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Abstract: A hybrid controller is developed for a solar-thermal power plant using a 
gain-scheduled controller with feedforward to control the more linear operating 
regimes and a fuzzy PI incremental controller for the highly nonlinear operating 
region of the plant. An enhanced method of MOGA-tuning is employed by first 
optimizing the number of input/output membership functions using neuro-fuzzy data 
clustering. Enhancements to the visualization properties of the MOGA’s graphical 
user interface are evaluated to improve the decision maker’s choice when deciding 
between non-dominated solutions or potential fuzzy controller inference systems. 
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1. INTRODUCTION 
 
Recent research has demonstrated that a gain 
scheduling approach, Johansen, et al. (2000), can be 
used to control a solar power generation plant 
successfully over a large part of its operating range. 
However, the results of this type of control 
deteriorate somewhat when the plant is operated in its 
more nonlinear regimes. This work therefore 
combine this gain scheduled type of controller with 
controllers that better suit the more nonlinear part of 
the operating space, in particular the fuzzy PI incre-
mental controller of Loebis (2000). Fuzzy controllers 
are well suited to design using a multiobjective 
genetic algorithm (MOGA) approach, Fonseca and 
Fleming (1998). These designs can be improved upon 
by optimizing the number and parameters of its input 
membership functions using data clustering and 
adaptive neuro-fuzzy inference system (ANFIS) 
techniques, e.g. Stirrup and Chipperfield (2003). This 
can be shown to reduce complexity and the size of 
the fuzzy rule-base while affording acceptable 
control along with the possibility of a simple 

hardware realization. The overall effect of this 
enhancement is to reduce the search space by 
reducing the number of membership functions and 
the rule-base required for fine-tuning. This greatly 
improves the processing time when tuning the fuzzy 
controller, and improves control within the plant’s 
nonlinear region. 
 
In this work an evolving conflict sensitivity 
technique, Stirrup and Chipperfield (2002), is also 
employed to automatically adjust goal information to 
help improve the decision support provided within 
the MOGA’s graphical user interface (GUI). This 
intends to give improved trade-off visualization for 
better non-dominating solution or controller choice, 
while maintaining the quality of non-dominating 
solutions within the solution set. 
 
 

2. PLANT DESCRIPTION 
 
The solar power plant or ACUREX-field to be 
controlled is a pilot scheme situated at the Plataforma 
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Solar de Almeria (PSA) site in the Taberna Desert, 
southern Spain. The field is composed of 480 
distributed solar parabolic collectors, arranged in 10 
parallel loops and is outlined in schematic in Fig. 1. 
A collector uses the parabolic surface to focus the 
solar radiation onto a receiver tube, which is placed 
in the focal line of the parabola. The heat-absorbing 
oil is pumped through the receiver tube, causing the 
oil to collect heat, which is transferred through the 
receiver tube walls. The thermal energy developed by 
the field is pumped to the top of the thermal storage 
tank, whereupon the oil from the top of the storage 
tank can be fed to a power-generating system, a 
desalination plant, detoxification plant or to an oil-
cooling system if needed. The oil outlet from the 
storage tank to the field is at the bottom of the tank. 
 
For the initial start-up of the plant, the system is pro-
vided with a three-way valve, which allows the oil to 
be circulated in the field until the outlet temperature 
is adequate to enter the storage tank. The oil pump, 
which pumps the oil from the storage tank, through 
the collector tubes and into the top of the storage tank 
is located at the field inlet. To ensure that the 
collectors give optimum solar absorption, every 
collector row has a sun tracking system fitted to it.  
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Fig. 1: Schematic representation of the solar plant 
 
A data acquisition system for the plant, described by 
Camacho, et al., (1997) provides the following data: 
the solar intensity, inlet temperature to the field, 
outlet temperature of each loop and two other outlet 
temperatures between the field and storage tank, the 
current oil pump flow and requested value, and the 
tracking status of the collectors. The plant can 
generate 1.2 MW of peak power with beam solar 
radiation of 900 Watts m-2. The oil-storage tank has a 
capacity of 140 m3, which allows for storage of 2.3 
thermal MWh for an inlet temperature of 210 °C and 
an outlet temperature of 290 °C. 
 
The operation limits for the oil pump are between 2.0 
and 10.0 litres/sec.. The minimum value is there for 
safety and to reduce the risk of the oil being decom-
posed, which happens when the oil temperature 
exceeds 305°C. The consequence of exceeding the 
maximum oil temperature, is that all the oil may have 
to be changed leading to plant down time and loss of 
Power generation. Another important restricting 
element in this system is the difference between the 
field’s inlet and outlet oil temperatures. A suitable, or 

normal, difference is around or less than 70°C. If the 
difference is higher than 100°C, then there is a 
significant risk of causing oil leakage due to high oil 
pressure in the pipe system. 
 
A control system for this plant has the objective of 
maintaining the outlet temperature (in this case the 
average outlet temperature of all the parallel loops) at 
a desired level in spite of disturbances like solar 
irradiation (clouds and atmospheric phenomena), 
mirror reflectivity and inlet oil temperature. The oil 
flow rate is manipulated by the control system 
through commands to the pump. It should be noted 
that the primary energy source, solar radiation, 
couldn’t be manipulated. The performance measures 
of the control system are to keep the oil outlet 
temperature close to its set point, and to avoid 
oscillations in the oil pump flow rate.  
 
 

3. GAIN-SCHEDULED CONTROL 
 
In previous work, Johansen, et al., (2000), employed 
a gain-scheduling approach for the solar plant. This 
used a set of local linear controllers, each designed 
by pole-placement, based on local linear ARX 
models that were identified using the methods and 
software described in Hunt and Johansen (1997). A 
feed-forward block was also placed in the controller 
from the solar radiation input (I), to improve 
disturbance rejection. The linear models were 
designed for control in the more linear regions of oil-
flow (q) i.e., above 5 l/s-1. The decomposition of the 
proposed hybrid controller was carried out in the 
operating range of 0 ≤ I ≤ 1000 W m-2 and 5 ≤ q ≤ 10 
l s-1 as shown in Fig. 2. 
 

 
 
 
 
 
 
 
 
 

 

Fig. 2: The plant’s operating regimes 
 

Two local linear models presented by Hunt and 
Johansen (1997), were identified from experimental 
data, using locally weighted regression. These 
correspond to the operating points with oil flow rates 
at 6 and 8 l s-1 respectively. Also, the gain of the local 
linear models was corrected using the average solar 
radiation during each PRBS test such that they 
corresponded to a solar radiation of 800 W m-2. 
Furthermore, by reducing the gain by a factor of 5/8 
generated two new local models corresponding to a 
solar radiation of 500 W m-2 giving a total of four 
local models corresponding to the operating regimes. 



     

In Johansen, et al. (1998), it was also shown that the 
performance of the gain-scheduled controller was not 
ideal at the lower flow rate of 4 l s-1 producing 
significant overshoot and some oscillation of the 
control signal. Johansen et al. (1998) suggest that this 
may be improved by refining the models in this 
regime with an improved PRBS test signal. 
Furthermore, the non-lineararities were more 
pronounced at low flow rates. Thus, a finer 
decomposition into operating regimes may be 
desirable as q becomes smaller. In view of the 
uncertainties and difficulties of control at low flow 
rates, the method chosen in this study was to use a 
MOGA-tuned fuzzy incremental PI controller to 
improve these flow rates. 
 
 

4. FUZZY PI INCREMENTAL CONTROL 
 
In a study by (Loebis, 2000), a fuzzy PI controller, 
Fig. 3, was designed for better control of the solar 
plant’s low flow rates. This offered an improved 
overall performance compared with the standard PI 
controller. In this work the MOGA will be used to 
optimise the output rule-base and membership 
functions against four objectives: Overshoot, Rise 
time, Settling Time and Error Variance. 
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Fig. 3: A Fuzzy Incremental Controlled Solar Plant. 
 
The fuzzy logic incremental controller (FLC) defines 
the error (e) as the difference between the plant’s 
output temperature (To) and the set point signal (Tr). 
The error and its increment (∆e) were considered to 
be the inputs for the fuzzy controller and the output 
variable (∆u) was the increment to the control signal. 
A feedforward term was also added after the FLC to 
improve the disturbance rejection caused by changes 
in the solar radiation. 

 
 
5. INPUT DATA MODELLING FOR IMPROVED 

MOGA TUNING 
 
To aid the MOGA tuning of the number and positions 
of input membership functions, the error (e) and its 
increment (∆e) were pre-optimized. The fuzzy 
inference generation function genfis2 (Matlab 
2002) builds on the subtractive clustering function to 
generate a Sugeno-type Fuzzy Inference System 

(FIS) that models the system behaviour from the 
input training data. The model FIS was then tested 
with different data (see Fig. 4), using an evaluation 
function to find the optimal cluster radius. 
 

 
 

Fig. 4: Poor performance of model output using input 
checking data compared with output checking data. 
 
This radius was then input into a clustering tool 
(Matlab, 2002) to identify natural groupings of the 
training data, Fig. 5, and hence give an initial idea of 
the number of input membership functions used by 
MATLAB’s ANFIS tool. 
 

 
 

Fig. 5: Optimum Clusters and cluster radius 
influence. 
 
Due to the poor performance of the FIS, Fig. 4, an 
ANFIS was chosen to tune (adjust) its membership 
functions, using a combination of a back-propagation 
algorithm and a least squares method. This allows the 
fuzzy system to learn from the input/output data set, 
adjusting the FIS parameters (parameter estimation) 
to reduce the error, defined as the sum of the squared 
difference between the actual and desired outputs. 
 
The FIS model was run initially under two hundred 
epochs of ANFIS training to create a new FIS model. 
This model was then checked for over-fitting of the 
fuzzy system to the training data by comparing the 
training input/output data with the checking input/ 
output data. Fig. 6 illustrates how a system can be 
over-fitted (the model’s ability to generalise the test 
data) when too many epochs are used. Here the train-
ing error settles at about the sixty-fifth epoch with no 
further improvement in the checking data error. 
 
The ANFIS was then run for sixty-five epochs to give 
the improved results of Fig. 7. This gives a reduction 
of fuzzy membership functions from 7x7x11 (49 



     

rules) to 4x4x11 (16 rules), thus reducing the 
decision variable search space to improve MOGA 
efficiency, see section 6. The input membership 
functions are also optimized on real data instead of 
relying on a posteriori knowledge, which will add to 
the accuracy of the final results. 
 

 
 

Fig. 6: Over-fitting the Fuzzy System. 
 

 
 

Fig. 7: Improved fit using ANFIS Optimisation. 
 
 

6. REDUCING THE SYSTEM SEARCH SPACE 
 
 
The search space can be reduced by allowing the 
fuzzy incremental controller to operate only in the 
higher nonlinear areas of the system. This permits a 
wider choice of objectives, such as overshoot and 
settling time, because the set point change into this 
area has only one portion. Also having optimised the 
number and parameter positions, this helps the 
MOGA to quickly search for optimum output 
parameter sets. 
 
The MOGA uses the Pareto-optimality developed by 
Fonseca and Fleming (1998), to determine fitness 
based on non-dominance of the individuals. The 
objectives used to assess the performance of the 
potential fuzzy controllers are: overshoot; rise-time; 
settling time; and error variance. A standard binary 
coded representation was employed with a 
chromosome length of 27 decision variables (11 for 
the parameters of the output membership functions 
and 16 for the rules), each with 8 bit precision and a 
20 bit decision variable bound. This compares well to 
the original controller, (Loebis, 2000) which required 
60 decision variables. A rank fitness value of 2.22 
was also used; hence exponential ranking was 
assumed indicating selective pressure. 

7. ENHANCED DECISION SUPPORT  
 
Here a novel enhancement to the MOGA decision 
support system is introduced, by using evolving 
tradeoff sensitivity information to automatically 
adjust the goal weighting. This is carried out to 
improve the visualisation and reduce the number of 
solutions in the non-dominated set, while at the same 
time maintaining the quality of those solutions. 
 
As described in (Fonseca and Fleming, 1998), the 
population based nature of the standard GA makes it 
the ideal vehicle for the development of a Multi-
objective Genetic Algorithm (MOGA) where several 
possibly competing objectives must be optimised 
simultaneously. Towards this end, goal and priority 
information are made available to the design objec-
tives to make it possible to differentiate between 
some non-dominated solutions (best performers). 
These and other criteria form the basis of the decision 
support system that allows the decision maker to 
interactively control the final outcome of the 
simulation. The method of goal and priority change 
(manually via a GUI) is called Progressive Preference 
Articulation.  
 
Methods for progressive articulation of preferences 
require that trade-off information be communicated 
to the decision maker in a form, which can be easily 
comprehended. When there are only two objectives, 
non-dominated solutions can be represented in 
objective space by plotting the first objective 
component against the second. For three and more 
objectives, a different representation is required. A 
common approach, known as the method of parallel 
coordinates, Fig. 8 (top), consists of  associating an 
integer index i to each objective and representing 
each non-dominated point by the line connecting the 
points (i, * ( )if x ), where * ( )if x represents a normali-
sation of fi to a given interval, e.g., [0,1]. With such a 
representation, competing objectives with 
consecutive indices result in the crossing of lines, 
whereas lines that don’t cross indicate non-competing 
objectives, where the cost values equate to * ( )if x  
and the objective numbers equate to f1 – f4.  
 
The development of the decision support system was 
initiated by computing the minimum cost solution – 
to  be used later as a benchmark. The minimum cost 
solution was obtained by summing the objective costs 
for each individual in the non-dominated set, sorting 
them to obtain the minimum then extracting the 
minimum for display, see Fig. 8. 
 
Study of the trade-off graph, Fig. 8 (top left) can lead 
to a greater understanding of the trade-offs inherent 
in the system. Although it is difficult to see the trade-
off information clearly as the number of non-
dominating solutions is often too large. A tool, 
developed by (Schroder, 1999), allows a quantitative 
analysis of the amount of trade-off between 



     

objectives. This measures the amount of competition 
between objectives by computing the distance by 
which the lines cross as a percentage of the maximum 
distance that they could cross by. It uses a 
partitioning of the objective space to normalise with 
respect to the density of solutions so as not to allow 
highly populated parts of the objective space to artifi-
cially dominate. The results of applying this tool to 
the graph of Fig. 8 (top left) are shown directly 
below.  The ranges are those between the maximum 
and minimum values of each objective. These repre-
sent the ‘true’ competition on the Pareto surface and 
each cell in the matrix represents the percentage 
trade-off between objectives. The figures on the 
diagonal are the sum of the trade-offs for that 
objective divided by the total number of objectives. 
This shows that the objective that caused the most 
amount of competition was objective two, which is 
reasonable when comparing it with the other objec-
tives. The bar charts of Fig. 8 highlight the overall 
trade-off per objective for each objective on view. It 
gives an instant visual assessment of what is happen-
ing within the multi-criteria system being analysed. 
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Fig. 8: Results of the enhanced visualisation: without 
evolving trade-off (left); and with (right). 

 
An evolving goal weighting method is used here to 
adjust the goals automatically in relation to trade-off 
information, which is only included if there are a 
minimum number of solutions in the non-dominated 
set. After each generation, this technique re-positions 
the goals to the initial maximum cost of each 
objective before it includes the trade-off information. 
The trade-off information   tightens the goals on the 
objectives with conflict sensitivity below the halfway 
or overall average objective sensitivity, and reduces 
the goals for the objectives that have conflict 
sensitivity above the overall average (Fig. 9). 

Fig. 9: Goal weighting to average trade-off 
sensitivity. 
 
 

9. RESULTS 
 
The active controller is determined by the oil flow 
rate, where the MOGA-tuned Fuzzy PI controller is 
implemented only at flow rates below 5 litres per 
second, Fig. 10. 
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Fig. 10: The combined controller.  
 
The enhanced decision support and visualisation im-
proves the trade-off between the non-dominating 
solutions in the set while conserving the quality of 
the set Fig. 8 (right). The diagram shown in Fig. 11 
illustrates how a particular solution (in this case the 
benchmark) represents a particular fuzzy controller.  
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Fig. 11: Benchmark solution choice 
 
The results of the conflict sensitivity between the 
solutions within the non-dominated set, before and 
after evolving trade-off, are shown in Table 1. 

ttt1 ttt2 ttt3 ttt4

mini

maxiHalf =
 (maxi-mini)/2

midway =
mini+half



     

Table 1. Simulation without/with evolving trade-off 

                OBJECTIVES 

 O.shoot R.Time S.Time Variance 

Initial 
Goals 5 20 315 10 

Final 
Goals 3.3 14.1 69.5 9.8 

Min 
cost 

0.3334 0.3513 0.1130 0.4913 

Total Minimum Cost:     
            Without: 1.2911    With: 1.2890         
Number of Initial Individuals: 40 

Total Percentage Trade-off:     
            Without: 83%    With: 30%    
Number of Generations: 100 
Stochastic Universal Sampling 
Single Point Crossover Rate 0.7 
Mutation Probability 0.007 
Reinsertion 0.04 

Minimum number of potential solutions  found before 
trade-off initiated: 5 

Number of near nptimum solutions in the non-
dominated set:  Without: 356   With: 351 

 

A typical response for the outlet oil temperature 
tracking for the new improved fuzzy controller is 
shown in Fig. 12, along with the oil flow and radia-
tion. In the figure, the single operating region faci-
litates the use of more design objectives. The design 
of the final controller is therefore a compromise that 
offers good performance across the highly non-linear 
operating range and also minimises the task-oriented 
nature of the set point tracking error. 
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Fig. 12: Typical simulation results for the combined 
fuzzy PI incremental/gain schedule controller. 
 
 

10. CONCLUDING REMARKS 
 

This work developed a hybrid controller that uses a 
gain scheduler to control the more linear regions of a 
solar thermal power plant, in combination with a 

MOGA-tuned fuzzy PI controller to control the 
plant’s highly nonlinear operating areas. MOGA-
tuning and visualization enhancements were also 
implemented which led to: 

• a reduction of the rule base and search 
space, which in turn permitted the MOGA to 
produce a set of sub-optimal solutions at a 
much faster rate, 

• improved control by allowing a wider 
choice of performance criteria, 

• improved decision support, 
• an increase in the operating range at low oil 

flow rates, which allows the plant to 
function in environments where local solar 
radiation conditions have always been 
regarded as marginal. 

 
The reduction in the size of fuzzy controllers is 
attractive because they are simpler to both understand 
and validate, and also easier to implement in 
hardware. The work here also improved the 
visualisation techniques required for a deeper under-
standing of the system. Allowing the trade-off, and 
hence goal information to evolve automatically gives 
the decision maker a solid foundation to work from if 
further alterations to the goal information are 
required manually. A benchmark solution was also 
provided in the form of an overall standard minimum 
cost solution from the non-dominated set. 
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