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Abstract: A novel and practical left-inverse system based neural networks dynamic 
decoupling and compensating (LISNNDDC) method is proposed for improving dynamic 
performance of generic nonlinear muti-dimension sensors (e.g. muti-axis force sensors) 
instead of well-used ones. Consequently, the proposed method is not only of prime 
theoretical interest but also, in practical implementation, can obtain better dynamic 
performance. A six-axis wrist force sensor is illustrated as an example to validate that the 
proposed method can markedly improve dynamic performance of the muti-dimension 
sensors and is superior to previous methods.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Recently, multi-axis force/moment sensors, which 
can measure multi-axis force and moment, are 
widely implemented for robotic systems and also for 
wind-tunnel balances, automobiles and shipbuilding 
(Liu and Tzo, 2002; Perry, 1997; Chao and Chen, 
1997; Dubious, 1981). However, these sensors 
cannot be used for the case of that high dynamic 
measurement accuracy is required, such as robot 
operations e.g. assembly, welding and grinding. 
There are two key reasons described as follows (Xu 
and Li, 2000). 
 
1). Damped ratio of the multi-axis force/moment 
sensors is small and their natural frequency is low. 
As a result, dynamic response of the sensors is slow 
and the settling time is long. 
 
2). The elastic body of the sensors is an integer 
structure and the interactions of various channels 
exist and cannot be avoided completely. To make 
matter worse, the dynamic characteristics of those 
interactions are markedly nonlinear. 
 

Therefore, nonlinear dynamic coupling and slow 
dynamic response are two main problems influencing 
on the dynamic performance of the muti-axis 
force/moment sensors. An available and economical 
technique to solve the two problems is so-called 
dynamic decoupling and compensating (DDC) 
method, which uses certain algorithm to decouple 
dynamic interactions between axes and meanwhile, 
improve the dynamic performance of every channel. 
Some DDC methods based on linear system theory 
have been introduced and implemented to improve 
the dynamic performance of the muti-axis force 
sensors (Xu and Li, 2000). However, since the 
dynamic characteristic of the decoupling between 
axes is markedly nonlinear. Obviously, those 
methods cannot simultaneously and thoroughly solve 
the two problems. 
 
In the paper, a novel and practical left-inverse system 
based neural networks dynamic decoupling and 
compensating (LISNNDDC) method is proposed and 
can be used for generic nonlinear muti-dimension 
sensors e.g. multi-axis force/moment sensors. It is 
not only of prime theoretical interest but also for 
practical implementation purposes to obtain better 
dynamic performance. 



     

The rest paper is planned as follows. The principle of 
left-inverse DDC, which is the basis of the proposed 
LISNNDDC method, will be introduced in Section 2, 
then in Section 3, LISNNDDC method and its 
implement steps are clearly explained therein. In 
section 4, a six-axis wrist force sensor is illustrated 
as an example to validate that the LISNNDDC 
method can markedly improve dynamic performance 
of muti-dimension sensors. 

 
 

2. PRINCIPLE OF LEFT-INVERSE SYSTEM DDC  
 
Definition 1 (left-inverse system definition): Let one 
systemΣ : yu

vv → . If there exists an according 

system∏ wv
vv→  such that )()( tt uw

vv = if )()( tt yv
vv = , then 

the original systemΣ  is left-invertible and the system 
∏ is called left-inverse system of the original 
systemΣ , where  
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From the Definition 1, it is easily known that, if the 
outputs of the original system Σ  are fed to the left-
inverse system ∏, the composite operator ΣΠ o is a 
unit operator. Namely, the outputs of left-inverse 
system ∏ can reconstruct the inputs of original 
system Σ . As a result, if a muti-dimension sensor is 
considered as a dynamic system and its left-inverse 
system exists, the left-inverse system realizes an idea 
DDC of the muti-dimension sensor. We call the 
method left-inverse system DDC (LISDDC) in the 
paper and its principle is shown in Fig. 1. 
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Fig. 1. The principle of the LISDDC for muti-

dimension sensor. 
 

Consider a muti-dimension sensor Σ  
 

0U),UY,,F(Y (M)(N) =                                   (1) 
 

where )(⋅F  is locally analytic function and 
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It is obviously, (1) is a very generic form and can 
describe most muti-dimension sensors. 
 
The next Theorem 1 can be easily derived from 
implicit function theorem. 
 
Theorem 1: For muti-dimension sensor system Σ 
described as (1), if UF ∂∂  is non-singular and 

everywhere continuous on certain open set D, the 
system Σ is invertible on D and 
 

)UY,,(YFU (M)(N)1−= .                     (3) 

 
Remark 1: Actually, the Theorem 1 gives the 
existence condition of inverse system and its analytic 
expression (3) which is the LISDDCor for muti-
dimension sensor system Σ described as (1). □□ 
 
However, there are some problems in realizing the 
LISDDCor in engineering practice. Firstly, the 
invertiblility of sensor system cannot be easily 
judged if the dynamic characteristic of the sensor is 
inaccurate. In addition, even though the dynamic 
characteristic of the sensor can be accurately known, 
analytic expression of the inverse system is not easily 
achieved if the dynamic characteristic of the sensor is 
markedly nonlinear. Thirdly, since differential is 
sensitive to noise and external disturbances, how to 
get robust and correct high-order differential is still a 
long-term problem in engineering practice. 
 
Trying to solve those problems, a novel LISNNDDC 
method is proposed, where both an approximate 
differential algorithm and neural networks are 
incorporated with LISDDC method. The forthcoming 
analysis results will clearly show that the 
LISNNDDC method is feasible and can be 
implemented in engineering practice. 
 
 

3. LISNNDDC METHOD 
 
3.1 Approximate differential algorithm 
 
Using the definition of differential yields    
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where d>0. 
 
Obviously, (4) can be re-described as follows. 
 
For arbitrary positive numberε , there exists 
δ dependent onε , such that δ<∀d  
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Consequently, for arbitrary time t, )(tx&  can be 

approximated with arbitrary accuracy using two 
sufficiently close sequent points, i.e., 
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Using the definition of differential yields 
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Similarly, that means 
 

)]2(),(),(,[)( 2 dtxdtxtxdhtx −−≈&& .                       (8) 

 
By induction, thei th order differential can be 
approximated as 
 

)](),(),(,[)()( idtxdtxtxdhtx i
i −−≈ L .               (9) 

 
The creditability of (9) can also be validated in the 
well- known finite difference theory (Jordan, 1960). 
 
3.2 Function approximation algorithm via 

approximate differential 
 

From (9) and Taylor’s formula, the next Theorem 2 
can be easily derived. 
 
Theorem 2: For any 0>ε , there exists 
δ independent on ε  such that δ<∀d  
 

ε<−−− |)](),(),([),,,(| )( idtxdtxtxfxxxf i LL&        (10) 

 
where ],),([)](),([ 1 ihhtxfidtxtxf LL =−  and 

},,2,1{)],(),(),(,[ ijjdtxdtxtxdhh jj LL ∈−−= . 

 
Based on Theorem 2, for any 0>ε , )(εδ∃  and ψ , 

such that )(εδ<∀d  
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where εγ <||,|| U)(X   and 
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Substituting (3) into (11) produces 
 

U)γ(X,U)ψ(X,U += .                                   (13) 

 

Obviously, for (13), both left and right side 
includeU . To guarantee the existence of the solution 
of (13), the next assumption is needed. 
 

Assumption 1: 1≠
∂
∂+

∂
∂

U
γ

U
ψ . 

 
Based on Assumption 1 and implicit function 
theorem, for (13), we can have 
 

)(XψU = .                                         (14) 

 
 

3.3 Neural networks for function approximation 
 
It is well known that neural networks can 
approximate nonlinear function with arbitrary 
accuracy if the architecture and training algorithm of 
neural networks are appropriately chosen. Without 
loss of generality, the backpropagation (BP) neural 
networks are singled out in the paper. The next 
Assumption 2 is credible. 
 
Assumption 2: For any 0>ε , there exist VW,  such 

that 
 

εσ <− )() XVW(Xψ TT                   (15) 

 
where )(⋅σ is a sigmoid function defined as 

)1(1)( zez ασ +=  and X  is defined in (12). 

 
 
3.4  LISNNDDCor of muti-dimension sensor 
 
By substituting (14) into (15), we know 
 

εσ <− )( XVWU TT .                       (16) 

 
That implies 
 

)( XVWU TTσ≈ .                              (17) 
 
Consequently, (17) actually acts as the 
LISNNDDCor. Training the BP neural networks in 
LISNNDDCor plotted in Fig 2 can realize DDC of 
muti-dimension sensors as shown in Fig. 3. 

 
Remark 2: The differential of signals has been 
incorporated with neural networks and cannot 
directly be discerned from the LISNNDDC method 
described in (17), although the approximate 
differential algorithm using finite difference theory is 
introduced. Then, it is powerful and practical and can 
be used for noise-corrupted measurement data.□□ 
 
Remark 3: In practice, we assume that left-inverse 
system of the sensor exists and both Assumption 1 
and Assumption 2 are appropriate and correct. Those 



     

assumptions don’t need to be validated one by one. 
Obviously, we can believe that those assumptions are 
true if the experiment results of DDC are perfect as 
desired. Namely, in practical implement of the 
LISNNDDCor, we can directly use the result (17) 
and don’t need to validate those assumptions true.□□ 
 
Remark 4: The practical implement of 
LISNNDDCor can be broken into five steps 
described as follows. 
Step 1: For knowing the dynamic performance of a 
sensor and getting data for training neural networks, 
dynamic calibrating experiments need to be done.  
Step 2: Chose the order of the sensor, i.e., 
N=(n1,n2,

…,np), M=(m1,m2,
…,mp).     

Step 3: Chose the delay time d, which cannot be 
overlarge, neither can be oversmall. In practice, 1/d 
can be chosen between quintupling and decuple of 
maximum oscillation frequency of the muti-
dimension sensor.                 
Step 4: Train the BP neural networks. Before training 
the neural networks, neural networks architecture, 
training algorithm and training num need to be 
chosen. In addition, the data of dynamic experiments 
should be pre-processed for eliminating or reducing 
noise and external disturbances, and also for 
normalization.                                            
Step 5: Implement the LISNNDDCor and validate if 
the dynamic performance can satisfy the desired 
accuracy. If it is true, we accomplish the DDC of the 
sensor; if not, we must skip back to the Step 2 and 
re-choose parameters till the desired accuracy is 
satisfied.□□ 
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Fig.2. The block diagram of neural network 

training with the tapped-delay-lines 
(TDL) defined in (12). 
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Fig.3. The  block  diagram  of  the LISNNDDCor  

with the tapped-delay-lines (TDL) defined in (12). 
 
 
 

4. LISNNDDC EXPERIMENTS FOR A SIX-AXIS 
WRIST FORCE SENSOR 

 
4.1 Estimation rules for the effect of DDC 
 
The next two rules are introduced to estimate the 
effect of DDC and can also be found in (Xu and Li, 
2000). 
 
(1). The standard derivation 

1

)( 2

−
Γ−Ω=

L
iiδ

                                   (18) 

where 
iΩ  denotes input signals of the sensor and  

iΓ consequent decoupled and compensated output 

signals; L denotes total number of the data. 
 
(2). The relative error 
                 

%100
||
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i

ii
rE

.                            (19) 

 
Obviously, the smaller the values of 

rE,δ , the better 
dynamic decoupling and compensating results and 
the higher dynamic-measurement accuracy of the 
sensor. 
 
 
4.2  Dynamic calibrating experiments of a six-axis 

wrist force sensor 
 
A six-axis wrist force sensor is chosen to validate the 
efficiency of the proposed LISNNDDC method. To 
know the dynamic performance of the chosen six-
axis wrist force sensor and obtain the data for 
training neural networks, dynamic calibrating 
experiments of the sensor should be accomplished 
using the dynamic calibrating system plotted in 
Fig.4. 
 
Using frequency analyzer knows the maximum 
oscillation frequency of the six-axis wrist force 
sensor is about 1kHz and the frequency of the 
impulse force generated by a hammer ranges 
between 0 and 2kHz. Therefore, the hammer can be 
considered as a practical impulse force generator. In 
the head of the hammer, a piezoelectric sensor is 
installed to transform the impulse force into an 
electric charge signal, which is amplified by a charge 
amplifier and sent to a computer data receiver 
system. Meanwhile, a transient recorder is used for 
recording the response of the six-axis wrist force 
sensor when impulse force is applied to the sensor 
using the hammer and consequent response data will 
also be sent to the computer data receiver system. 

 
The six-axis wrist force sensor is fixed on a testing 
platform for dynamic calibration and is knocked by 
the hammer respectively along X, Y and Z directions. 
Many experiments have clearly shown that the 
decoupling between axes of the chosen sensor is 



     

markedly nonlinear. Namely, when certain direction 
of the sensor is knocked, other directions outputs will 
show nonlinear dynamic characteristic instead of 
zero. Some experiment results of decoupling 
between Z and Y directions of the chosen six-axis 
wrist force sensor are plotted in Fig. 5. 
 
From Fig. 5, it is easily found that, when impulse 
force is imported from Z/Y direction, consequent 
response of Y/Z direction is markedly nonlinear 
rather than zero. That means that the decoupling 
between Y and Z direction is serious and markedly 
nonlinear. 
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Transient
Recorder

Computer
Data Receiver

Impluse Force
Generator

Amplifier
 

 
Fig. 4. Dynamic calibrating system for six-axis wrist  

force sensor. 
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Fig.5. Experiment results of decoupling between Y  
and Z directions for (a) impulse force imported 
from Z direction and consequent responses 
with: 1-impulse force, 2-response of Z 
direction, 3-response of Y direction; and (b) 
impulse force imported from Y direction and 
consequent responses with: 1-impluse force, 2-
response of Y direction,3-response of Z 
direction. 

4.3 Dynamic decoupling and compensating 
experiments of the six-axis wrist force sensor 

 
When a force is imported to the six-axis wrist force 
sensor, there are six channels output signals, where 
three channels express force components of X, Y and 
Z directions, and other moment components of X, Y 
and Z directions. To make thing simple and clear, we 
only consider Y and Z force channels in the paper. 
The decoupling between Y and Z force channels has 
been plotted in Fig. 5. 
 
According to Remark 4, we can accomplish DDC of 
the Y and Z force channels of the sensor. Firstly, 
chose d=0.07824 ms, N=(4, 4), M=(2, 2).  Then, 
applying a low-pass filter for filtering high-frequent 
noise and normalizing those consequent data achieve 
2048 input/output pairs for training neural networks. 
Due to fast convergence, the Levenberg-Marquardt 
(LM) algorithm is chosen as training algorithm. 
Some techniques such as early stopping technique 
are introduced to improve the generalization of 
neural networks. By experiments, the nodes of the 
hidden layer are finally fixed as 28 and the mean sum 
of squares of the networks errors (MSE) is 0.04265. 
 
According to Fig.3, a new sensor can be constructed 
when the LISNNDDCor is incorporated with the 
original sensor. Actually, the efficiency of the 
LISNNDDCor will be validated by the dynamic 
performance of the new sensor. Therefore, impulse 
force will be imported to the new sensor and its 
consequent response can validate if the dynamic 
performance is improved. Comparison experiment 
results between the LISNNDDC method proposed 
and VPDCN in  (Xu and Li, 2000) are shown in Figs. 
6 and 7 and Tab. 1. 
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Fig. 6. DDC results of Z direction for: 1-impluse 

force imported from Z direction; 2-consequent 
response using LISNNDDC method proposed; 
and 3-consequent response using VPDCN 
method. 
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Fig. 7. DDC results of Y direction for: 1-impluse 

force imported from Y direction; 2-consequent 
response using LISNNDDC method proposed; 
and  3-consequent response using VPDCN 
method. 

 
 

Tab.1. DDC results for Y and Z directions. 
 
 Z 

direction 
Y 

direction 
LISNNDDC method δ  0.1862 0.1587 
VPDCN      methodδ  0.4009 0.2972 

LISNNDDC method 
rE  1.64% 5.31% 

VPDCN      method
rE  21.45% 16.3% 

 
 
From Figs. 6 and 7 and Tab. 1, it is easily found that 
using the LISNNDDC method proposed can obtain 
better dynamic decoupling and compensating 
performance than VPDCN method in (Xu and Li, 
2000); and the dynamic performance of the chosen 
six-axis wrist force sensor is markedly improved. 
 
 

5. CONCLUSIONS AND FURTHER WORK 
 
A novel and practical LISNNDDC method is 
proposed for generic nonlinear muti-dimension 
sensors instead of linear ones. Therefore, the 
proposed LISNNDDC method is not only of prime 
theoretical interest but also, in practical 
implementation, can obtain better dynamic 
performance. Obviously, the LISNNDDC method 
proposed can be also used for dynamic compensation 
of SISO sensor system if we choose p=1. 
 
The proposed LISNNDDC method has the following 
characteristics: 

1) The principle of left-inverse theory is 
embedded.  

2) Approximate differential algorithm is 
incorporated.  

3) Neural networks is used for function 
approximation. 

4) It is smart, flexible and simple. In practice, 
we only need to choose d, N=(n1,n2,

…,np), 
M=(m1,m2,

…,mp), and other parameters on 
neural networks such as the nodes of the 
hidden layer, training algorithm and the 
techniques to improve generalization and 
training speed etc.. 

 
The further work can be described as follows. If p, 
N=(n1,n2,

…,np) and M=(m1,m2,
…,mp) are very large, 

the number of data points in the training set is very 
large. For examples, for six-axis force sensor, if we 
choose p=6, N=(2,…,2), M=(0,...,0), then the 18-
NODEShidden-layer-6 network will be designed; if p=6, 
N=(4,…,4), M=(2,...,2), then the 42-NODEShidden-layer-6 
network will be designed. In addition, if d is very 
small, the number of data points in the training set 
will be very large. In such circumstances, how to 
improve training speed and generalization of neural 
networks is a key problem. Another work is to seek 
for practical, robust and exact high-order differential 
algorithm, which can substitute for the current finite 
difference algorithm in the paper. 
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