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Abstract: In this paper the well-known Relative Gain Array (RGA) and the recently
proposed Hankel Interaction Index Array (HIIA) are utilized for quantifying the degree
of channel interaction in a multivariable bioreactor model, an activated sludge process
configured for nitrogen removal. The HIIA can deal with plantstructures where the RGA
fails and can furthermore also be used to evaluate multivariable controller structures.
It was found that the RGA method was unable to give reasonableinput-output pairing
suggestions in some cases while the HIIA method provided useful information in all of
the considered cases.Copyright c©2005 IFAC
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1. INTRODUCTION

Many systems to be controlled are multivariable. This
means that they have both multiple inputs as well as
multiple outputs. Such systems are called multiple-
input multiple-output (MIMO) systems. Compared to
single-input single-output (SISO) systems, the control
design procedure for MIMO systems is more elabo-
rate. One reason for this is that different parts of a
multivariable system may interact and cause couplings
in the system. This means that a change in one input
affects several outputs.

Often, an easy way to control a fairly decoupled
MIMO system is to use a multi-loop strategy, i.e. to
separate the control problem into several single-loop
SISO systems and then use conventional SISO control
on each of the loops, see Kinnaert (1995) and Witten-
market al. (1995).

In real-life applications the considered MIMO system
can be rather complex: in the chemical process indus-

try a complexity of several hundred control loops is
not unusual, see Wittenmarket al. (1995). Often, it
is not obvious how to choose a proper input-output
pairing or the structure of a multivariable controller.
The choice of pairing is crucial, since a bad choice
may give unstable systems even though each loop
separately is stable. This problem can arise due to
interaction between the different loops. Generally, the
stronger the interactions, the harder it is to obtain
satisfactory control performance using a multi-loop
strategy. Evidently, there is a need for a measure that
can give advice when solving the pairing problem and
that also quantifies the level of interaction occurring in
the system.

One such measure is the well-known Relative Gain
Array (RGA) developed by Bristol (1966). The RGA
considers steady-state properties of the plant and gives
a suggestion on how to solve the pairing problem
in the case of a decentralized (diagonal) controller
structure. It also indicates which pairings should be



avoided due to possible stability and performance
problems.

A somewhat different approach was employed by
Conley and Salgado (2000) when considering observ-
ability and controllability Gramians to measure chan-
nel interaction. In this way, the full dynamics of the
considered system are incorporated in one single mea-
sure. Recently, Wittenmark and Salgado (2002) re-
fined this work and proposed a new measure for chan-
nel interaction, the Hankel Interaction Index Array
(HIIA). This measure seems to be able to overcome
most of the disadvantages that the RGA possesses.
The Gramian based approach is further discussed in
Salgado and Conley (2004).

In this paper, the RGA and the HIIA will be employed
in the selection of input–output signal pairings for
a part of a MIMO bioreactor system: an activated
sludge process configured for nitrogen removal. Mod-
elling and control of the activated sludge process have
been an intense research area in the last decade, see
for example Olsson (1993), Lindberg and Carlsson
(1996), Alexet al. (1999), Vanrolleghemet al. (1999),
Samuelsson and Carlsson (2001), Yuanet al. (2002)
and Jeppson and Pons (2004). The results from the
RGA analysis will be compared with those of the
HIIA and with results obtained from physical insights
of the considered system. It is also discussed what ad-
ditional conclusions that can be drawn from the HIIA
analysis.

2. THE RELATIVE GAIN ARRAY (RGA)

The RGA for a quadratic plant is given by

RGA(G) = G(0). ∗ (G(0)−1)T (1)

whereG(0) is the steady-state transfer function ma-
trix and “.∗” denotes the Hadamard or Schur product
(i.e. elementwise multiplication). Each element in the
RGA can be regarded as the quotient between the
open-loop gain and the closed-loop gain. The RGA
element (i, j) is hence the quotient between the gain
in the loop between inputj and outputi when all
other loops are open and the gain in the same loop
when all other loops are closed. For a full derivation
of the RGA, see e.g. Bristol (1966), Kinnaert (1995)
or Skogestad and Postlethwaite (1996).

In the case of a2×2 system, the following RGA
matrix is obtained:

RGA(G) =

[

λ 1 − λ

1 − λ λ

]

. (2)

Depending on the value ofλ, five different cases occur
(see Kinnaert (1995)); the main conclusion is to select
a pairing so that the relative gain is positive and as
close to one as possible. Negative pairings should
definitely be avoided.

As previously seen, the RGA provides a very simple
way of characterizing interactions present in a MIMO

linear system. The RGA gives a suggestion on how
to pair the input and output signals if adecentralized
controller is to be used. It may also give warnings
in terms of large RGA elements when stability and
robustness problems may occur.

However, the RGA suffers from at least two main dis-
advantages (as will be illustrated later in this paper):

(1) The RGA only considers one separate frequency;
(2) The RGA fails to give reliable information in the

case of triangular plants.

Concerning the first of these drawbacks, it would
of course be better to have an interaction measure
that considers information given by all the interesting
frequencies.

When dealing with triangular plants the RGA fails to
give reliable information: In this case the RGA does
not indicate the presence of couplings through off-
diagonal elements: a triangular plant either gives an
RGA that equals the identity matrix or the anti-identity
matrix. In Kinnaert (1995) it is mentioned that some
authors do not regard this as being a drawback since
the RGA still gives thebest possible decentralized
controller structure. This is certainly true, but if the ob-
jective is to find the best possible controller among all
controller structures – MIMO controllers included –
then this feature of the RGA is a clear drawback.

3. THE HANKEL INTERACTION INDEX ARRAY
(HIIA)

In the previous section it was seen that the RGA
suffers from some important disadvantages. In the
light of this, Conley and Salgado (2000) proposed a
new interaction measure based on Gramians, able to
handle both of the above-mentioned pitfalls. Recently,
a modified version of the interaction measure was
suggested by Wittenmark and Salgado (2002) where
the Hankel norm is used.

Consider a linear system, with inputs given by the
n × 1 vector u(t) and outputs given by thep × 1
vectory(t). The system can be described as a state-
space realization

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) (3)

whereA, B, C andD are matrices of dimensionn×n,
n × m, p × n and p × m, respectively.x(t) is the
state vector. The controllability Gramian,Γc, and the
observability Gramian,Γo, for the system given in (3)
are defined as

Γc =

∫

∞

0

eAτBBT eA
T τ dτ (4)

Γo =

∫

∞

0

eA
T τCT CeAτ dτ. (5)



These are measures of how hard it is to control and
to observe the states of the given system. As shown
by Conley and Salgado (2000), it is possible to split
the system given by(A,B,C,D) into fundamental
subsystems(A,Bj ,Ci,Dij) where Bj is the j:th
column in B, Ci is the i:th row in C and Dij is
the (i, j):th element ofD. Then for each of these,
the controllability and the observability Gramian can
be calculated. The controllability and observability
Gramians for the full system will then be the sum of
the Gramians for all the subsystems.

Unfortunately, both the controllability and the observ-
ability Gramian will depend on the chosen state-space
realization. However, the eigenvalues of the product of
these will not.

The Hankel norm for a system with transfer function
G(s) is defined as

‖G(s)‖H =
√

λmax(ΓcΓo) = σH
1 (6)

where σH
1 is the maximum Hankel singular value.

Hence, this measure is invariant with respect to the
state-space realization and it is therefore well suited
as a combined measure for controllability and observ-
ability. In Wittenmark and Salgado (2002) it is shown
that the Hankel norm ofG(s) given in (6) can also be
interpreted as a gain between past inputs and future
outputs. Then, if the Hankel norm is calculated for
each fundamental subsystem and arranged in a matrix
Σ̃H given by

[Σ̃H ]ij = ‖Gij(s)‖H (7)

this matrix can be used as an interaction measure. In
Wittenmark and Salgado (2002) a normalized version,
the Hankel Interaction Index Array (HIIA), is pro-
posed:

[ΣH ]ij =
‖Gij(s)‖H

Σkl‖Gkl(s)‖H

. (8)

With this normalization, the sum of all elements in
ΣH is one. If the intention is to use a decentralized
controller then the HIIA can be used and interpreted
in the same way as the RGA. Even though not directly
stated by Wittenmark and Salgado (2002), expected
performance for different controller structures can cer-
tainly be compared by summing the elements inΣH :
Clearly, due to the normalization, the aim is to find the
simplest controller structure that gives a sum as near
one as possible. In the slightly different interaction
measure, the participation matrix (PM), proposed by
Conley and Salgado (2000) this is used. See Salgado
and Conley (2004) for a further discussion of the PM.

WhenGij = 0 the Gramian product,Γ(j)
c Γ

(i)
o , will

be zero and so will the corresponding element in the
matrix ΣH . This implies that the structure ofΣH

will be the same as the structure ofG and thus,
non-diagonal elements will not be hidden as in the
case of the RGA. Hence, the HIIA can also be used
to evaluate other controller structures than just the
diagonal, decentralized, ones.

4. THE BIOREACTOR MODEL

In the complex process of wastewater treatment, many
different cause-effect relationships exist, and there-
fore, there are many possible choices of input and
output signals, see Olsson and Jeppsson (1994). Con-
sequently, this can motivate the study of wastewater
treatment plant models with respect to the selection of
input and output signals.

From a theoretical point of view, the bioreactor models
are non-linear multivariable systems that may contain
a significant degree of coupling. Hence, this also gives
an interesting opportunity to test the performance of
the methods for input-output pairing selection dis-
cussed in the previous sections.

The objective in this paper is to find suitable control
structures. If the couplings between the different con-
trol handles in the system are sufficiently low, then a
controller selection involving several decoupled SISO
controllers may be suitable. If this is not the case, a
MIMO controller structure will provide a better so-
lution. The MIMO solution will, however, generally
be much more complex. Both the RGA and the HIIA
method will be used in the sequel.

The considered model is a simplified version of the
IAWQ Activated Sludge Model No. 1 (ASM1) that
models an activated sludge process configured for
nitrogen removal. ASM1 is thoroughly described by
Henzeet al. (1987). In this study the bioreactor con-
sists of two tanks of equal volume (one anoxic and
one aerobic of 1000 m3 each) and a settler, see Figure
1. The influent flow rate,Q, is 18446 m3/day. The
model is valid in the medium time-scale (i.e. hours to
days). For a discussion of the model parameters, see
Halvarsson (2003).

Two different processes, nitrification and denitrifi-
cation, are simultaneously being performed. To get
an indication of how well these processes are be-
ing performed the effluent ammonium concentration
(SNH,2(t)) and the nitrate concentration (SNO,2(t)),
respectively, can be considered. Hence, these concen-
trations are selected as output signals. The considered
input signals are the concentration of dissolved oxy-
gen (DO set point,SO,2(t)) in the aerobic compart-
ment and the internal recirculation flow rate (Qi(t)).
According to Ingildsen (2002) the denitrification is
mainly influenced byQi(t) (among the selected in-
put signals) while the nitrification is mainly influ-
enced bySO,2(t). Hence, if the couplings between

Settler

Effluent

Internal recirculation, Qi

Sludge recirculation Excess sludge

Influent, Q

Anoxic Aerobic

Fig. 1. A basic activated sludge process (ASP) config-
ured for nitrogen removal.



Qi(t) andSO,2(t) are low, then the denitrification and
the nitrification process may be considered separately
when choosing controller structure and thus, SISO
controllers may be selected.

Three different operating points were selected1 . These
correspond to the input signals:

• u1 = [10000 m3/day 2 mg/l]T ,
• u2 = [36892 m3/day 2 mg/l]T ,
• u3 = [50000 m3/day 2 mg/l]T .

Since both the RGA and the HIIA are defined for
linear models, the simplified ASM1 model was lin-
earized around each operating point using the MAT-
LAB function linmod. In a small neighbourhood of
each operating point the linearized model will mimic
the characteristics of the nonlinear system. Thus, the
analysis in the following sections is strictly valid only
in the above mentioned neighbourhoods. However, as
can be seen in the lower part of Figure 2, the opera-
tional maps can be divided into two different regions
where the process shows different stationary charac-
teristics. It is therefore probable that each operating
point describes the corresponding area fairly well.

The obtained linear models can be represented in
standard state-space form as:

∆ẋ(t) = A∆x(t) + B∆u(t)

∆y(t) = C∆x(t) (9)

wherex(t) is the state vector given by

x(t) = [SNH,1(t) SNH,2(t) SNO,1(t)

SNO,2(t) SS,1(t) SS,2(t)]
T (10a)

where the elements are the concentrations of ammo-
nium (SNH,n), nitrate (SNO,n) and readily biodegrad-
able substrate (SS,n) in compartmentn in the biore-
actor. The operator∆ refers to the deviation from
the operating point. For a more thorough description
see Halvarsson (2003). The input signal vectoru(t) is
given by:

u(t) =

[

Qi(t)
SO,2(t)

]

(10b)

and the output signal vector is:

y(t) =

[

SNH,2(t)
SNO,2(t)

]

(10c)

and

C =

[

0 1 0 0 0 0
0 0 0 1 0 0

]

. (10d)

The steady-state operational maps for the model, are
shown in Figure 2. The output signals,SNH,2(t) and
SNO,2(t) are plotted against the two input signals
SO,2(t) andQi(t).

The operational maps in Figure 2 clearly indicate that
different controller structures should be used in the

1 These operating points do not necessarily correspond to feasible
choices concerning an optimal operation of the plant. Instead, these
are chosen in order to illustrate different interaction points.

different operating points, at least in the lower operat-
ing point,u1, compared to the upper operating points,
u2 andu3. Note, however, that these operational maps
can only be used to give an indication of the interac-
tions in the system.

5. RGA ANALYSIS

The steady-state RGA matrices for the linearized
model in the three operating points are:

RGA(Gu3
(0)) =

[

0.0055 0.9945
0.9945 0.0055

]

(11a)

RGA(Gu2
(0)) =

[

0.0051 0.9949
0.9949 0.0051

]

(11b)

RGA(Gu1
(0)) =

[

0.0041 0.9959
0.9959 0.0041

]

. (11c)

Apparently, the RGA suggests the anti-diagonal pair-
ing SNH,2(t)–SO,2(t) and SNO,2(t)–Qi(t) for all of
the three operating points. This contradicts the results
from the operational maps in Figure 2.

6. HIIA ANALYSIS

The HIIA is a scaling dependent tool. This motivates a
scaling of the systems before the HIIA is considered.
A reasonable scaling procedure is to scale the systems
so that the maximum deviation from the average point
of the considered variables lies in the interval[−1, 1]
(for a detailed description of this scaling procedure,
see Halvarsson (2003)). If all of the three operating
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Fig. 2. Steady-state operational maps for the consid-
ered bioreactor model. The upper plot shows the
level curves for the first output signal, the out-
going ammonium concentration,SNH,2, and the
lower one shows the outgoing nitrate concentra-
tion, SNO,2. The operation points are indicated in
the plots.



points are scaled in the same way the following steady
state transfer function matrices are obtained:

Gscaled
u3

(0) =

[

0.0004 −0.7048
0.0748 0.6674

]

(12a)

Gscaled
u2

(0) =

[

−0.0001 −0.7050
−0.0135 0.6422

]

(12b)

Gscaled
u1

(0) =

[

−0.0313 −0.7069
−4.9176 0.4526

]

. (12c)

Furthermore, since the HIIA is a dynamic measure
that considers all possible frequencies while the con-
sidered model is only valid in a limited frequency band
it is also reasonable to perform a band-pass filtering
before calculating the HIIA. This was carried out us-
ing a simple first-order low-pass filter,F (s), given by:

F (s) =
0.001

s + 0.001
(13)

wheres is the Laplace-variable. This filter has a 3 dB
cut-off frequency at approximately10−3 rad/s which
is reasonable since the considered bioreactor model
is valid for frequencies ranging from approximately
10−5 rad/s up to10−3 rad/s. Note also that this filter
does not introduce any additional scaling in the steady
state. The filtering can be expressed as:

Gfiltered = GF. (14)

If the systems are scaled in the suggested way and
filtered using the low-pass filterF given in (13) before
the HIIA is calculated, then the following HIIA matri-
ces,ΣH , are obtained for the three operating points:

Σu3

H =

[

0.0003 0.4869
0.0517 0.4611

]

(15a)

Σu2

H =

[

0.0001 0.5181
0.0099 0.4719

]

(15b)

Σu1

H =

[

0.0052 0.1157
0.8050 0.0741

]

. (15c)

If a decentralized controller structure is to be used, the
HIIA analysis suggests the same input-output pairings
as the RGA, i.e the anti-diagonal pairing in all of the
considered operating points. However, since[ΣH ]22 is
large foru2 andu3 this indicates thatSO,2 affects both
outputs,SNH,2 andSNO,2. This in turn means that the
suggested decentralized controller structure could be
insufficient to provide good control performance. In-
stead, improved control performance can be expected
if a (multivariable) triangular controller structure that
also includes the impactSO,2 has onSNO,2 is used.

In the lowest operating point,u1, the HIIA also sug-
gests a triangular controller structure, even though not
as strongly as foru2 andu3. In fact, in this operating
point a decentralized controller may be good enough
since the sum of the anti-diagonal HIIA elements is
0.9207 which is close to one.

Concerning the scaling procedure, it was found that
reasonable small changes in the scaling matrices (for
instance,±40% in the element that scalesQi) do not
alter the HIIA recommendations.

7. DISCUSSION

In the RGA analysis of the bioreactor model it was
seen that the RGA method did not provide reasonable
input-output pairings in all of the considered operating
points. The reason for this can be found if the steady-
state gain matrices for the considered systems are
studied. Triangular systems will always give the same
RGA, namely the identity matrix (under the assump-
tion that the rows in the transfer function matrix are
permuted to get nonzero elements along the diagonal
before calculating the RGA). The transfer function
matrices of the (scaled) model are almost right under
triangular, see (12a)–(12c). Therefore, the structure of
the RGA will be similar for all of them: almost the
anti-identity matrix. The RGA matrices are given in
equations (11a)–(11c), and evidently they are all very
close to the anti-identity matrix.

Obviously, the HIIA provides an interaction analysis
that goes deeper than the RGA is able to. When
considering the information given by the HIIA there
is no longer any contradiction with the steady-state
results in the operational maps in Figure 2. This can
also be seen as a confirmation that the applied scaling
procedure is reasonable. Note once again, that these
steady-state operational maps can merely be used to
give an indication of the interactions in the system,
and what a reasonable controller structure may look
like.

Compared to the RGA, the HIIA possesses several
advantages. Evidently, the HIIA is able to deal with
special transfer function matrix structures such as the
analysed nearly triangular ones. The HIIA does not
require decentralized (diagonal) controller structures
as the RGA does. Instead, the HIIA considers each
subsystem in the model independently. Therefore, the
HIIA can be used to suggest MIMO controller struc-
tures as seen in Section 6. The RGA method is unable
to do this.

It was also observed that the HIIA method is scaling-
dependent. This means that some effort must be spent
on finding proper scaling matrices. However, this is
not necessarily a drawback, since this gives an oppor-
tunity for the user to weight the considered signals
according to his own choice. The RGA method is
scaling-independent and does not offer this possibility.

Based on the RGA results in this particular case, it
should not be concluded that the couplings are low
between the DO set point (SO,2(t)) and the internal re-
circulation flow rate (Qi(t)) independent of operation
point. Instead, the operational maps indicate that there
are some couplings between the nitrification and the
denitrification process. A MIMO controller structure
can therefore be expected to give better control perfor-
mance compared to a solution involving decentralized
control. The HIIA analysis supports this view, and also
suggests possible controller structure selections.



8. CONCLUSIONS

The RGA method provides a simple way to decide
how a set of input signals should be utilized to control
a given set of output signals. Often this method per-
forms well, but in the analysis of the considered biore-
actor model, it was clearly seen that the RGA method
does not work properly in all cases. The reason for
this was found to be the almost triangular structure
of the transfer function matrices. From this it can be
concluded that the RGA should be used with care. It is
advisory to include an examination of the structure of
the considered transfer function matrices in the RGA
analysis.

Furthermore, the newly suggested HIIA method was
employed to quantify the level of interactions occur-
ring between the inputs and outputs in the considered
bioreactor systems. It was shown that for the HIIA
method to give reasonable information, the considered
systems had to be both scaled in a physically relevant
way and low-pass filtered. The filtering was performed
to select the frequency band of interest. When treating
the systems according to this procedure, the HIIA
method suggested the same decentralized controller
structure as the RGA, but it also gave suggestions
on other controller structures that may perform better.
The RGA is unable to give this extra information.
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