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Banacha 22, 90-238 ÃLódź, Poland
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1. INTRODUCTION

In the paper, we consider the following linear
Goursat-Darboux problem

zxy(x, y) = A(x, y)z(x, y) + A1(x, y)zx(x, y)
+ A2(x, y)zy(x, y) + B(x, y)u(x, y) (1)

for almost all (a.a.) (x, y) ∈ P := [0, 1] × [0, 1] ⊂
R2,

z(x, 0) = z(0, y) = 0, (2)

for x, y ∈ [0, 1], where z(x, y) ∈ Rn, u(x, y) ∈ Rm,
A(x, y), A1(x, y), A2(x, y) ∈ Rn×n, B(x, y) ∈
Rn×m and zx, zy, zxy are the appropriate partial
derivatives of z. This problem is a continuous
version of the Fornasini-Marchesini problem

z(i+1, j +1) = A(i, j)z(i, j)+A1(i, j)z(i+1, j)
+ A2(i, j)z(i, j + 1) + B(i, j)u(i, j)

for i, j = 0, 1, ...,

z(i, 0) = z(0, j) = 0

for i, j = 0, 1, ..., which plays an important role
in the theory of automatic control (cf. (Fornasini,
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Marchesini, 1976), (Kaczorek, 2000)). Continuous
system (1) - (2) can be used for modellnig of a
gas absorbtion process (cf. (Tikhonov, Samarski,
1990), (Idczak et al., 1994), (Rehbock et al.,
1998)).

By a solution of the system (1) - (2), correspond-
ing to the function (control) u : P → Rm, we
mean an absolutely continuous function z : P →
Rn, which satisfies system (1) almost everywhere
(a.e.) on the set P and boundary conditions (2).
Let us recall (cf. (Walczak, 1987)) that function
z : P → Rn is called absolutely continuous if there
exist the functions l ∈ L1(P,Rn) (the space of
Lebesgue integrable on P functions with values in
Rn), l1, l2 ∈ L1([0, 1],Rn) and a constant c ∈ Rn

such that

z(x, y) =
∫ x

0

∫ y

0

l(s, t)dtds +
∫ x

0

l1(s)ds

+
∫ y

0

l2(t)dt + c

for all (x, y) ∈ P . Such a function possesses the
partial derivatives zxy(x, y) = l(x, y), zx(x, y) =
l1(x) +

∫ y

0
l(x, t)dt, zy(x, y) = l2(y) +

∫ x

0
l(s, y)ds

for a.a. (x, y) ∈ P . If an absolutely continuous
function z : P → Rn satisfies boundary conditions



(2), then l1, l2 ≡ 0, c = 0 and, consequently,
zx(x, y) =

∫ y

0
l(x, t)dt, zy(x, y) =

∫ x

0
l(s, y)ds.

The set of all absolutely continuous functions
z : P → Rn satisfying boundary conditions (2)
will be denoted as AC0. It is easy to see that AC0

with the norm ‖z‖AC0
=

∫∫
P
|zxy(x, y)| dxdy is

complete.

One can show (cf. (Idczak et al., 1994)) that for
any control u ∈ L1(P,Rm) there exists a unique
solution zu ∈ AC0 of system (1) provided A,
A1, A2 ∈ L∞(P,Rn×n) (the space of essentially
bounded on P functions with values in Rn×n),
B ∈ L∞(P,Rn×m).

Now, let us fix a set M ⊂ Rm and consider
the set UM of controls u ∈ L1(P,Rm) such that
u(x, y) ∈ M for a.a. (x, y) ∈ P . By AM (1, 1)
we denote the set {zu(1, 1) ∈ Rn : u ∈ UM}
called an attainable set for problem (1) - (2),
corresponding to the set M . In (Idczak, Walczak,
2004) it was shown that if the set M is compact
in Rm, then AM (1, 1) is convex compact in Rn

and AM (1, 1) = AcoM (1, 1) where coM is the
convex hull of M (bang-bang principle). Moreover,
if APC

M (1, 1) denotes an attainable set for problem
(1) - (2), corresponding to the controls u ∈
UM (with M not necessarily compact) that are
piecewise constant on P ( 2 ), then AM (1, 1) ⊂
APC

M (1, 1) ( 3 ). In other words, for any control
u ∈ UM and ε > 0 there exists a control v ∈ UPC

M

such that |zu(1, 1)− zv(1, 1)| < ε.

Our aim is to show how one can determine the
mentioned control v. More precisely, first we shall
show that the dependence of zu(1, 1) on the con-
trol u ∈ L1(P,Rm) is lipschitzian and Lipschitz
constant can be calculated. Next, using the proof
of a lemma on the density of piecewise constant
functions in the space of integrable ones, we shall
give some general algorithm for obtaining the con-
trol v.

2. LIPSCHITZIAN DEPENDENCE OF
ZU (1, 1) ON U

In (Idczak et al., 1994), the following nonlinear
Goursat-Darboux system

2 We say that a function u : P → Rm is piecewise constant
if there exists a partition 0 = x0 < x1 < ... < xn = 1
(n ∈ N) of an interval [0, 1] such that the function u is
constant on each interval (two-dimensional) (xi−1, xi) ×
(xj−1, xj) ⊂ P , i, j = 1, ..., n. The set of all piecewise
constant functions u : P → Rm such that u(x, y) ∈ M for
a.a. (x, y) ∈ P is denoted as UPC

M .
3 If M is compact, then we have the equality

AM (1, 1) = APC
M (1, 1).

zxy(x, y) = f(x, y, z(x, y), zx(x, y),
zy(x, y), u(x, y)),

for (x, y) ∈ P a.e., with boundary conditions
(2), where f = (f1, ..., fn) : P × Rn × Rn ×
Rn × Rm → Rn, was considered. It was shown
(cf. (Idczak et al., 1994, theorems 1,2)) that for
any control u ∈ L1(P,Rm) there exists a unique
solution zu ∈ AC0 of the above system and the
mapping

L1(P,Rm) 3 u 7−→ zu ∈ AC0 (3)

is continuous provided

- f is lipschitzian in (z, z1, z2) ∈ Rn×Rn×Rn,
i.e. there exists a constant L > 0 such that

|f(x, y, z, z1, z2, u)− f(x, y, w, w1, w2, u)|
≤ L(|z − w|+ |z1 − w1|+ |z2 − w2|)

for a.a. (x, y) ∈ P , z, z1, z2, w, w1, w2 ∈ Rn,
u ∈ Rm,

- f is measurable in (x, y) ∈ P and continuous
in u ∈ Rm,

- for any control u ∈ L1(P,Rm) there exists a
point (z, z1, z2) ∈ Rn × Rn × Rn such that
the function

P 3 (x, y) 7−→ f(x, y, z, z1, z2, u(x, y)) ∈ Rn

belongs to L1(P,Rn)

(if the controls take their values in a fixed set
M ⊂ Rm, then it suffices to assume the fulfilment
of the above conditions for points u ∈ M and for
controls belonging to UM ).

From the proof of this result it follows that in our
(linear) case

‖zu − zv‖AC0
≤ e2k

1− α
‖Bu−Bv‖L1(P,Rn)

where k ∈ N is such that 2nL( 1
k2 + 1

k ) < 1 and
α = 2nL( 1

k2 + 1
k ). Let us point that in linear case

a constant L can be calculated (provided the L∞-
norms of A, A1, A2, B are known). Consequently,

‖zu − zv‖AC0
≤ e2k

1− α
‖Bu− v‖L1(P,Rn) ≤
≤ C ‖u− v‖L1(P,Rm)

with constant C that can be calculated. Moreover,

|zu(1, 1)− zv(1, 1)|
≤

∫∫

P

∣∣zu
xy(x, y)− zv

xy(x, y)
∣∣ dxdy

= ‖zu − zv‖AC0
.

So,

|zu(1, 1)− zv(1, 1)| ≤ C ‖u(·, ·)− v(·, ·)‖L1(P,Rm) .

Remark 1. From the proof of (Idczak et al., 1994,
theorem 2) it follows that the constant C can be
calculated also in the case when the function f is
lipschitzian in u.



3. BIACCIOTTI-SENTIS LEMMA FOR
FUNCTIONS OF TWO VARIABLES

In (Idczak, 2002), the following generalization
of Biacciotti-Sentis lemma on the density of the
piecewise constant functions (of one variable)
in the space of integrable ones, to the case of
functions of two variables, has been proved (see
(Idczak, Walczak, 2004) for the case of n vari-
ables).

Lemma 1. If M ⊂ Rm, then for every integrable
function u : P → M and every ε > 0 there exists
a piecewise constant function v : P → M such
that

∫∫
P
|u(x, y)− v(x, y)| dxdy ≤ ε.

We quote below the proof of this lemma because
it will play a fundamental role in the next consid-
erations.

Proof of lemma 1. Let us fix an integrable function
u : P → M, ε > 0, v0 ∈ M and consider a
function

b0 : P 3 (x, y) 7−→ u(x, y)− v0 ∈ Rm.

The Tchebychev’s inequality (cf. (Kolmogorov,
Fomin, 1976)) implies that for any k ∈ N

µ({(x, y) ∈ P ; |b0(x, y)| ≥ k})
≤ 1

k

∫ ∫

P

|b0(x, y)| dxdy

(µ denotes the Lebesgue measure in P ). From
the absolute continuity of the integral it follows
that for any η > 0 there exists δ > 0 such
that

∫ ∫
R
|b0(x, y)| dxdy < η provided µ(R) <

δ. Consequently, there exists k0 ∈ N such that∫ ∫
R0
|b0(x, y)| dxdy < ε

2 where R0 = {(x, y) ∈
P ; |b0(x, y)| ≥ k0}. If we put

b(x, y) =
{

v0 ; (x, y) ∈ R0

u(x, y) ; (x, y) ∈ P \R0

for (x, y) ∈ P , then we have
∫ ∫

P

|u(x, y)− b(x, y)| dxdy

=
∫ ∫

R0

|u(x, y)− b(x, y)| dxdy

=
∫ ∫

R0

|b0(x, y)| dxdy <
ε

2
.

Let us denote by γ a finite number which bounds
the function b on P , i.e. |b(x, y)| ≤ γ for (x, y) ∈
P . The Lusin’s theorem (cf. (Lojasiewicz, 1988,
theorem 2, §5, chapter V)) implies that there
exists a compact set H ⊂ P such that µ(H) > 1−
ε
8γ and the function b |H is uniformly continuous.
In particular, there exists σ > 0 such that

|b(x, y)− b(x, y)| < ε

4
for (x, y), (x, y) ∈ H, |(x, y)− (x, y)| < σ. Let us
fix a number r ∈ N such that

√
2

r < σ and consider

a partition Pij = [ i
r , i+1

r ]×[ j
r , j+1

r ], i, j = 0, ..., r−
1, of the interval P . Let us also define a function
v : P → Rm,

v(x, y) =





b(x̃i, ỹj) ; (x, y) ∈ IntPij and
(IntPij) ∩H 6= ∅

v0 ; otherwise
,

where (x̃i, ỹj) is an arbitrary fixed point of (IntPij)∩
H for any i, j such that (IntPij) ∩ H 6= ∅. Of
course, v is a piecewise constant function and
v(x, y) ∈ M for (x, y) ∈ P a.e. Moreover, we have

∫ ∫

P

|b(x, y)− v(x, y)| dxdy

=
∫ ∫

H

|b(x, y)− v(x, y)| dxdy

+
∫ ∫

P\H
|b(x, y)− v(x, y)| dxdy

≤
r−1∑

i,j=0

∫ ∫

(IntPij)∩H

|b(x, y)− v(x, y)| dxdy

+ µ(P \H)2γ

≤ r2 1
r2

ε

4
+

ε

8γ
2γ =

ε

2
.

Finaly, v : P → M is the piecewise constant
function and

∫ ∫

P

|u(x, y)− v(x, y)| dxdy

≤
∫ ∫

P

|u(x, y)− b(x, y)| dxdy

+
∫ ∫

P

|b(x, y)− v(x, y)| dxdy ≤ ε

which completes the proof.

4. DETERMINING OF A CONTROL V

Let us fix a set M ⊂ Rm, a number ε >
0 and a control u : P → M . We shall give
some general algorithm for the construction of a
piecewise constant function v : P → M such that
|zu(1, 1)− zv(1, 1)| < ε.

Algorithm
Step 1. We calculate a constant C satisfying (4),
i.e. C = e2k

1−α esssup
(x,y)∈P

|B(x, y)| where |B(x, y)| =
√∑n

i=1

∑m
j=1 |bij(x, y)|2, k ∈ N is such that

2nL( 1
k2 + 1

k ) < 1 and α = 2nL( 1
k2 + 1

k ) (L is
a Lipschitz constant for the right-hand side of the
system, with respect to (z, z1, z2) ∈ (Rn)3, i.e. a
constant satisfying the condition

| A(x, y)(z − w) + A1(x, y)(z1 − w1)
+ A2(x, y)(z2 − w2) |

≤ L(|z − w|+ |z1 − w1|+ |z2 − w2|)
for a.a. (x, y) ∈ P , z, z1, z2, w, w1, w2 ∈ Rn).



Step 2. We choose a number ε1 > 0 such that
Cε1 < ε.

Step 3. We fix any point v0 ∈ M and consider
the function b0 : P 3 (x, y) 7→ u(x, y)− v0 ∈ Rm.

Step 4. We determine the set R0 = {(x, y) ∈
P : |b0 (x, y)| ≥ k0}, where k0 ∈ N is such that∫∫

R0
|b0(x, y)| dxdy < ε1

2 . Such k0 exists by the
absolute continuity of the integral (cf. remark 2).

Step 5. We define the function b : P → Rm,

b(x, y) =
{

v0 ; (x, y) ∈ R0

u(x, y) ; (x, y) ∈ P \R0
.

This function satisfies the inequality
∫∫

P

|u(x, y)− b(x, y)| dxdy <
ε1

2
.

Step 6. We put γ = k0 + |v0| (cf. remark 3).

Step 7. We determine a set H ⊂ P such µ(H) >
1− ε1

8γ and the function b |H is uniformly contin-
uous (cf. remark 4).

Step 8. We determine a constant σ > 0 such that

|b(x, y)− b(x, y)| < ε1

4

for (x, y), (x, y) ∈ H provided |(x, y)− (x, y)| < σ.

Step 9. We fix a number r ∈ N such that
√

2
r < σ.

Step 10. We consider a partition Pij =
[

i
r , i+1

r

]×[
j
r , j+1

r

]
, i, j = 0, ..., r − 1, of the interval P .

Step 11. We define a function v : P → Rm,

v(x, y) =





b(x̃i, ỹj) ; (x, y) ∈ IntPij

and (IntPij) ∩H 6= ∅
v0 ; otherwise

where (x̃i, ỹj) is an arbitrary fixed point of
(IntPij) ∩ H for any i, j = 0, ..., r − 1 such that
(IntPij) ∩H 6= ∅. This is the searched function.

Remark 2. (ad step 4). In the case when b0 ∈
L2(P,Rm) and there is a problem to calculate
integral

∫∫
R0
|b0(x, y)|2 dxdy, but the integral I =∫∫

P
|b0(x, y)|2 dxdy is known, we have that

∫∫

R0

|b0(x, y)| dxdy

=
∫∫

P

χR0(x, y) |b0(x, y)| dxdy

≤
√

µ(R0)I;

so, in such a case it suffices to choose δ > 0
such that

√
δI < ε1

2 and define the set R0 =
{(x, y) ∈ P : |b0 (x, y)| ≥ k0} where k0 ∈ N is such
that µ (R0) < δ.

Remark 3. (ad step 6). Then |b(x, y)| ≤ γ for
(x, y) ∈ P .

Remark 4. (ad step 7). First, we construct a se-
quence of simple functions gn : P → Rm,
which is uniformly convergent on P to the func-
tion g(x, y) = arctan b(x, y). It suffices to put
(cf. (Lojasiewicz, 1988, proof of theorem 10, §4,
chapter IV))

gn(x, y) =





n ; g(x, y) ≥ n
k

2n
;

k

2n
≤ g(x, y) <

k + 1
2n

−n ; g(x, y) < n

where k = −n2n,−n2n + 1, ..., n2n − 1. Let us
denote

En
n2n = {(x, y) ∈ P : g(x, y) ≥ n},

En
k = {(x, y) ∈ P :

k

2n
≤ g(x, y) <

k + 1
2n

≤ n}
for k = −n2n,−n2n + 1, ..., n2n − 1,

En
−n2n−1 = {(x, y) ∈ P : g(x, y) < n}.

Of course, the sets En
k , k = −n2n − 1, ..., n2n are

disjoint and
⋃n2n

k=−n2n−1 En
k = P.

Next, for any n ∈ N, k = −n2n − 1, ..., n2n, we
construct (cf. (Lojasiewicz, 1988, theorem 2’ and
proof of theorem 2, §4, chapter V)) a closed set
Hn

k ⊂ En
k such that

µ(En
k \Hn

k ) <

ε1
8γ

2n(n2n+1 + 2)
.

The sets

Hn =
n2n⋃

k=−n2n−1

Hn
k , n ∈ N,

are closed, µ(P \Hn) <
ε1
8γ

2n and each of the func-
tions gn |Hn is continuous (cf. (Lojasiewicz, 1988,
theorem 1, §1, chapter III)). Now, we consider the
set H =

⋂∞
n=1 Hn which is closed, µ(P \H) < ε1

8γ

and each of the functions gn |H is continuous. So,
from the uniform convergence of (gn)n∈N to g on
P it follows that g |H is continuous. Consequently,
b |H (as a superposition tan ◦(g |H)) is continuous
(in fact, it is uniformly continuous because of the
compactness of H).

If the control u is bounded and continuous on P
then (cf. remark 6 below) b(x, y) = u(x, y) for
(x, y) ∈ P and one can put H = P .

Remark 5. (ad step 8). A constant σ can be eas-
ily determined when b |H satisfies the Lipschitz
condition and the Lipschitz constant is known.

Remark 6. (ad steps 4 and 5). It is easy to see
that if the function b0 is bounded on P , then one
can choose k0 in such a way that the set R0 is
empty and, in consequence, b(x, y) = u(x, y) for
(x, y) ∈ P and the inequality mentioned in step 7
is obviously satisfied.



In the above, we gave some general algorithm for
approximation (by v) of a given control u in such
a way that |zu(1, 1)− zv(1, 1)| < ε for any fixed
number ε > 0. Step 7 is the most complicated
and step 8 seems to be realized individually in
considered cases (cf. remark 5).

Example 1. Let us consider the following Goursat-
Darboux problem

zxy(x, y) = z(x, y) + zx(x, y) + zy(x, y) + u(x, y)

for (x, y) ∈ P a.e.,

z(x, 0) = z(0, y) = 0, x, y ∈ [0, 1],

in the case when z, zx, zy ∈ R, u ∈ M = [−1, 1] ⊂
R. We know that A[−1,1](1, 1) = APC

[−1,1](1, 1). So,
in particular, for any control u : P → [−1, 1] and
ε > 0 there exists a piecewise constant control
v : P → [−1, 1] such that |zu(1, 1)− zv(1, 1)| < ε.
Let us fix a number ε = 1 and a control

u : P 3 (x, y) 7→ sin x ∈ [−1, 1].

Step 1. It is easy to see that L = 1. Moreover, since
in our case n = 1, m = 1, therefore k = 3, α = 8

9 ,
esssup
(x,y)∈P

|B(x, y)| = 1. In consequence, C = 9e6.

Step 2. It is sufficient to choose ε1 = 1
9e6+1 .

Step 3. We fix a point v0 = 0 ∈ [−1, 1]. So,
b0(x, y) = u(x, y) = sin x for (x, y) ∈ P .

Steps 4 and 5. Since our control u(x, y) = sin x is
bounded by 1 on P , therefore (cf. remark 6) it is
sufficient to put k0 = 2 and then the inequality
from step 5 is satisfied.

Step 6. We put γ = k0 + |v0| = 2 + 0 = 2.

Step 7. We put H = P (cf. the last sentence in
remark 4).

Step 8. Since our control u(x, y) = sin x satisfies
the Lipschitz condition

|u(x, y)− u(x, y)| = |sinx− sin x| ≤ |x− x|
for (x, y), (x, y) ∈ P , therefore it suffices to put
σ = 1

4(9e6+1) .

Step 9. We put r = 20545 (we use computer
algebra program - MAPLE) to calculate

√
2 ·

4(9e6 + 1) ≈ 20544. 897 82).

Step 10. We consider the partition Pij =[
i

20545 , i+1
20545

] × [
j

20545 , j+1
20545

]
, i, j = 0, ..., 20544,

of the interval P .

Step 11. We define the searched piecewise con-
stant function v : P → [−1, 1] in the following
way

v(x, y) =





sin
(

i

20545
+

1
2
· 1
20545

)
; x ∈ Ii

0 ; otherwise

where Ii = ( i
20545 , i+1

20545 ).

Example 2. Let us consider Goursat-Darboux prob-
lem from example 1, but with the set M =
[0,∞] ⊂ R. In this case we have A[0,∞](1, 1) ⊂
APC

[0,∞](1, 1). Consider the control u : P → M ,

u (x, y) =





1√
xy

; x 6= 0 ∧ y 6= 0

0 ; x = 0 ∨ y = 0
.

We will find a piecewise constant control v :
P → M such that |zu(1, 1)− zv(1, 1)| < ε where
ε = 1

10 . We shall use computer algebra program –
MAPLE to make some calculations.

Step 1. As it was in the previous example we have
C = 9e6.

Step 2. We choose ε1 = 1
90e6+1 .

Step 3. We fix v0 = 0 and put b0 (x, y) = u (x, y)
for (x, y) ∈ P .

Step 4. We have

R0 = {(x, y) ∈ P : |b0 (x, y)| ≥ k0}
=

{
(x, y) ∈ P : xy ≤ 1

k2
0

}
,

hence
∫∫

R0

|b0(x, y)| dxdy =

=
∫ k−2

0

0

(∫ 1

0

1√
xy

dy

)
dx

+
∫ 1

k−2
0

(∫ k−2
0 x−1

0

1√
xy

dy

)
dx

=
4
k0

(1 + ln (k0)) .

One can check that for k0 = 5 · 106 we have
∫∫

R0

|b0(x, y)| dxdy ≈ 1.313 995 878 · 10−5

<
ε1

2
≈ 1.377 046 616 · 10−5.

Thus R0 =
{
(x, y) ∈ P : xy ≤ 2.5 · 1013

}
.

Step 5. We define the function

b(x, y) =





0 ; (x, y) ∈ R0
1√
xy

; (x, y) ∈ P \R0
.

For this function we have
∫∫

P
|u(x, y)− b(x, y)| dxdy <

ε1
2 .

Step 6. We put γ = 5 · 106.

Step 7. We will find the set H such that
µ (P \H) < ε1

8γ ≈ 6.885 233 082 × 10−13. For a
fixed α > 0 consider the set

P \Hα = {(x, y) ∈ P :
1

k2
0 (x + α)

− α < y <
1

k2
0 (x− α)

+ α}.



Then

µ (P \Hα) =
∫ x2

x1

(∫ 1

y1

dy

)
dx+

∫ 1

x2

(∫ y2

y1

dy

)
dx,

where x1 = 1
k2
0(1+α)

− α, x2 = 1
k2
0(1−α)

+ α,

y1 = 1
k2
0(x+α)

−α, y2 = 1
k2
0(x−α)

+α
(
k0 = 5 · 106

)
.

Using computer algebra program – MAPLE one
can check that for α = 10−13 we have that
µ (P \Hα) = 4 · 10−13 < ε1

8γ . Thus H = Hα,

where α = 10−13 and the function b|H is uniformly
continuous.

Step 8. We have that |∇b (x, y)| = 1
2

√(
1

x3y + 1
y3x

)

for (x, y) ∈ P \ R0. Moreover, it is easy to see
that sup(x,y)∈P\R0

|∇b (x, y)| ≤
∣∣∣∇b

(
1
k0

, 1
k0

)∣∣∣ =
√

2
2 k2

0 ≈ 1.767 766 953 · 1013, thus

|b (x, y)− b (x̄, ȳ)| ≤
√

2
2

k2
0 |(x, y)− (x̄, ȳ)|

for (x, y) , (x̄, ȳ) ∈ H. Consequently, for ε1
4 ≈

6. 885 233 082 · 10−6 there exists σ = ε1

2
√

2k2
0
≈

3. 894 876 002 · 10−19 such that for (x, y) , (x̄, ȳ) ∈
H

|b (x, y)− b (x̄, ȳ)| < ε1

4
provided |(x, y)− (x̄, ȳ)| < σ.

Step 9. We fix a number r = 3630 959 141 434 616 103.
Then

√
2

r < σ.

Step 10. We consider a partition

Pij =
[

i

r
,
i + 1

r

]
×

[
j

r
,
j + 1

r

]
, i, j = 0, ..., r − 1,

of the interval P .

Step 11. We define a function v : P → Rm,

v(x, y) =





b(x̃i, ỹj) ;
(x, y) ∈ IntPij

and (IntPij) ∩H 6= ∅
v0 ; otherwise

=





1√
(i + 1) (j + 1)

;

1
k0 (x− α)

+ α > y,

where i =
[x

r

]
, j =

[y

r

]

0 ; otherwise

=





1√
(i + 1) (j + 1)

;
2 · 10−7

x− 10−13
+ 10−13 > y,

where i =
[x

r

]
, j =

[y

r

]

0 ; otherwise

which is the searched function ( 4 ).

5. CONCLUDING REMARKS

In the paper, an algorithm for construction of
a piecewise constant control approximating the

4 The symbol [x] denotes the greatest integer less or equal
to x.

control moving the hyperbolic system (1) - (2) to
a given end-point, is proposed. Such an algorithm
can be described (in an analogous way) for an
ordinary linear control system (1-D) and for a
continuous Roesser system (2-D), too. An open
question is the possibility of applying the obtained
results to a discrete linear Fornasini-Marchesini
system (via a discretization process).
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