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Abstract: The paper presents a new family of strategies for swinging up a
pendulum. They are derived from physical arguments based on two ideas: shaping
the Hamiltonian for a system without damping; and providing damping or energy
pumping in relevant regions. A two-parameter family of simple strategies without
switches with nice properties is obtained. The main result is that all solutions that
do not start at a zero Lebesgue measure set will converge to the upright position
for a wide range of the parameters in the control law. Thus, the swing-up and
the stabilization problems are simultaneously solved with a single, smooth law.
Copyright c©2005 IFAC.
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1. INTRODUCTION

The family of the inverted pendula has attracted
the attention of control researchers in recent
decades as a benchmark for testing and evaluating
a wide range of classical and contemporary non-
linear control methods (see (Angeli, 2001; Bloch et
al., 1999; Furuta, 2003; Lozano et al., 2000; Utkin
et al., 2000; Srinivasan et al., 2002; Wiklund et
al., 1993), to mention only a few references).
The inverted pendulum displays two main prob-
lems: swinging up the pendulum to the upright
position (Åström and Furuta, 2000; Gordillo et
al., 2003; Lozano et al., 2000; Shiriaev et al., 2001)
and stabilizing it in this position once it is reached.
These problems have traditionally been treated
as two separate ones. The first one is usually
solved by energy considerations (Åström and Fu-
ruta, 2000). However, this kind of controller leads
to the stabilization of an homoclinic orbit. In
this way, the system will eventually approach the

desired point but without achieving local stabil-
ity since, due to small disturbances, the system
will go away from this point. One explanation
of this behavior is that the desired point is a
saddle point and the (attractive) homoclinic orbit
is its stable manifold. On the other hand there are
laws that make this point asymptotically stable
(Bloch et al., 1999) but the domain of attraction
is limited and never reaches the horizontal plane
(|x1| < π/2). Then, the full problem is usually
solved by switching between different laws: first,
a law that performs the swing-up is used and,
once the pendulum is near the vertical position,
the controller switches to a local law (Wiklund et
al., 1993). In (Aracil and Gordillo, 2004; Gordillo
et al., 2004) a new strategy was proposed that
solves both problems without commutation be-
tween different laws, but by commutation of a
controller parameter. In (Srinivasan et al., 2002)



a single controller is proposed but it requires a
strategy for commutation of the reference value.

In this paper, we consider the simplest version
of the pendulum (Åström and Furuta, 2000): the
control action is the acceleration of the pivot and,
thus, a 2-dimensional model is used. Here, we
return to the idea of (Aracil and Gordillo, 2004;
Gordillo et al., 2004). First, an energy shaping
control law is designed in such a way that: 1)
the closed-loop energy presents a minimum at
the desired position; and 2) the energy shaping
controller is globally defined. Since the resultant
energy has other minima, a pumping and damping
strategy is needed in order to carry the system
into the desired basin. The main contribution of
this paper is that the resultant law is smooth, and
no commutations are needed, and the origin of the
final closed-loop system is almost-globally asymp-
totically stable. The stability proof is included.
The final control law has two parameters that are
easy to tune.

The paper is organized as follows. In Section 2
energy shaping is used to obtain a Hamiltonian
system that has a center at the desired upright po-
sition. In Section 3 a pumping-damping strategy
is introduced that makes the upright position the
only stable equilibrium point. Section 4 is devoted
to the stability analysis of the closed loop system.
The paper ends with a Section of conclusions.

2. ENERGY SHAPING

The model of the pendulum system is

ẋ1 = x2

ẋ2 = sin x1 − u cos x1,
(1)

where x1 is the angular position of the pendulum
with the origin at the upright position, and x2

is the velocity of the pendulum. Therefore, the
system is defined on a cylindrical state space S×R.

Our goal is to design a controller that is able to
swing up the pendulum from (almost) all initial
conditions and to maintain the pendulum at the
upright position. We will base the derivation on
the potential energy shaping method, choosing as
desired Hamiltonian functions of the form

Hd(x1, x2) = Vd(x1) +
x2

2

2
, (2)

where the potential energy Vd should have a
single minimum at the desired upright position.
A generalized Hamiltonian target system

[

ẋ1

ẋ2

]

=

[

0 1
−1 −ka

] [

Dx1
Hd

Dx2
Hd

]

, (3)

which, with Hd as given by (2), yields

ẋ1 = x2

ẋ2 = −V ′

d
(x1) − kax2.

(4)

One of the problems for choosing an appropriate
Vd(x1) function is related to the term cos x1,
affecting to the control signal, u, in the second
equation of (1). For instance, the most elementary
choice is Vd = − cos x1, which has an appropriate
shape (a single minimum at the desired upright
position), but it leads to the control law u =
2 tan x1 (for the case ka = 0) which cannot be
implemented in the full range |x1| ≤ π because
for x1 = ±π/2 the feedback law is unbounded.

To solve the matching problem of the open (1) and
closed (4) loop behaviors, and in order to avoid the
division by cosx1, a good choice of V ′

d
is

V ′

d
= − sin x1 + β(x1) cos x1, (5)

and then, for ka = 0 (that is, for the conservative
case), u = β(x1) (the case ka 6= 0 will be discussed
later). Some additional conditions should be im-
posed on β(·). First, β(0) = 0 to guarantee that
the origin (0, 0) is an equilibrium of the closed-
loop system. Just as the pendulum behaves in
a cylindrical state space, the closed-loop system
should display some periodicity. Then, it is rea-
sonable to make β(x1) = sin x1β̄(cos x1). This
choice facilitates the integration of (5) to get Vd.
We must also impose that V ′(0) = 0, V ′′(0) > 0,
Vd(x1) = Vd(−x1).

A family of functions Vd that fulfill these condi-
tions is given by

Vd = a0 + cos x1 − a2 cos2 x1 − · · · , (6)

which allows us to determine β(x1) from (5).

The simplest case of this family is obtained by
taking a0 = −1/(4a), a2 = a and ak = 0,∀k > 2,
which leads to

Vd(x1) = cos x1 − a cos2 x1 −
1

4a
, (7)

where the value of a0 has been chosen in order to
achieve max Vd = 0. With this Vd we obtain

V ′

d
= − sin x1 + 2a cos x1 sin x1,

and then with the feedback law

u = 2a sin x1, (8)

the matching of the open and closed loop systems
is solved. It should be noted that this law, with
a = 1, was proposed in (Furuta, 2003) in another
context.

Control law (8) gives a closed loop system with
the Hamiltonian

Hd(x1, x2) = cos x1 − a cos2 x1 +
x2

2

2
−

1

4a
(9)



So far we have focused our attention in the solv-
ability of the matching problem and we have not
considered the global behavior of the target sys-
tem. When we plot Vd as in Fig. 1 we see that the
shape of the graph has some undesirable features.
As required, for a > 0.5, it has a minimum at the
origin, but it has another minimum which makes
that the desired equilibrium point is not the only
possible equilibrium. This additional minimum
coincides with the undesired hanging position.
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Fig. 1. Shape of Vd for a = 5.

If instead of the potential energy Vd we consider
the shape of the energy Hd, it is clear that the
two minima of Vd give rise to two “wells” in the
energy function Hd (Fig. 2). One is the good one,
associated with the desired equilibrium, but the
other is an undesirable well, because it precludes
the global nature of the attraction basin of the
equilibrium at the upright position.

Fig. 2. Shape of Hd showing the desired well
around (0, 0) for the upright position and the
undesirable well for the hanging position.

To overcome the difficulty with the undesirable
well we propose a strategy that consists in pump-
ing energy inside this well, to make the trajecto-
ries to leave it. This strategy is discussed in the
next section.

A last remark concerning family (6). One should
wonder whether there is a member of this family
with a single minimum at the origin. It is straight-
forward to show that this is not possible as for all
members of the family the slope of Vd at π/2 is
negative (resp. positive for −π/2).

3. DAMPING AND PUMPING

Since for ka = 0 the system is Hamiltonian
all trajectories are stable but not asymptotically
stable. It is then easy to influence the system
significantly by changing damping ka 6= 0. Even a
small change can have a major impact. To do so
we introduce the control law

u = 2a sin x1 + v (10)

where v is a new control signal which have to
be chosen to provide the appropriate damping or
pumping. The first term of the control law gives
a closed-loop system with the Hamiltonian (9).
Therefore it follows that

Ḣd = −x2v cos x1

To increase and decrease Hd it is natural to make
v proportional to x2 cos x1 and we will choose

v = x2F (x1, x2) cos x1

where function F is negative in the region of the
state space where we want to pump energy into
the system and positive where we would like to
damp the system. The control law is

u = 2a sin x1 + x2F (x1, x2) cos x1 (11)

The problem is now to find a simple function F
which dissipates energy in regions A and B and
which increases the energy in region C (Fig. 3).
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B
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C C
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x2

Fig. 3. The level curve for Hd(x1, x2) = 0 sep-
arates the state space into three regions.
Region A, which contains the desired equi-
librium where the pendulum is upright, is
bounded by the dashed line. Region C, which
contains the equilibrium where the pendulum
hangs straight down, is bounded by the full
line. F = 0 is the dot-dashed curve

A natural choice is to choose F negative in region
C and positive elsewhere. To have a continuous
control law the function should also vanish on the
boundary of region C.

We could consider choosing F = H. This function
has the nice property that it vanishes on the
boundary of region C. The function is negative
in region C and positive in region B but unfor-
tunately it is also negative in region A and it



vanishes on the boundary of the region A. This
function gives a closed loop with a limit cycle
corresponding to the dashed curve in Fig. 3.

To find an approximation to the boundary of
region C we will try to find a simple function
W (x1) that matches the potential energy function
V for x1 ≥ x0

1
= arccos 1/2a. We have

Vd(x
0

1
) = 0

Vd(π) =−1 − a −
1

4a
= −

(2a + 1)2

4a
.

A simple function which matches these values and
which is close to V for intermediate points is

W (x1) =
2a + 1

4a
(2a cos x1 − 1).

Function F (x1, x2) = W (x1)+x2

2
/2 approximates

Hd quite well as is shown in Figure 3. It is positive
in region A, negative in region C and positive in
almost all of region B. Since Ḣd ≥ 0 in C, the
strategy guarantees that all solutions starting in
C will leave the set C. Similarly since Ḣd ≤ 0 in
A it follows that all solutions starting in A will
converge to the equilibrium at the origin.

3.1 A Family of Strategies

Summarizing we have obtained the following con-
trol strategies that are parameterized by a ≥ 0.5,

u = 2a sin x1 + bx2F (x1, x2) cos x1, (12)

where

F (x1, x2) =
2a + 1

4a
(2a cos x1 − 1) +

x2

2

2
. (13)

This control law has good physical interpretation.
The first term shapes the energy function so that
the equilibrium at the origin is a center. The
second term introduces energy damping in region
A, energy pumping in region C and almost all of
region B. The sizes of the regions are adjusted by
the parameter a and the amount of damping by
the parameter b.

It should be noticed that with control law (12)
the system apparently preserves the generalized
Hamiltonian structure of (3) with ka = bF cos x1.
However, as F changes sign it does not agree
strictly with the definition proposed by Van der
Schaft (van der Schaft, 1989), where the damping
term is always dissipative. Furthermore, Hd is not
a Lyapunov function. However in some way it
fits quite well the physical meaning of Van der
Schaft’s generalized Hamiltonian systems.

4. STABILITY ANALYSIS

We will now analyze the closed-loop system.

4.1 Equilibria

The closed-loop system has the equilibria (0, 0),
(± arccos (1/2a), 0) and (π, 0). If a > 0.5 the
equilibrium at the origin is stable. The equilibria
at x1 = ± arccos (1/2a) are saddle nodes and the
equilibrium at the x1 = π is unstable if a > 0.

Since there are several equilibria the system can
not be globally stable, but it may be almost-
globally stable in the sense that for every initial
condition, except for a set of Lebesgue measure
zero, the trajectories tend to the origin. This set is
formed by the saddles and the unstable equilibria
together with the stable manifold of the saddles.

4.2 Stability Proof

To formulate a stability criterion for control we
introduce the following functions:

ϕH(x)
△
=

√

1

2a
+ 2a cos2 x − 2 cos x

ϕF (x)
△
=

√

1 + 2a

2a
(1 − 2a cos x), x0 ≤ x ≤ π

Φ(a)
△
=

x0
∫

0

ϕH(x) cos2(x)F (x, ϕH(x))dx

+

π
∫

x0

ϕF (x) cos2(x)F (x, ϕH(x))dx

where x0 = arccos(1/(2a)). The function ϕH(x1)
is the x2 coordinate of the upper curve defined by
H(x1, x2) = 0 and the function ϕF (x2) is the x2

coordinate of the curve defined by F (x1, x2) = 0.
We have the following result.

Proposition 1. Consider system (1) with control
law (12)–(13) and b > 0. The origin is almost-
globally asymptotically stable for any a > 0.5 such
that Φ(a) > 0 1 .

Proof Since there are multiple equilibria we can-
not use Lyapunov theory. We can however use a
similar reasoning based on the energy function
Hd. We will investigate how the energy changes
in the different regions.

In region A, which is bounded and contains the
origin, we have Hd ≤ 0 and Ḣd ≤ 0. All trajec-
tories entering the region converge to the origin.
Convergence is faster the larger b is. In region C
we have Hd ≤ 0 and Ḣd ≥ 0. All trajectories will
leave the region, faster the larger b is. In region B
we have Hd ≥ 0 but the derivative Ḣd can be both

1 An equilibrium of a dynamical system is said to be
almost-globally stable if all the trajectories –except for a

set of initial conditions of zero Lebesgue measure– converge
to it.



positive and negative. Therefore we divided the re-
gion into two subregions B1 = {x ∈ B|F (x) > 0}
and B2 = {x ∈ B|F (x) ≤ 0}; that is, B2 is the
region where the control law “incorrectly” injects
energy, see Fig. 4.
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Fig. 4. Curves F = 0 (dashed), Hd = 0 (solid) and
other Hd level curves (dot-dashed).

Introduce D = B2

⋂

C. In B1 we have damping
and the energy will decrease. It thus remains to
investigate what happens with trajectories origi-
nating in D. To see this we will investigate the
total change in energy along the trajectories (we
will only consider the case for x2 > 0. The case
x2 < 0 can be analyzed with a similar argument).
In D we have ẋ1 > 0 except at the saddle equi-
librium. Taking into account that in D Ḣd ≥ 0,
almost all trajectories in D will thus eventually
leave D. We will separate two cases characterized
by trajectories that enter A after leaving D and
trajectories that do not. The trajectories that
enter A will converge to the origin. We will show
that the trajectories that do not directly enter A
will encounter a net energy loss over a period (i.e.
a complete pendulum revolution) if Φ(a) > 0. In
this way and taking into account that x1 can be
defined on the manifold S, the system will evolve
towards region A after enough revolutions.

We have

Ḣd(x1, x2) = −bx2

2
cos2 x1F (x1, x2). (14)

Dividing by ẋ1 gives

dHd(x1, x2) = −bx2 cos2 x1F (x1, x2)dx1

Consider the change of energy over the interval
−π ≤ x1 ≤ 0 for trajectories that start in D and
do not enter region A, see Fig. 4.

The total energy change along the trajectory is
∆Hd where

−∆Hd =

0
∫

−π

bx2 cos2 x1F (x1, x2)dx1

=

π
∫

0

bx2 cos2 x1F (x1, x2)dx1

=

x0
∫

0

bx2 cos2 x1F (x1, x2)dx1

+

π
∫

x0

bx2 cos2 x1F (x1, x2)dx1

≥

x0
∫

0

bϕH(x1) cos2 x1F (x1, ϕH(x1))dx1

+

π
∫

x0

bϕF (x1) cos2 x1F (x1, ϕH(x1))dx1

= bΦ(a),

The inequality is obtained by observing that, in
B2 we have x2 < ϕF (x1) and F (x1, ϕH(x1)) ≤
F (x1, x2), and in the region B1 we have x2 >
ϕH(x1) and F (x1, x2) > F (x1, ϕH(x1)). Also
notice that F (x1, x2) is positive in A∪B1 and
negative in D.

Finally, using LaSalle arguments it can be seen
that the only invariant set with Ḣd = 0 exclusively
contains equilibria. Since the only stable equilibria
is the origin the proof is completed. 2

Remark 1. The result is intuitively reasonable
since region A increases with increasing a.

Remark 2. The plot of the function Φ Fig. 5 shows
that stable systems are obtained for all a > 0.94
and b > 0.
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Fig. 5. Plot of function Φ(a).

Remark 3. The estimate is conservative because
energy pumping in D is overestimated and damp-
ing outside D is underestimated. This means that
it is possible to have stable systems for values of
a smaller than 0.94 (and for any value of b). By
means of simulations it can be seen that the actual
value for this bound is a = 0.81. The system can
also be stable for smaller values of a by making
b sufficiently large. Precise conditions for this are
not yet known.

Remark 4. The control law (12) proposed in this
paper has a quite engineering and intuitive inter-
pretation. Remember the expression (14) giving
the instantaneous damping Ḣd. It is evident that
the damping is modulated by the term cos2 x1,
which acts as a weighting factor that determines
the value of Ḣd. It is clear that for values of x1

around π/2 it takes very small values, but for x1

close to 0 or to π these values are close to unity.



This means that for values of x1 close to π/2,
where we are “incorrectly” injecting energy, this
injection is penalized with a low value for cos2 x1.
Otherwise, for x1 around 0, the desired damping is
reinforced. Furthermore, for x1 around π damping
or pumping, depending on x2, is also correctly
reinforced. Therefore, term cos2 x1 appropriately
modulates the energy injection or dissipation in
such a way that dissipation is greater than in-
jection, making the system to display the desired
convergent behavior towards the upright position.

In order to clarify the ideas of the proof and the
behavior of the closed-loop system, Fig. 6 shows
the results of two simulations with a = 1. The
initial condition has been chosen so that both
trajectories enter in zone D. In the first simulation
with b = 0.9 the system enters directly zone A
while in the second simulation with b = 0.25 the
system needs a complete revolution to achieve the
net energy loss so it enters in zone A.
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Fig. 6. Results of two simulations for a = 1 and
with b = 0.9 and b = 0.25.

Remark 5. It is important to mention a drawback
of this new smooth law. While the damping-
pumping term can be made arbitrarily small by
decreasing parameter b (as can be done in previous
laws (Åström and Furuta, 2000)), the energy
shaping term can not. The lower bound on a is
0.5 and, thus for |x1| = π/2 the absolute value of
the term 2a sin x1 is greater than 1. In real systems
with real parameters, this law could saturate. The
effect of this saturation deserves some analysis and
will be studied elsewhere.

5. CONCLUSIONS

In this paper a new approach to the problem of the
inverted pendulum is proposed. First we introduce
a feedback that modifies the Hamiltonian of the
closed loop system so that the origin becomes
a center instead of a saddle. By necessity this
introduces two more equilibria of the closed loop
system. This shaping of the Hamiltonian can in-
tuitively be interpreted as shaping the force term
of the system. Next we have used the damping
term to introduce damping around the desired
equilibrium to change it from being stable to being

asymptotically stable. Then we have introduced
negative damping (energy pumping) in the region
around the equilibrium at x1 = π to make this
unstable. In this way a single, smooth controller
is obtained that swings up the pendulum from
almost all positions.
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