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Abstract: This paper deals with disturbance rejection with stability based on
the estimated state and disturbances. The unknown disturbances are combina-
tion of sinusoidal disturbances with unknown frequencies, unknown phases and
amplitudes. The only information of the unknown disturbances is the number of
distinctive frequencies inside. The class of nonlinear systems considered in this
paper consists of nonlinear systems in the output feedback form and the systems
are nonminimum phase, ie, with unstable zero dynamics. Based on the adaptively
estimated disturbances, a new control design is proposed for stabilization and
disturbance rejection of the nonlinear system in output feedback form which has
a nonminimum phase zero.Copyright c©2005 IFAC
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1. INTRODUCTION

In engineering systems, there are deterministic
disturbances, apart from random disturbances.
Among the various types of deterministic distur-
bances, sinusoidal disturbances have attracted a
large amount of research interests, from the esti-
mation of the disturbance frequencies to the com-
pensation or rejection of disturbances. It was until
fairly recently that a global convergent estimation
algorithm was proposed for estimation of a sin-
gle frequency of the stand alone sinusoidal signal
(Hsu et al., 1999), and more recently an algorithm
was proposed to estimate multiple frequencies
from a sinusoidal signal using adaptive observers
(Marino and Tomei, 2002). On the other hand, a
series of results have been published for rejecting
disturbances of unknown frequencies (Bodson et

al., 1994; Bodson and Douglas, 1997; Marino et

al., 2003). Two algorithms, a direct and an in-

direct one, are presented in (Bodson and Dou-
glas, 1997) for disturbance compensation for sta-
ble linear time invariant systems. The indirect one
estimates the disturbance frequency first and then
to compensate it. Only the direct one ensures the
complete compensation or asymptotic rejection
of disturbances with unknown frequencies. The
algorithm shown in (Marino et al., 2003) ensures
robust compensation of unknown disturbances for
linear systems. For nonlinear systems, a result
for strict feedback nonlinear system is shown in
(Nikiforov, 1998) based on full state feedback.
For nonlinear systems using output feedback,
global rejection with stabilization is reported in
(Ding, 2003)for minimum phase nonlinear systems
in output feedback form.

This paper deals with asymptotic rejection of un-
known sinusoidal disturbances for nonlinear sys-
tems in the output feedback form. The system



is allowed to be nonminimum phase, and the
stabilization of the system is considered together
with the disturbance rejection. An indirect ap-
proach in design is adopted, with separate stages
of estimation of disturbances and control design
for disturbance rejection and stabilization. The
control design makes use of the recent result
(Ding, 2005) for exponentially convergent esti-
mate for unknown sinusoidal disturbances in non-
minimum phase nonlinear systems in the output
feedback form. The estimated disturbance and
frequencies asymptotically converge to their ideal
values. The control design makes use of the es-
timated disturbances, and re-estimate the state
variables. The re-estimation is needed to reduce
the involvement of the variables in the filters for
disturbance estimation in the differentiation and
therefore simplify the control design. If the sys-
tem is linear, then the control input can directly
designed without the re-estimation as the con-
trol input is directly based on the estimates of
state without the involvement of differentiation.
In the control design, a restriction is imposed
on the number of nonminimum phase zeros. The
proposed control design allows only one nonmin-
imum phase zero. This restriction is not due to
the estimation or disturbance rejection methods
proposed or used. It is due to the fact that there
are very few control design methods even just for
the stabilization of nonminimum phase nonlinear
systems. As there are a quite number of filters are
involved in the estimation and control design, an
example is included in the paper to demonstrate
the actual filters and observers used in the esti-
mation and control. The simulation results for the
demonstrated example are also included.

2. PROBLEM FORMULATION

Consider a single-input-single-output nonlinear
system which can be transformed into the output
feedback form

ẋ=Acx+ φ(y) + b(u− µ)

y =Cx (1)

with

Ac =















0 1 0 . . . 0
0 0 1 . . . 0
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. . .
...

0 0 0 . . . 1
0 0 0 . . . 0















, C =
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0
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0
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...
0
bρ
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bn





















where x ∈ Rn is the state vector, u ∈ R is the
control, φ, is a known nonlinear smooth vector
field in Rn with φ(0) = 0, µ ∈ R is a matched

disturbance which is generated from an unknown
exosystem

ẇ= Sw

µ= lTw (2)

with w ∈ Rs.

Remark 1. The coordinate-free geometric condi-
tions for the existence of state transform for trans-
forming a nonlinear system into (1) are specified
in (Marino and Tomei, 1993). bρ 6= 0 indicates the
nonlinear system before the transformation has a
constant relative degree of ρ.

Assumption 1. The system has one nonminimum-
phase zero, i.e., B(s) =

∑m
i=ρ bis

n−i = (s +

β0)
∑m

i=1 βis
m−i with m = n − ρ, where β0 < 0

and
∑m

i=1 βis
m−i is Hurwitz.

Assumption 2. The eigenvalues of S are with zero
real parts and are distinct.

Remark 2. Assumption 2 ensures that the dis-
turbances are combination of sinusoidal signals
including constant bias. The dimension of S de-
cides the number of independent frequencies in the
disturbances. It follows the assumption made on
unknown exosystems in (Nikiforov, 1998; Serrani
and Isidori, 2000; Ding, 2003). Unlike the neutral
stable assumptions on exosystems in (Isidori and
Byrnes, 1990; Isidori, 1995; Byrnes et al., 1997),
the dynamics are not assumed to be known.

Remark 3. As shown in (Ding, 2003), the un-
matched disturbances in the nonlinear systems in
the output feedback form can be transformed to
the matched case of (1), if Assumption 2 is satis-
fied. In this paper, only the matched disturbance
is considered for the convenience of presentation.

The stabilization problem solved in this paper is
to use the exponentially convergent estimates of
disturbances and the state to design a feedback
control which ensures the overall stability the
feedback control system and the output converges
to zero.

3. PRELIMINARY RESULTS

As shown in (Ding, 2005), the disturbance and
state can be estimated using the following filters.
Define

ṗ= (Ac + kC)p+ φ(y) + bu− ky (3)

ξ̇ = Fξ +G(p1 − y) (4)

ζ̇ = Fζ +Gψ̂T
1 ξ (5)

˙̂
ψ1 = Γξ(ξ − ζ)TPG (6)

where p ∈ Rn, k ∈ Rn is chosen so that Ac + kC
is Hurwitz, {F,G} is a controllable pair, Γ is a



positive definite matrix, and P is the positive
definite matrix satisfying

PF + F TP = −2Is (7)

Define ψ̂i, i = 2, . . . , ρ,

ψ̂T
i = ψ̂T

i−1(F +Gψ̂T
1 ) + ki−1ψ

T
1 , (8)

and







ψ̂T
ρ+1
...

ψ̂T
n






= ψ̂T

z −

ρ
∑

i=1

Bρ−ib̄ψ̂T
i (9)

with B and b̄ being given by

B =











−bρ+1/bρ 1 . . . 0
...

...
. . .

...
−bn−1/bρ 0 . . . 1
−bn/bρ 0 . . . 0











, b̄ =







bρ+1/bρ
...

bn/bρ







where

vec(ψ̂z) =
|Σ̂|

σ + |Σ̂|2
adj(Σ̂)vec(ψ̂1k

T
z ) (10)

with

Σ̂ = (F +Gψ̂T
1 )T ⊗ I(n−ρ) − Is ⊗B (11)

σ̇ =−λσσ, σ(0) = σ0 (12)

for some positive reals λσ and σ0. The notations
| · | and adj(·) are used to denote the determinant
and the adjoint matrix of a matrix respectively.
The following theorem summarize the results of
the disturbance and state estimation.

Theorem 3.1 Based on the filters (4), (5), (6) and
estimates shown in (8) and (10), the estimates of
the state and the disturbance of (1) are given by

x̂= p+ ψ̂T ξ (13)

µ̂= ψ̂T
u ξ (14)

where

ψ̂T = [ψ̂1, . . . , ψ̂n]T (15)

ψ̂T
u =

1

bρ
[ψ̂T

ρ+1 − ψ̂T
ρ (F +Gψ̂T

1 ) − kρψ
T
1 ] (16)

and the estimate of exosystem matrix F +GψT
1 is

given by

F̂o = F +Gψ̂T
1 (17)

There exist positive real constants λx, dx, λµ, dµ,
λF , and dF such that

‖x(t) − x̂(t)‖ ≤ dxe
−λxt (18)

‖µ(t) − µ̂(t)‖ ≤ dµe
−λµt (19)

‖Fo − F̂o(t)‖ ≤ dF e
−λF t (20)

Proof. See (Ding, 2005).

4. STABILIZATION WITH DISTURBANCE
REJECTION OF NONLINEAR SYSTEMS

When φ(y) is a genuine nonlinear term, the con-
trol design presented in the above section will
not be able to ensure the stability of the closed
loop control system. The observer backstepping
(Krstic et al., 1995) is a powerful tool to deal
with the control design of nonlinear systems in
the output feedback form, but it does not apply
to the system (1) considered in this paper, as it
is nonminimum phase, not even for the case that
there is no disturbances.

To deal with the nonminimum phase, a state
transform is introduced with the resultant system
shown in the following lemma.

Lemma 4.1: Consider a state transform defined by

r = T−1x (21)

with

T = β0I +Ac

Then in r-coordinate, the system model (1) is
described by

ṙ = Acr + φr(y) +

[

0ρ×1

β

]

(u− µ),

y = Crr
(22)

where Cr = [β0, 1, 0, . . . , 0], φr(y) = T−1φ(y) and
β = [β1, . . . , βm]T .

Proof: From
∑m

i=ρ bis
n−i = (s+β0)

∑m
i=1 βis

m−i,
it is straightforward to verify that

[

0(ρ−1)×1

b

]

= T

[

0ρ×1

β

]

. (23)

It is also easy to check that

[β0, 1, 0, . . . , 0] = CrT. (24)

To complete the proof, one only needs to show

Ac = T−1AcT (25)

which is equivalent to TAc = AcT . From the
structure of T , it follows that

TAc = (β0I +Ac)Ac = Ac(β0I +Ac) = AcT.(26)



The control design is then carried with the system
(22). Although the exponentially converging esti-
mates of states and disturbances are available for
control design as shown in (14), they are not in the
convenient form for control design using observer
backstepping. With the estimated disturbances, it
is now able to design an observer

˙̂r = Aor̂ + φr(y) + [01×ρ, β
T ]T (u− µ̂) − kry(27)

where Ao = Ac +krCr with kr ∈ Rn being chosen
such that Ao is Hurwitz.

For the observer error er = r − r̂, it can be
obtained that

ėr = Aoer + [01×ρ, β
T ]T (µ̂− µ) (28)

Backstepping will be used to design control input
based on the transformed system (22). Since the
first state variable of (22), r1 is not available, the
backstepping design will start from its estimate
r̂1. In the following, define

z1 = r̂1 (29)

zi = r̂i − αi−1, i = 2, . . . , ρ+ 1 (30)

zρ+2 = 0 (31)

where αi are referred to as stabilizing functions.
The control design starts from the dynamics of z1:

ż1 = ṙ1 − ε̇1 (32)

= r2 + φr,1(y) −Ao,1er (33)

= z2 + α1 + φr,1(y) + er,2 −Ao,1e (34)

where Ao,1 denotes the first row of Ao. Based on
the above, α1 is designed as

α1 = −c1z1 − d1z1 − φr,1(y) (35)

which results in

ż1 = z2 − c1z1 − d1z1er,2 −Ao,1e (36)

Before moving to step 2, consider the dynamics of
y

ẏ = β0(r̂2 + φr,1(y)) + r̂r,3 + φr,2(y) + ey (37)

where ey = β0er2 + er3. Then considering α1 =
α1(y, r̂1), it is obtained that

ż2 = ṙ2 + ėr,2 −
∂α1

∂r̂1
˙̂r1 −

∂α1

∂y
ẏ

= (1 −
∂α1

∂y
)(z3 + α2) + φr,2(y) −

∂α1

∂r̂1
˙̂r1

−
∂α1

∂y
(β0(r̂2 + φr,1(y)) + φr,2(y) + εy)

+er,3 −Ao,2er −
∂α1

∂y
ey (38)

Therefore, α2 is designed as

(1 −
∂α1

∂y
)α2

= z1 − c2z2 − d2[1 + (
∂α1

∂y
)2]z2 − φr,2(y)

+
∂α1

∂y
(β0(r̂2 + φ1(y)) + φ2(y)) +

∂α1

∂r̂1
˙̂r1(39)

In step 3, from the variables in α2 = α2(y, r̂1, r̂2),
it can be obtained that

α3 = (1 −
∂α1

∂y
)z2 − c3z3 − d3[1 + (

∂α2

∂y
)2]z3

−φr,3(y) +
∂α2

∂y
(β0(r̂2 + φr,1(y))

+r̂r,3 + φr,2(y)) +
2

∑

j=1

∂α2

∂r̂j
˙̂rj (40)

and similarly for i = 4, . . . , ρ+ 1,

αi = zi+1 − cizi − di[1 + (
∂αi−1

∂y
)2]zi − φr,i(y)

+
∂αi−1

∂y
(β0(r̂2 + φr,1(y)) + r̂3 + φr,2(y))

+

i−1
∑

j=1

∂αi−1

∂r̂j
˙̂rj (41)

Finally, the control input is given by

u = µ̂+
αρ+1 − r̂ρ+2

β1
(42)

Remark 5. The control design needs ρ + 1 steps
for a system of relative degree ρ. The additional
step, step 1, is used to stabilize the unstable zero-
dynamics.

The evaluation of α2 requires (1− ∂α1

∂y
) 6= 0. From

(35), it follows that

(1 −
∂α1

∂y
) = (1 +

∂φr,1(y)

∂y
) (43)

Therefore, the following assumption is needed to
make the proposed control design feasible.

Assumption 3. |1 + ∂φ1(y)
∂y

| 6= 0, ∀y ∈ R.

The following theorem summarizes the stability
result for the proposed control design (42).

Theorem 4.2 The proposed control (42) stabilizes
the nonlinear system (1) and completely rejects
the unknown disturbances if the system (1) satis-
fies Assumptions 1, 2 and 3.

Proof: Consider a Lyapunov candidate

Vz =
1

2

ρ+1
∑

i=1

z2
i (44)



It can be shown that, for the designed stabilizing
functions αi and the control input,

V̇z =−

ρ+1
∑

i=1

ciz
2
i −

ρ+1
∑

i=1

[1 + (
∂αi−1

∂y
)2]z2

i

+

ρ+1
∑

i=1

zi(er,i+1 −Ao,ier +
∂αi−1

∂y
ey)

≤−2czVz + ez (45)

where ∂α0

∂y
is set as 0 for the convenience of

notation, and

cz = min
i=1,...,ρ+1

{ci} (46)

ez =

ρ+1
∑

i=1

1

4di

(‖er,i+1 −Ao,ier‖
2 + ‖ey‖

2) (47)

Notice from (28) that er is the output of a stable
linear system with the input which is bounded by
a decaying exponential function. It can be shown
that er is also bounded by a decaying exponential
function and therefore ey is also bounded by a
decaying exponential function. Furthermore, it
can be concluded from (45) with invoking Lemma
4B in (Krstic et al., 1995) that Vz is bounded
by a decaying exponential function. Hence, zi, for
i = 1, . . . , ρ+1, are bounded and converge to zero
asymptotically.

From (35), it follows

z2 = r̂2 − α1

= y + φr,1(y) + c1z1 + d1z1 − β0z1

−β0er,1 − er,2 (48)

Above relation together with Assumption 3 en-
sure that limt→∞ y(t) = 0, which further implies
limt→∞ r̂2 = 0. Then with limt→∞ z3(t) = 0
and limt→∞ α2(t) = 0, it can concluded that
limt→∞ r̂3 = 0. This reasoning can be applied
iteratively to conclude that limt→∞ r̂i = 0, i =
4, . . . , ρ + 1. The convergence to zero of the re-
maining variables in the observer (27) can be
established from the fact that

∑m
i=1 βis

m−i is
Hurwitz. Finally from r = r̂ + er, it follows that
limt→∞ r(t) = 0, and then limt→∞ x(t) = 0.

5. AN EXAMPLE

Consider a nonlinear system in output feedback
form

ẋ1 = x2 − y3 + (u− µ)

ẋ2 =−(u− µ)

y= x1 (49)

where µ is a sinusoidal disturbance generated by

ẇ=

[

0 ω
−ω 0

]

w(0) = w0

µ= lTw (50)

with ω, l and w0 unknown. It is easy to see that
the system (49) are in the format of (1) with
φ(y) = [−y3 0]T and b = [1 − 1]T . The system is
nonminimum phase with the nonminimum phase
zero at s = 1. The filters for disturbance estima-
tion are designed as

ṗ=

[

k1 1
k2 0

]

p+

[

−y3

0

]

−

[

k1

k2

]

y (51)

ξ̇ =

[

−f1 1
−f2 0

]

ξ +

[

0
g

]

(p1 − y) (52)

ζ̇ =

[

−f1 1
−f2 0

]

ζ +

[

0
g

]

ψ̂T
1 ξ (53)

˙̂
ψ1 = Γξ(ξ − ζ)TP

[

0
g

]

(54)

With ψ̂1, ψ̂z is calculated by

ψ̂z = (k1 + k2 − 1)
|Σ̂|

|Σ̂|2 + σ
adj(Σ̂)ψ̂1 (55)

where

Σ̂ = F T + [0 g]T ψ̂1 − I (56)

Finally, ψ̂u is given by

ψ̂u = −ψ̂2 − k1 + F T ψ̂1 + ψ̂T
1 Gψ̂1 (57)

with ψ̂2 = ψ̂2 − ψ̂1

For the control design, the state transform is given
by

r =

[

−1 −1
0 −1

]

x (58)

and the transformed system is described by

ṙ=

[

0 1
0 0

]

r +

[

y3

0

]

+

[

0
1

]

(u− µ)

y= [−1 1 ]r (59)

The observer for the control design is given by

˙̂r =

[

−kr1 kr1 + 1
−kr2 kr2

]

r̂ +

[

y3

0

]

−

[

kr1

kr2

]

y

+

[

0
1

]

(u− ψ̂T
u ξ) (60)

The final control design is given by

α1 =−c1r̂1 − d1r̂1 − y3 (61)

u= ψ̂T
u ξ + (1 +

∂α1

∂y
)−1{−r̂1 − c2z2



−d2[(
∂α1

∂y
)2 + 1]z2 +

∂α1

∂r̂1
˙̂r1

+
∂α1

∂y
(−r̂2 − y3)} (62)

The simulation study has been carried out for
the estimation and control design shown in this
example. The simulation results shown below are
for the settings k1 = −3, k2 = −2, f1 = 3,
f2 = 2, g = 1, Γ = 1000I , kr1 = 5, kr2 = 2,
c1 = d1 = c2 = d2 = 1. The settings for the
disturbance are ω = 1, w0 = [0, 1]T , i.e., the
disturbance is set as µ(t) = sin t. The control
input and the system output are shown in Figure
1, in which the output converges to zero with the
input to asymptotically cancel the disturbance.

0 50 100 150 200 250 300
−4

−3

−2

−1

0

1

2

3

time (sec)

y

0 50 100 150 200 250 300
−30

−20

−10

0

10

20

u

time (sec)

Fig. 1. Control input and system output

6. CONCLUSIONS

An indirect approach has been presented to re-
jecting unknown sinusoidal disturbances and sta-
bilization of nonlinear systems in the output feed-
back form. The big difference between the pro-
posed methods and the methods in the literature
for nonlinear systems is that our algorithms work
for the nonminimum phase nonlinear systems, and
the others do not. The nonminimum phase makes
the estimation and control design much more dif-
ficult. One can compare the results shown in this
paper and the one shown in (Ding, 2003) where
the disturbance rejection is achieved for the same
system, but with minimum phase. The nonmini-
mum phase causes the involvement of vector and
matrix manipulation for the estimation of distur-
bances, and the re-estimation of the states for the
control design. The proposed algorithms work for
both the minimum phase and nonminimum phase
systems.

Despite the difficulty of nonminimum phase, the
proposed algorithm ensures the asymptotic rejec-
tion or complete compensation of unknown sinu-
soidal disturbances. Although the control design

restricts to the case of one nonminimum phase
zero, the restriction is very difficult to relax with-
out compromising the global stability, because of
the structural properties required for nonlinear
control design.
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