nonlinearities. Triangular or step
signals of different amplitude levels are ideal input
signals used for time-domain model validation.

3. THE VGT TURBOCHARGED DIESEL
ENGINE

A turbocharger is often used to enhance accel-
eration performances in diesel engines. Variable
geometry turbochargers (VGT) are employed to
achieve good boost at all speed conditions, with
no lose in terms of efficiency and transient perfor-
mances. A turbine is driven by the exhaust gas
from the engine and drives the compressor which
supplies the airflow into the engine as in Fig.1.

A Variable Geometry Turbocharger (VGT) is
used to obtain high transient responses at low
engine speeds and to avoid excessive airflow at
high engine speeds. A pressure surge in exhaust
manifold, in fact, has a detrimental effect for the
engine acceleration performances.

A VGT is composed with adjustable vanes that
can vary the effective flow area of the turbine,
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Fig. 2. Equivalent HDI diesel engine scheme for
identification.

thereby affecting the compressor mass airflow in
the exhaust manifold. VGT can also act as an
emission control mechanism: it affects the pressure
drop across the exhaust gas recirculation (EGR)
vane, increasing the exhaust gas recirculation rate.
The gas recirculated back into the engine through
the EGR vane lowers the flame temperature and
avoids the NOx (oxides of nitrogen) formation.

Examples of diesel engine models were presented
in (Guzzella and Amstutz, 1998; Jankovic et

al., 2000; Kao and Moskwa, 1995) to be used in
the control design phase. In this paper a proce-
dure is presented to provide the nonlinear (dis-
crete time) model of the dynamics between the
VGT actuator command and the boost pressure
in a turbocharged diesel engine from raw data.
A polynomial NARMAX model is used in the
identification algorithm, together with techniques
for structure selection which preserve from over-
parametrization.

4. SIMULATION RESULTS

4.1 Simulation setup

The identification algorithm presented in the pre-
vious sections is applied to a high pressure direct
injection (HDI) engine model simulated with The
MathWorks Simulink environment. The mechani-
cal and thermodynamic interactions between the
variables describing the engine operation are mod-
elled with algebraic and differential equations, and
with lookup tables recovered by real time experi-
ments. Thus, the model is a low level description
of the system showed in Fig.1 and, providing a
close approximation of the real system, the non-
linear relation between the VGT signal command
and the intake manifold air pressure (MAP) can
be investigated in a large set of operative condi-
tions.

For identification purposes the system could be
seen as a SISO nonlinear black-box, as shown
in Fig.2. The input (V GT ) to the system is the
command of the actuator that adjusts the angle of
guide vanes placed to vary the incoming exhaust

Table 1. Diesel engine operating points:
full acceleration.

Speed engine (rpm) Air mass flow (mm3/cp)

1000 45
1250 58.2
1500 64.75
1750 68.3
2000 72.31
2250 66.92
2500 66.37
2750 67.3
3000 66.7
3250 63.11
3500 62.11
3750 61.14
4000 60.95

4250 56.53

4500 52

Table 2. Diesel engine operating points:
50% acceleration.

Speed engine (rpm) Air mass flow (mm3/cp)
1000 23.68
1250 30.63
1500 34.3
1750 35.94
2000 37.7
2250 35.22
2500 35.8
2750 35.42
3000 35.1
3250 33.21
3500 32.69
3750 32.18
4000 32.08
4250 29.75
4500 27.37

gas flow at the entrance of the turbine. The output
(p) is the air pressure measured at the intake
manifold (boost pressure). N and W are the speed
engine and the air mass flow, respectively: a model
is identified around an operating point defined by
the pair (N,W ).

The identification algorithm is feeded with input-
output data sets generated from several simula-
tions in order to find a polynomial NARMAX
model of the V GT–boost pressure nonlinear re-
lation for different pairs (N,W ), that specify the
operative conditions of interest for the engine.
Tables 1 and 2 resume all the different operating
points for a full and 50% driver acceleration.

4.2 Excitation signal design

The signal used for the identification is, for all
the operating points, a concatenated data set
of small signals. A sequence of increasing and
decreasing steps describes the different regions of
the VGT command, and small amplitude signals
are superposed as excitation signals. The data
set for the operating point defined by the pair
(N,W ) = (3000 rpm, 66.7 mm3/cp), and a
full driver acceleration are considered. The VGT



command is in the range 20%–65%, covered by a
sequence of steps with an increasing/decreasing
variation △ = 5% and superposed multi-sine
signals.

4.3 VGT–boost pressure Model identification

The forward-regression estimation algorithm is
applied to the data related to the pair (N,W ) =
(3000 rpm, 64 mm3/cp). The first choice for the
parameters ny, nu and L is based on step re-
sponses analysis to estimate dynamics and non-
linearity orders. Tests for nonlinearity detection
are presented in (Haber, 1985).

A general inspection reveals that a linear second
order system is a good representation for small
variations of the input and of the output. This
means that the global nonlinear discrete time
model, after a linearization, should provide a
second order discrete time system. Thus, a model
with ny = 2, nu = 3 and L = 2 is identified, and
details about the parameters are given in table 3.

This procedure, iterated for all the pairs (Ni,Wi),
where i is the generic operating point, leads to a
set of nonlinear models that describes the diesel
engine boost pressure as a nonlinear discrete time
difference equation of the variables V GT , N and
W . Thereby, (2) can be parameterized as

y(t) =

n∑

i=1

θi(N,W )xi(t) + e(t) (14)

Each operating point has an associated nonlinear
model of low complexity: for example, model in
table 3 contains 10 parameters of the 21-terms
full model. On the basis of this model efficient
but still robust nonlinear control algorithms can
be directly applied.

4.4 VGT–boost pressure Model validation

Statistical and time-domain validations are em-
ployed to assess the model quality. Fig.3 and
Fig.4 show respectively model long-term predic-
tion with validation data and step model valida-
tion with small and high amplitude data. In these

Table 3. NARMAX parameters.

Index selected Parameter value Model term

1 1902.2 constant
2 -0.52096 y(t − 1)
3 0.013717 y(t − 2)

4 6.2607 u(t − 1)
5 1.6462 u(t − 2)

6 9.7052 u(t − 3)
7 0.00019272 y2(t − 1)
10 0.14749 u2(t − 1)

12 -0.40762 u(t − 1)u(t − 3)

15 0.1361 u2(t − 3)
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Fig. 3. Model validation for (N,W)=(3000 rpm,
64 mm3/cp): model prediction (dashed line),
system output (solid line); a) 1-step-ahead
predictor output (standardized data); b)
long-term predictor output.

last two cases a step-sequence is applied to the
identified model to verify that, for small and large
variations in the input signal, the system output
is matched from the nonlinear NARMAX model
output. The first step sequence is the same used to
sweep input amplitude range in the identification
data acquisition (△ = 5%), in the second one a
larger amplitude variation is applied (△ = 15%).
This typical engine test confirm that the model
is suitable to represent system dynamics in both
input direction.

5. CONCLUSIONS

Model-based control design is a powerful tool in
control of diesel engines. The availability of simple
and control-oriented models is a key element in
the phase of engine development and tuning. An
efficient solution to the modeling problem is rep-
resented by a black-box nonlinear identification
via polynomial NARMAX models. In this paper a
practical identification procedure based on poly-
nomial NARMAX modeling has been developed
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Fig. 4. Model and real system step responses for
(N,W)=(3000 rpm, 64 mm3/cp): a) small
amplitude; b) high amplitude; model output
(dashed line), system output (solid line).

and applied to a HDI diesel engine. Parsimonious
nonlinear models have been derived in view of an
efficient nonlinear control algorithms implementa-
tion.

6. ACKNOWLEDGMENTS

The work of Gianluca Zito is supported by a Marie
Curie Industry host Fellowship of the European
Community.

REFERENCES

Aguirre, Luis A. and S. A. BIllings (1995). Im-
proved structure selection for nonlinear mod-
els based on term clustering. International

Journal of Control 62(3), 569–587.
Akaike, H. (1974). A new look at the statistical

model identification. IEEE Transactions on

Automatic Control 19(6), 716–723.
Billings, S. A. and Q. M. Zhu (1994). Nonlinear

model validation using correlation tests. In-

ternational Journal of Control 60(6), 1107–
1120.

Billings, S. A. and S. Chen (1989). Extended
model set, global data and threshold mdeol
identification for severely nonlinear systems.
International Journal of Control 50(6), 1897–
1923.

Billings, S. A. and W. S. F. Voon (1986). Cor-
relation based model validity tests for non–
linear models. International Journal of Con-

trol 44(1), 235–244.
Billings, S. A., S. Chen and M. J. Korenberg

(1989). Identification of MIMO nonlinear sys-
tems using a forward-regression orthogonal
estimator. International Journal of Control

49(6), 2157–2189.
Godfrey, K.R. (1993). Perturbation Signals for

System Identification. Prentice Hall. New
York, NY.

Guzzella, L. and A. Amstutz (1998). Control of
diesel engines. IEEE Control System Maga-

zine 18, 53–71.
Haber, R. (1985). Nonlinearity tests for dynamic

processes. In: IFAC Identification and System

Parameter Estimation. York, UK. pp. 409–
413.

Haber, R. and H. Unbehauen (1990). Struc-
ture Identification of Nonlinear Dynamic
Systems–A survey on Input/Output Ap-
proaches. Automatica 26(4), 651–677.

Jankovic, M., M. Jankovic and I. Kolmanovsky
(2000). Robust nonlinear controller for tur-
bocharged diesel engines. IEEE Transactions

on Control System Technology.
Kao, M. and J. J. Moskwa (1995). Turbocharged

diesel engine modelling for nonlinear engine
control and estimation. ASME Journal of Dy-

namic Systems, Measurement, and Control.
Landau, I.D., R. Lozano and M. M’Saad (1998).

Adaptive control. Springer. London, GB.
Leontaris, I. J. and S. A. Billings (1987). Input-

Output parametric models for non-linear
systems–Part 1:Deterministic non-linear sys-
tems; Part 2: Stochastic non–linear systems.
International Journal of Control 41, 303–344.

Piroddi, L. and W. Spinelli (2003). An identifica-
tion algorithm for polynomial NARX model
based on simulation error minimization. In-

ternational Journal of Control 76(17), 1767–
1781.

Schroeder, M. R. (1970). Synthesis of low peak-
factor signals and binary sequences of low
auto-correlation. IEEE Transactions on In-

formation Theory 16(6), 85–89.
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