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Abstract: In this paper, we present a formation-keeping control of multiple
autonomous underwater vehicles(UAVs) in 3D space. We use a so-called Leader-
Follower formation approach, and our control task is to keep the relative position
of each follower with a desired orientation to the leader. An Input/Output
linearization is applied to the error system whose coordinates are the differences
between a target point fixed with follower, and desired position defined in the
leader’s local coordinate system is realized. We will also prove the stability of
zero-dynamics and give a condition for perfect formation. The efficiency of our
control is demonstrated by numerical simulations. Copyright�2005 IFAC
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1. INTRODUCTION

For maritime accidents, rescue activities and en-
vironment surveillance, researches for advanced
autonomous underwater vehicles (AUVs) or un-
manned underwater vehicles (UUVs) are very ac-
tive (Y.Y.Nakamura, 1992) (O.J.Sordalen, 1993)
(O.Egeland, 1994) (A.Pascoal, 1997) (G.Indiveri,
2000) (T.Ikeda, 2001). Besides such tasks it is
hoped that the AUVs will be used for management
of fishes and marine products in maritime engi-
neering. Dynamics for AUVs is very complex due
to effects of gravity, buoyancy, inertia force and
other fluid dynamics, however, the fundamental
movement of them can be represented by kine-
matic model with screws and fins (Y.Y.Nakamura,
1992). In the model there exist four controls, i.e.,
velocity control for lateral motion, and 3 angular
velocity controls, and it can be assumed that they
have two nonholonomic constraints with which
instantaneous longitudinal and side step motions
can not be created. In such a sense the AUVs can
be approximately considered as an underactuated

system. For such multiple AUVs to be effective
for tasks and to be friendly for human operators,
automatic formation control of a group of AUVs
becomes very important.(J.Jongusuk, 2002) In
this paper we consider a group of AUVs shown
in Fig.1 and propose a formation control of the
group. In the control algorithm we assume that
a desired trajectory is given to a leader, and the
followers tracks the leader in a specified formation.
The stability and convergence of the formation
will be proven and the validity of the method is
shown by numerical simulations. Though the pro-
posed method in this paper is derived based on a
kinematic model, the method may be modified for
dynamic models using a backstepping approach.

2. MODEL OF AUV

In this paper we consider AUVs shown in Fig.1
and it is assumed that they have 4 controls,i.e.,
linear velocity control of vx, and angular velocity
controls of ωx, ωy, ωz. Also it is assumed that they
are governed two nonholonomic constrains such
that they can not create instantaneous longitudi-
nal and side step motion.
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Fig. 1. AUV(Autonomous Underwater Vehicle)

In the figure Σ is a fixed coordinate system and
Σ′ is a moving coordinate system whose origin is
attached to a center of mass of an AUV and its ori-
gin is defined as p := [px, py, pz]T . v := [vx, 0, 0]T

and ω := [ωx, ωy, ωz]T stand for linear velocity
vector and angular velocity vector represented in
the moving coordinate system Σ′, respectively.

In the following discussion we assume the follow-
ing assumptions:

(1) a group consists of a leader and a follower for
simplicity.

(2) the leader and follower have the same kine-
matics.

(3) there is no obstacle in the working space.
(4) a desired trajectory for the leader is given

and it is bounded and sufficiently smooth.
(5) linear velocities of the leader and follower in

lateral motion are always positive in their
own coordinate systems.

(6) the follower can obtain any information from
the leader.

Required information of (6) in the assumptions
are desired orientation in the fixed coordinate sys-
tem, orientation in the moving coordinate system,
and controls, which are all for the leader.

Under the assumptions the control problem here
is that as in Fig.2 the follower tracks the leader in
a specified formation for any initial formation.

2.1 Kinematics of AUV

In this subsection kinematics of an AUV is de-
rived. Let assume that the orientation of an
AUV is represented as a rotational matrix R :=
[r1, r2, r3] ∈ SO(3). The anguler velocity ω :=
[ωx, ωy, ωz]T in the moving coordinate system Σ′

satisfies
Ṙ = RS(ω)
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Fig. 2. Leader-Follower system

where S(ω) := ω×, and the linear velocity ṗ of
the center of mass in a fixed coordinate system Σ
can be represented as

ṗ = Rv, (1)

where v = [vx, 0, 0]T is a linear velocity vector
represented in Σ′. Since

RT ṗ = v, (2)

the second and third equation in eq. (2) can be
given as

rT
2 ṗ = 0, rT

3 ṗ = 0. (3)

These equations show that velocity components
in y′ and z′ directions are zero, which can be in-
terpreted as two nonholonomic constraints. Using
the above equations and eq. (2) and eq. (1), the
kinematics of an AUV can be represented as
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 . (4)

In this model the state of the system is represented
by 12 state variables (3 for position + 9 for
rotation) and number of input is 4 where the
variables are subject to 6 holonomic constraints
given by

rT
i ri = 1, rT

i rj = 0 (i, j = 1, 2, 3, i �= j),

and 2 nonholonomic constraints of eq. (3).

3. ERROR MODEL

In this section formation control problem is now
formulated as a regulation problem based on an
error model. The concept of the method is illus-
trated in Fig.3 where pd := [pxd, pyd, pzd]T and
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Fig. 3. Formation control of AUV

Rd := {rijd} ∈ SO(3) are the position of the
moving coordinate and orientation of the leader
w.r.t. the fixed coordinate system, respectively. It
is assumed that desired linear and angular veloc-
ities, vd := [vxd, 0, 0]T and ωd := [ωxd, ωyd, ωzd]T ,
for the leader in the moving coordinate system are
given and it is assumed that vxd > 0. From the
assumption (2) it is assumed that the kinematics
of the leader can be also represented as



ṗd = Rdvd, (5)

Ṙd = RdS(ωd). (6)

Furthermore, it is assumed that l = [lx, ly, lz]T ,
which is called formation vector, specifies a
desired relative position for the center of mass of
the follower with respect to the center of mass of
the leader as in Fig. 3. The control problem is
that the position of the follower converges to the
relative position and the orientation is coincided
with that of the leader as t → ∞, which can be
represented as

p → pd + Rdl, R → Rd. (7)

Please notice here that if the relative position is
arbitrary, the orientation of the follower can not
be coincided with that of the leader in general due
to the nonholonomic constraints. The problem
will be discussed later.

In order to derive an input-output linearization
controller we define an output of the system called
target position of the follower. The target position
is fixed at r in the moving coordinate system of
the follower and it is represented as

r =
[
rx 0 0

]T
. (8)

According to the introduction of the target posi-
tion for the follower, a reference position of the
leader is defined as a sum of the target vector r
and formation vector l in the moving coordinate
system of the leader. If y and yf are the target and
reference position in the fixed coordinate system,
they can be represented as

y = p + Rr, (9)

yf = pd + Rd(l + r). (10)

3.1 Error model of rotation

Error of the orientation is represented as a rota-
tional matrix, R̃ = {r̃ij} ∈ SO(3), as

R̃ = RT
d R, (11)

and if R̃ → I, then R → Rd. The time derivative
of eq. (11) is given by

˙̃R = Ṙ
T

d R + RT
d Ṙ

=−S(ωd)R̃ + R̃S(ω). (12)

By multiplying R̃
T

to both sides of the above
equation, we have

R̃
T ˙̃R = S(ω − R̃

T
ωd), (13)

and if we introduce a new input ωc := [ωxc, ωyc, ωzc]T

given by
ωc = ω − R̃

T
ωd, (14)

we have an error model for the rotation:
˙̃R = R̃S(ωc). (15)

3.2 Error model of position

When an error vector between the reference posi-
tion and the target position, ỹf := [ỹ1f , ỹ2f , ỹ3f ]T ,
is defined as

ỹf := y − yf

= p + Rr − pd − Rd(l + r), (16)

then the time derivative of it can be represented
as

˙̃yf = ṗ + Ṙr − ṗd − Ṙd(l + r)

= Rd(R̃(v − S(r)ω) − (vd − S(l + r)ωd)).(17)

Since the target position is r = [rx, 0, 0]T , using an
input transformation of uf := [vx, rxωz,−rxωy]T ,
eq. (17) can be rewritten as

˙̃yf = Rd(R̃uf − (vd − S(l + r)ωd)). (18)

From this equation it can be understood that
the error system has 3 inputs, (vx, ωy, ωz). In the
research eq. (18) is treated as an error model of
the position tracking.

Based on the above derivations, error models for
the problem are represented by eq. (15) and eq.
(18) and the control problem can be represented
as

R̃ → I, ỹf → 03×1. (19)

4. FORMATION CONTROL

In this section a formation control law is derived
based on eq. (15) and eq. (18) to satisfy eq. (19).

4.1 Control of position

If a square matrix Λf := diag(λ1f , λ2f , λ3f ) and
uf is defined as

uf = R̃
T
(vd − S(l + r)ωd − RT

d Λf ỹf ), (20)

eq. (18) can be represented as
˙̃yf = −Λf ỹf (21)

and ỹf converges to zero exponentially. By the
definition of uf , the control input, (vx, ωy, ωz),
can be calculated as

vx = r̃T
1 (ufd − RT

d Λf ỹf ), (22)

ωy =− 1
rx

r̃T
3 (ufd − RT

d Λf ỹf ), (23)

ωz =
1
rx

r̃T
2 (ufd − RT

d Λf ỹf ). (24)

Since the asymptotic convergence of ỹf is inde-
pendent of other internal variables, the stability of
the whole system can be checked independently.
(E.g., see a lemma in B.2 (A.Ishidori, 1995))



4.2 Zero dynamics

If eq. (24) and eq. (14) are used for (23), we have
ỹf → 0 and
[

ωyc

ωzc

]
=

1
rx

[−r̃T
3

r̃T
2

]
(vd−S(l+r)ωd)−

[
r̃T

2

r̃T
3

]
ωd.

(25)
By substituting eq. (25) to eq. (15), and extracting
the first column, we have

˙̃r1 = r̃2ωzc − r̃3ωyc

=
1
rx

[ −r̃3 r̃2

] ( [−r̃T
3

r̃T
2

]
(vd − S(l + r)ωd)

−rx

[
r̃T

2

r̃T
3

]
ωd

)
. (26)

From properties of rotational matrices, we have

[−r̃3 r̃2

] [−r̃T
3

r̃T
2

]
= I − r̃1r̃

T
1 (27)

[−r̃3 r̃2

] [
r̃T

2

r̃T
3

]
=−S(r̃1) (28)

and eq. (26) can be rewritten as

˙̃r1 =
1
rx

(
(I − r̃1r̃

T
1 )(vd − S(l + r)ωd) + rxS(r̃1)ωd

)
.

(29)

From the derivations above it can be understood
that output zeroing of ỹf produces a zero dynam-
ics of r̃1 which is not affected by the control input.

4.3 Existence of equilibrium

Equilibrium state of the closed loop system of
r̃1, r̃1e := [r̃11e, r̃21e, r̃31e]T , is given a solution
of nonlinear algebraic equation:

(I − r̃1er̃
T
1e)(vd − S(l + r)ωd) + rxS(r̃1e)ωd = 0

(30)
composed of desired parameters, (vxd, ωd), for
the leader and the formation vector l. Since a
necessary condition for the coincidence of the
orientation is given by r̃1e = [1, 0, 0]T , it is used
in eq. (30) and we have

−lzωxd + lxωzd = 0 (31)

lyωxd − lxωyd = 0, (32)

which depends on the formation vector. The for-
mation vector l satisfying the above condition is
represented as

l ∈ kerD(ωd), D(ωd) =
[

ωzd 0 −ωxd

−ωyd ωxd 0

]
.

(33)

By substituting the relation into the first column
of eq. (30), we have

(1−r̃11e)((1+r̃11e)vxd+rxr̃31eωyd−rxr̃21eωzd) = 0,
(34)

and from the result it can be seen that r̃1e =
(1, 0, 0) is actually an equilibrium. However, we
should note that if

(1 + r̃11e)vxd + rxr̃31eωyd − rxr̃21eωzd = 0

is used with other conditions in (30), the resultant
conditions become simltenious linear equations
and the another solution exists besides r̃1e =
(1, 0, 0). In general such equilibrium is unstable
locally.

4.4 Stability of zero dynamics

In order to investigate the stability of r̃1 → r̃1e,
we define a Lyapunov function candidate V1+:

V1+ =
1
2
(r̃1 − r̃1e)T (r̃1 − r̃1e). (35)

The time derivative of the function is given as

V̇1+ = (r̃1 − r̃1e)T ˙̃r1

=− 1
rx

(
r̃T

1e(I − r̃1r̃
T
1 )(vd − S(l + r)ωd)

−rxr̃T
1 S(r̃1e)ωd

)
. (36)

Using eq. (30) we have

V̇1+ = − 1
rx

(1− r̃T
1er̃1)(r̃T

1e+ r̃T
1 )(vd−S(l+r)ωd).

(37)
On the other hand, if we assume that we have
yf → 0 in eq. (21), since the control input vx

should be represented as

vx = r̃T
1 (vd − S(l + r)ωd) (38)

and the linear velocity of the center of mass at the
equilibrium, vxe, is

vxe = r̃T
1e(vd − S(l + r)ωd), (39)

eq. (37) can be rewritten as

V̇1+ = − 1
rx

(1 − r̃T
1er̃1)(vxe + vx). (40)

Since 1− r̃T
1er̃1 ≤ 1 and the assumption of rx > 0,

if
vxe + vx > 0, (41)

then V̇1+ becomes negative semi-definite. Since
only when r̃1 = r̃1e, we have V̇1+ = 0 and it
can be seen that r̃1 → r̃1e(t → ∞) is attained
if the solution,r̃1e, of eq. (30) exists subject to
r̃T

1er̃1e = 1, and wd and vxd are constant.



4.5 Determination of ωx using Euler parameters

In the previous analysis under the condition of
eq. (33), it is shown that (22)-(24) realize r̃1 →
[1, 0, 0]T and 3 inputs have been determined. In
this section we consider to determine the remained
control,ωx, so that other error should be con-
verged.

If we have r̃23 → 0 or r̃32 → 0, it is achieved that
R̃ → I3. From eq. (15), if ωxc is defined as

ωxc = −λ4
r̃23

r̃33
, λ4 > 0 (42)

we have the following convergence:

˙̃r23 = −λ4r̃23. (43)

Based on the observation above, ωx is determined
using Euler parameters, η̃, ε̃ := [ε̃1, ε̃2, ε̃3]T for
the rotational error matrix of R̃ to prevent a
singularity of representation of rotations. Please
notice that eq. (11) can be represented as :

η̃ = ηdη + εT
d ε (44)

ε̃ = ηdε − ηεd − S(εd)ε (45)

where (η, ε) and (ηd, εd) are Euler parameters
to represent the orientation of the follower and
the leader. For the time derivative of the error
parameters we have

[ ˙̃η
˙̃ε

]
=

1
2
G̃

T
ωc, G̃ :=


−ε̃1 η̃ ε̃3 −ε̃2
−ε̃2 −ε̃3 η̃ ε̃1
−ε̃3 ε̃2 −ε̃1 η̃


 .

(46)
Furthermore, we have a transformation of (η̃, ε̃) →
R̃, and the (1,1) element can be represented as

r̃11 = 2(η̃2 + ε̃21) − 1 = 1 − 2(ε̃22 + ε̃23). (47)

(See the details of Euler parameters and its prop-
erties in (F.Caccavale, 1999)).

From this equation we have an equivalence :

r̃1 → [1, 0, 0]T ⇔ (ε̃2, ε̃3) → (0, 0). (48)

If a Lyapunov function candidate of (η̃, ε̃1, ε̃2, ε̃3)
is defined as

V2 = (η̃ − 1)2 + ε̃21 + ε̃22 + ε̃23, (49)

the time derivative of it is given as

V̇2 = 2(η̃ ˙̃η − ˙̃η + ε̃1 ˙̃ε1 + ε̃2 ˙̃ε2 + ε̃3 ˙̃ε3)

=
[
ε̃1 ε̃2 ε̃3

]
ωc. (50)

Furthermore, from eq. (48) we have r̃1 → [1, 0, 0]T

and
V̇2 = ε̃1ωxc. (51)

If the control input ωxc is defined as

ωxc = −λ4ε̃1, (52)

we have
V̇2 = −λ4ε̃

2
1 ≤ 0 (53)

and ε̃1 → 0 and we have

(η̃, ε̃1, ε̃2, ε̃3) → (1, 0, 0, 0) ⇒ R̃ → I3. (54)

The above equation means that the orientation of
the follower converges to that of the leader, and
the control objective of eq. (10) is realized. From
the definition of eq. (52), the control input ωx is
calculated as

ωx = −λ4ε̃1 + r̃T
1 ωd. (55)

5. MODIFICATION OF DESIRED
ORIENTATION

If the desired orientation does not satisfy the
condition of eq. (33), it is not ensured that r̃1 →
[1, 0, 0]T and in some cases oscillations is remained
in the responses. In order to prevent the bad ef-
fects, we consider a method to modify the desired
orientation Rd for the follower as

Rr = RmRd (56)

where Rr is a new desired orientation for the
follower and Rm represents a modification.

Since Rm should be near I for the original track-
ing problem, and if ωr = [ωxr, ωyr, ωzr]T is defined
as

Ṙr = RrS(ωr), (57)
it should satisfy the condition:

D(ωr)l = 0. (58)

In order to determine ωr, we consider an opti-
mization problem with a constraint as

J =
1
2
Trace(Rm − I)T (Rm − I) (59)

sub. to D(ωr)l = 0. (60)

The details how to solve the problem are omitted
due to space limitation, however, the basic idea
is to find ωr which makes J̇ negative semidefi-
nite. (M.Yamakita, 1996) Once the modification
is determined, the control problem in eq. (7) is
modified as

p → pd + Rdl, R → Rr. (61)

6. NUMERICAL SIMULATIONS
In order to show the validity of the proposed
method, numerical simulations are conducted
where the desired motion of the leader is spiral
as (vxd, ωxd, ωyd, ωzd) = (1, 1, 1, 1). The condition
in the simulations are given as follows.
(Common condition) Initial state of the follower �(0) =
(−1, 1, 1)T , �(0) = � Initial state of the leader �d(0) =
(0, 0, 0)T , �d(0) = �

Target position vector � = (2, 0, 0)T

Simulation 1
When the formation vector � satisfies eq. (33), it is con-
firmed that both position and orientation converge to the



desired one without errors.
(conditions in Simulation 1) Formation vector � =
(−1,−1,−1) Simulation 2

When the formation vector � does not satisfy the eq. (33)
and the proposed modification is not used. It is observed
that the formation control is not realized with oscillations.
(conditions in Simulation 2)
Formation vector � = (−1,−2,−3)
Simulation 3
When the formation vector � does not satisfy the eq. (33).
It is observed that if the modification of the orientation is
introduced, the formation control is well done with some
error though a big oscillation is remained without the
modification. The performance will be improved by turning
the parameter α or the criterion function.
(conditions in Simulation 3)
Formation vector � = (−1,−2,−3) Initial orientation
�r(0) = � Weighting factor α = 0.3

7. CONCLUDING REMARKS

In this paper a formation control method for
AUVs in 3D space was proposed based on I/O
linearization method where a follower tracks the
leader keeping a specified relative position with
a desired orientation. A condition of the perfect
tracking is given.When the condition is not satis-
fied, some undesirable phenomena was observed
and a modification of the fundamental control
was also proposed. The validity of the proposed
method were assured by numerical simulations.
Since the proposed method was derived based on
a kinematic model, the validity of the method
for a dynamic model should be checked using a
backstepping approach.

While the research is in progress, the second
author has past. The other authors would like
to pray for the repose of his soul. If there exists
any fault in the research, all attribute to the third
author.
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