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Abstract: This paper presents a unified framework that enables to express the
dynamics of pull control policies with the same set of canonical functions. This
canonical formulation allows to identify under what parameter values two different
policies have the same dynamics behavior. It applies to many pull control policies,
and also to manufacturing systems producing batches. A computational algorithm
that enables to calculate efficiently the parameters of the canonical formulation
for each policy is derived. This algorithm relies on the use of (min,+) algebra
tools.Copyright c©2005 IFAC.
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1. INTRODUCTION

This paper deals with make-to-stock pull control
policies for multi-stage production/inventory sys-
tems. There are different ways of expressing pull
control policies and it is often very difficult to see
if the behaviors of two policies are identical. In
a recent paper (Bollon et al., 2004), we proposed
a unified framework to describe the dynamics of
some pull policies and we applied it to basestock,
kanban, generalized kanban, and extended kan-
ban. We also showed that this formulation allows
to derive some properties for each policy and
also to find all identical dynamics between two
systems, with a systematic approach. This was il-
lustrated by the comparison between the extended
kanban and the generalized kanban mechanisms.

In this paper our first aim is to show that the
same canonical formulation applies to a large
class of other pull control policies, and also to
systems producing batches. Secondly we develop
an algorithm for an efficient computation of the

formulation’s parameters. This algorithm relies on
the use of a shortest path search.

The class of pull policies we consider here can
be modelled with a queueing network, divided
into two parts, one representing the flow of ma-
terial going downstream through the stocks and
manufacturing processes, and the other repre-
senting the flow of information going upstream
to control the circulation of materials. The pull
control policies we consider here differ according
to the way the information is transmitted up-
stream. For example, the kanban (Monden, 1983),
uses a local transfer of information, whereas the
basestock (Lee and Zipkin, 1992) uses a global
flow of information. There are also some hybrid
policies that combine these traditional policies,
and thus local and global information flows. We
can quote, among others, the generalized kan-
ban (Buzacott, 1989) and the extended kanban
(Dallery and Liberopoulos, 2000) that are both
combinations of kanban and basestock policies.
In (Liberopoulos and Dallery, 2000), many other



hybrid policies are presented. The class of pull
policies we consider here include all the policies
described above and their extensions to systems
producing batches, such as those presented in
(Liberopoulos and Dallery, 2003). Many other
policies can be included too, as can be seen in
section 4.

This paper is organized as follows: in section 2,
we present the modelling assumptions that are
used for the systems studied in this paper. In
section 3, we briefly present our formulation and
give some elements that are necessary to the
derivation of the new algorithms presented in the
paper. In section 4, we show how this canonical
formulation can be extended to more general
pull control policies with batch production. We
derive an efficient computational algorithm that
enables to find the parameters of the canonical
representation.

2. MODELLING ASSUMPTIONS

The production/inventory systems that we con-
sider here are divided into N stages. Each stage i

consists of an output buffer, denoted by Pi, which
contains the finished parts of the stage, and a
manufacturing process, denoted by Fi, which is
used to supply the output buffer of the stage.
We assume that raw parts are always available
upstream the system. Demands which cannot be
immediately satisfied are backlogged in a queue
denoted by DN .

We consider the case of stages in series, and we
assume that there is no blocking at the entry of
each manufacturing system and at the exit. We
also assume that we have a mono-product system
and that processes can produce batches of size
Qi at stage i. The size of batches for demands
is QN+1. We assume that Qi is a multiple of
Qi+1, and QN+1 = 1, as usually assumed when
dealing with batches (see (Axsäter and Rosling,
1993) and (Liberopoulos and Dallery, 2003) for
example). This choice prevents the system from
having useless remaining parts in a stage, and it
also enables to simplify the calculations.

In each manufacturing process, we use a push con-
trol mechanism, but the different stages are coor-
dinated using a pull mechanism. With a pull con-
trol policy the production is pulled downstream
by the demand. Whenever a demand is received,
it is transmitted directly or indirectly to upstream
stages in order to maintain a certain level in stock.
The way this transmission of information is done
depends on the control policy that is used.

When a part leaves a manufacturing process, a
stock, or when a demand arrives, an information
can be sent upstream the system to allow one or
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Fig. 1. State variable for an N -stage line

several parts to be processed. For example in a
kanban policy when a part leaves a stock, a kan-
ban label is sent to the upstream manufacturing
process. This kanban allows a new part to enter
the process. For a basestock policy, each demand
is sent to all the manufacturing process inputs to
allow the process of a new part.

The processing times or the times between two
demand arrivals can be either deterministic or
stochastic with general distribution. We only as-
sume that the control mechanism is instanta-
neous.

3. PRINCIPLES OF OUR FORMULATION OF
PULL CONTROL POLICIES

3.1 Elements and notations for our unified formu-
lation of policies

We use a capital letter with an upright font to
denote objects like manufacturing processes Fi

or stores Pi. The scalar value for the number of
parts present in an object is denoted by a small
letter written with an italic font. For example, the
number of parts in Fi, Pi or DN is respectively fi,
pi and dN . If we need the value of these quantities
at a given time t, we write fi(t), pi(t), etc.

We prove in (Bollon, 2001), that the state of the
system can be expressed with a state vector X,
whose components are denoted by xi, for i =
1, · · · , N , and are defined as follows:

xN = pN − dN and xi = pi + fi+1. (1)

These components are illustrated in figure 1. A
component xi is equal to the sum of parts present
between two consecutive manufacturing outputs.
When the quantity xN is positive, it represents the
number of available finished goods and when it is
negative, it represents the number of unsatisfied
demands. The vector X gives the size of the
different inventory positions which are always
positive except for the last one, which represents
finished goods minus demands. Each occurrence of
an event (an outgoing part from a manufacturing
process or a demand arrival) changes the vector
X. Conversely, if a vector change is known, then
the event that has occurred is known too. In other
words, all the events are detected if the vector X

is known at every moment.

Let us now consider the values fi. When they
can be expressed as a function of X they are



denoted by fi(X) 1 . The components of the N -
dimensional function F (X) are defined by fi(X)
for i varying from 1 to N . The knowledge of this
vector F (X) enables to find the dynamics of the
system: If X is known at every moment, events
are known and the state of the system given by
the values of pi, fi and dN is known with equation
(1). Then, to describe the policy, we only have to
search for F (X), which is what we are going to
do in the following section.

3.2 Principle of calculation of the fi(X) functions

Basic notions of (min,+) algebra.

The (min,+) algebra (Baccelli et al., 1992) is often
used to model the behavior of timed event graphs.
These graphs are special cases of timed Petri nets.
They are composed of places and transitions. The
places must have no more than one input and one
output transition. The transitions are timed with
a deterministic delay.

Some variables called counters are used to de-
scribe the system. They are associated with tran-
sitions and count the number of tokens that have
gone through a transition by a certain time. At
the beginning, all the counters have the value zero.
With counters and (min,+) algebra, inequalities
can be written to describe the dynamics of the
system.

The control mechanisms in a make-to-stock pull
control policy can be expressed by an event graph.
In this case (min,+) algebra will be useful to
describe the policies. Note that an equivalent
representation of an event graph can be obtained
using a queueing network. It is this queueing
network representation that we are using in the
remainder of the paper.

The set R ∪ {+∞} associated with the min oper-
ator and the usual addition has a dioid algebraic
structure called Rmin. Then, the operators ⊕ and
⊗ will stand respectively for the min and the usual
addition. The neutral element for ⊕ is infinity and
its notation is ε. For ⊗ the neutral element is zero
and will be denoted by e. The use of (min,+)
algebra and its notations enables us to obtain
concise expressions for the formulations we are
looking for. It enables us also to facilitate the
calculation as explained in the following.

Link between (min,+) algebra and the graphs

For the special case of a timed event graph where
all delays on transitions are zero, if transitions
are fired at the earliest, then it is possible to

1 Note that fi can be a function of the time (then we have

a scalar value inside the brackets) or a function of the state

(then we have a vector inside the brackets).

express every counter function yi(t) with input
counters zi(t) and the initial number of tokens
of each place. In other words, if we denote by
Z(t) ∈ Rm

min the vector having for components the
counters zi(t) of the m input transitions Zi and by
Y (t) ∈ Rn

min the vector having for components
the counters of the n others transitions Yi, then
Y (t) is the solution of the following system of
inequalities (6 is the natural order):

Y (t) 6 Y (t) ⊕ B Z(t), (2)

where A and B are matrices which belong respec-
tively to Rn×n

min and Rn×m
min . The maximal solution

of system (2) can be given in an explicit way, using
the ”Kleene star” operator A∗:

Y (t) = A∗B Z(t) with A∗ =
⊕

k>0

Ak, (3)

where A0 is the identity matrix in Rmin, where
each component is equal to e = 0 on the diagonal
and ε = +∞ for the other elements.

This result can be interpreted as a path search in
a graph where vertices correspond to transitions
and arcs correspond to places. Near a place there
are two transitions, one before and one after,
the vertices related to them are respectively the
beginning and the ending of the arc associated
with this place. The initial number of tokens
present in the place will be the weight of the
arc. The star operator, named ”Kleene star”, gives
the value of yi(t); this value can also be similarly
given by the minimum value for j = 1, · · · ,m of
a sum adding zj(t) and the shortest directed path
starting from Zj and ending at Yi.

This link between (min,+) algebra and the graphs
through the Kleene star, enables to derive efficient
algorithms to compute the canonical formulations,
as we are going to see in the next sections.

Structure of pull control systems and required
counters

A production line using a pull control policy can
be divided into two parts (see figure 2):

• The first part is composed of stocks Pi and
manufacturing processes Fi where the pro-
duction flow takes place. Each stock is con-
nected to a synchronization station on which
the second part of the system acts.

• The second part is the mechanism of the pull
policy. It controls the production require-
ment flow of information moving upstream
the line.

In the production part of the system we use a
counter at the end of each manufacturing process
Fi (represented by an oval in figure 2) and each
buffer Pi (represented by a queue, linked to a syn-
chronization station in figure 2). The first counter,
denoted by ui, detects the outgoing of products
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Fig. 2. Main counters of a two-stage production
line

from the manufacturing process and the other,
denoted by vi, counts the release of available parts
from stocks. If a synchronization station coincides
with a counter ui or vi, then we denote it by Ui or
Vi respectively. In the control part of the system,
an input counter d is used to detect the arrival
of demands. The pull control policy may require
additional synchronization stations Wi, which we
associate with counters denoted by wi.

For an N-stage line, an arc connects the arrival of a
demand, represented by a transition called D, to
a queue DN at the synchronization station VN .
Depending on the policy, some other arcs move
from a transition D, Vi, Ui or Wi to an upstream
transition Vj or Wj .

To calculate the F (X) function, we first use the
previously defined counters to obtain the function
of the time F (t) whose components are, for i =
1, · · · , N (with usual notations):

fi (t) = fi (0) + vi−1 (t)− ui (t) . (4)

Moreover counters ui(t) and d(t) can be linked
to variables xi through equations (5), for i =
1, · · · , N (with usual notations):

xi (t)− xi (0) = ui (t)− ui+1 (t) and

xN (t)− xN (0) = uN (t)− d (t) .
(5)

Considering that the control part of the system
is an event graph and that the ui(t) and d(t)
are inputs of this event graph, then the vi−1(t)
can be expressed in terms of ui(t) and d(t) us-
ing a (min,+) algebra, which can be expressed
as functions of xi using (5). They can then be
removed and replaced by an expression using X(t)
in equation (4). If all the counters are removed and
replaced by the X(t) components, we can obtain
the function F (X) from F (t) by substituting X

for X(t).

3.3 A canonical formulation

In (Bollon et al., 2004), we calculated the func-
tions F (X) for four pull control policies: base-
stock, kanban, extended kanban and generalized
kanban.

For these policies, the function fi(X) always has
the same structure, that we call the canonical

formulation. This formulation is given in equation
(6), where the fractions stand for the usual minus:

f1 (X) =
N+1
⊕

j=1

(

C(1,j)

/

j−1
⊗

k=1

xk

)

and

fi (X) =

N+1
⊕

j=i

(

C(i,j)

/

j−1
⊗

k=i

xk

)

⊕ xi−1

for i = 2, · · · , N .

(6)

The parameters C(i,j) of this formulation define
the policy and are calculated from the control pa-
rameters of each policy, namely, Sk, the maximum
level of finished products of each stage k, and Kk,
the number of kanbans in each stage k.

In (Bollon and Di Mascolo, 2004), we prove that
this formulation enables to describe a more gen-
eral class of pull policies than those studied in
(Bollon et al., 2004). An idea of the proof is the
following: the values for fi(t) are given by equa-
tion (4). The difficulty relies in the way to express
counters vi as functions of counters ui. The con-
trol mechanisms of the make-to-stock pull control
policy can be modelled by an event graph with no
delay on transitions. Then a system of inequalities
as in (2) can be set, with system input transitions
being Ui and D. Other transitions are Vi and
W(i,j). The solution of this system is obtained
thanks to a shortest path search in a graph where
vertices correspond to synchronization stations.
This solution enables to express counters vi(t) and
w(i,j)(t) as functions of counters uk(t) and d(t).

4. CANONICAL FORMULATION FOR MORE
GENERAL PULL CONTROL POLICIES

WITH BATCH PRODUCTION

4.1 Existence of a canonical formulation for a
class of pull control policies producing batches

In this part we are going to show that it is pos-
sible to describe a class of pull policies producing
batches with a formulation similar to the one
given by equations (6), using a new notation 2 .
This class is defined in proposition 1 and is illus-
trated in figure 3. In this figure, a generic stage
i is represented in grey. Most of the queues and
transitions are not necessarily present. Entities
present in the upper part of the figure are re-
quired. Those present in the lower part of the
figure can appear one or several times, or can be
dismissed. So manufacturing processes Fi, stocks
Pi, queue DN , synchronization stations Vi−1, Ui

and D, arcs going downstream and the arc going

2 we denote by bαc the highest integer smaller than or

equal to α and by bαcβ = β
⌊

α
β

⌋

the highest multiple of β

smaller or equal to α
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Fig. 3. Description of a class of policies having a canonical formulation

from D to DN are all required. The arcs that are
going upstream can reach any of the upstream
queues that are oriented in the same direction.
The synchronization station Ui which follows Fi

enables to locate the counter ui and it often con-
tains only one arc and has no utility for the policy
itself .

Note that this class of policies with batches, de-
scribed in proposition 1 below, includes the ex-
tensions of basestock, kanban, generalized kan-
ban, extended kanban and many other hybrid
policies to systems producing batches, like, for
example, the installation and the echelon stock
(Q,r)-policies (Axsäter and Rosling, 1993) and
the hybrid policies described in (Liberopoulos and
Dallery, 2003).

Proposition 1

The policy of a queueing system producing
batches can be defined by the functions

f1 (X) =

⌊

N
⊕

j=0

(

C(1,j)

/

j
⊗

k=1

bxkcQk+1

)⌋

Q1

and

fi (X) =

⌊

N
⊕

j=i−1

(

C(i,j)

/

j
⊗

k=i

bxkcQk+1

)

⊕ bxi−1cQi

⌋

Qi

for i = 2, · · · , N

(7)

if it is defined as follows:

The queueing system in its production part is
composed of :

• Manufacturing processes Fi including an in-
finite queue followed by a station Mi produc-
ing batches of size Qi. Inputs and outputs of
the process are batches of size Qi.

• Synchronization stations Ui (associated with
the batch counter ui (t)) having a unique
input for batches of size Qi coming from Mi

and an output going to the queue Pi. Each
output of Ui delivers batches of size Qi.

• Stocks with queues Pi. The raw parts queue
P0 is never empty.

• Synchronization stations Vi (associated with
the batch counter vi (t)) having an input

coming from Pi and an output going to Fi+1

or out of the system for i = N . Every output
from Vi are batches of size Qi+1. When
batches are outgoing from Vi, Qi+1 parts are
taken in each queue linked with it.

In the control part, the system is composed of :

• Queues D(i,j) linked to Vi or W(i+1,k), for
i = 0, · · · , N − 1.

• A queue DN linked to VN and fed by D.
• Synchronization stations Vi, Ui or W(i,j)

(respectively associated with counters vi (t),
ui (t) and w(i,j) (t)) with outputs going to
some queues D(k−1,l) linked on Vk−1 or
W(k,m), where 1 6 k 6 i 6 N . In a same
stage we assume that synchronization sta-
tions W(i,j) are ordered so that they cannot
be linked to W(i,m) for j 6 m. When batches
are outgoing from W(i,j), Qi parts are taken
in each queue linked with it. 3.

Note that if we consider the special case when
processes are composed of an infinite input queue
followed by a server processing batches of size
Qi, then the canonical formulation (6) can still
be used, and the number of parts in process
for a stage i is given by fi(X) (Bollon and Di
Mascolo, 2004).

4.2 An algorithm to compute the canonical formu-
lation

The algorithm 1 below is able to calculate the
canonical formulation (7) for any policy consistent
with proposition 1 – notations are identical. It
uses the links that exist between (min,+) algebra
and the graphs. The core of this algorithm is a
shortest path search.

Algorithm 1

We assume that fi(0) = 0 for i varying from 1 to
N .

//Construction of a temporary graph G used for
//calculation



Add vertices to the empty graph G, correspond-
ing to each Vi, Ui, D and W(i,j); name them as
the associated synchronization stations.

Add an arc from a vertex Uk, Vk−1, W(k,l)

or D to a vertex Vi−1 or W(i,m) every time an
arc exists between the corresponding synchroniza-
tion stations. The weight on the arc is given by
⌊

d(i−1,j)

⌋

Qk
(or
⌊

d(i−1,j)

⌋

QN+1
if the arc is coming

from D) where d(i−1,j) (0) is the initial number of
tokens present in the queue D(i−1,j) at the end of
the arc.

Add an arc from the vertex Uk to the vertex Vk,
for k varying from 1 to N . The weight on the arc
is given by bpk (0)cQk+1

.

// fi calculations :

For i from 1 to N do
For j from i to N do

C(i,j) =

(

j−1
⊗

k=i

bpk(0)cQk+1

)

⊗ g(j, i − 1)

End for j

C(i,N+1) =

(

N
⊗

k=i

bpk(0)c
Qk+1

)

dN (0) ⊗ g(i − 1)

If i = 1 then

f1 (X) =

⌊

N+1
⊕

j=1

(

C(1,j)

/

j−1
⊗

k=1

bxkcQk+1

)⌋

Q1

Else

fi (X) =

⌊

N+1
⊕

j=i

(

C(i,j)

/

j−1
⊗

k=i

bxkcQk+1

)

⊕ bxi−1cQi

⌋

Qi

End if
End for i

were g(j, i − 1) is the shortest path in G from Uj

to Vi−1 and g(i−1) is the shortest path in G from
D to Vi−1.

Note that in Algorithm 1, the number of cus-
tomers in queues is rounded off to a certain multi-
ple, so some customers may not always be useful.
We give a proof for this algorithm in (Bollon and
Di Mascolo, 2004).

5. CONCLUSION

In this paper, we have extended the unified frame-
work for describing and comparing the dynamics
of pull control policies presented in (Bollon et
al., 2004), to describe a larger class of pull control
policies, including those with batch production.
This formulation allows to derive some properties
for each policy and also to find all identical dy-
namics between two systems, with a systematic
approach (Bollon and Di Mascolo, 2004).

A computing algorithm for calculating the param-
eters of this formulation has been derived when
manufacturing lines are modelled with a queueing

network. This algorithm relies on the shortest
path search and on the use of (min,+) algebra
tools, that facilitate calculation and enable to
obtain concise expressions.

We expect to find some more general results and
applications with this formulation. For example it
is possible to extend it to deal with systems con-
taining assembly (or disassembly) between stages.

REFERENCES
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