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Abstract: The main objective of the presented work is to compare two model
predictive control strategies by applying them to an antibiotic production in a
fed-batch fermentation process. The reactor is modelled as a nonlinear biological
compartment system with 13 states. The well-known nonlinear model predictive
control (NMPC) is compared with a control strategy based on online optimization
of the full trajectory. The control strategies are applied to real fermentation
processes, which are strongly disturbed by a temperature shift. To extend the
comparision, two state estimators, the Extended-Kalman-Filter (EKF) and the
Constrained-EKF (CEKF), are used. Copyright c© 2005 IFAC
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1. INTRODUCTION

Classical control concepts based on linearized
models for nonlinear systems, often yield insuffi-
cient results. Therfore, it is necessary to use non-
linear model-based algorithms for process control
and monitoring to achieve high productivity. This
is of special importance for non-stationary pro-
cesses with a time dependent set point trajectory.

The basic requirement for model-based control
strategies is a process model of high accuracy.
Biological processes show complex internal regu-
lation mechanisms and strong nonlinear behav-
ior, which makes it difficult to find an appro-
priate model structure. In the last years the at-
tempt to describe these internal regulation cy-
cles with structured parametric models increased
(Roubos, 2002). These models describe the dy-

namic interaction of the biological compartments
using coupled nonlinear differential equations. For
the family of strains considered here, a highly
nonlinear compartment model with 13 states was
developed (King, 1997).

Using the mathematical description of a system,
predictions of future output values, based on as-
sumed future input values, can be made. These
predictions can be used to calculate an opti-
mal trajectory. Open-loop control of this optimal
trajectory will show that there are differences
between the offline calculated prediction and the
real fermentation process. Without closed-loop
control the result of the process will be subop-
timal. But the application of closed-loop control
strategies requires the knowledge of the real sys-
tems state. In fermentation processes most of the
system’s states are accessible offline only by ana-



lyzing taken samples in a laboratory. In this case
state estimation algorithms, like the Extended-
Kalman-Filter (EKF), the Constrained-EKF
(CEKF), or the Moving-Horizon-State-Estimation
(MHE) can observe the actual state by inte-
grating the few online accessible measurements
(Gelb, 1974)(Rao et al., 2003).

A well-known method for nonlinear process con-
trol is the Nonlinear Model Predictive Control
(NMPC)(Roubos, 2002). NMPC solves an opti-
mization problem by searching for an input se-
quence, which minimizes the difference between
the offline calculated optimal trajectory and the
output of the system. It is obvious that if there
are strong disturbances or model uncertainties,
an optimal route back to the pre-calculated tra-
jectory may not be the optimal choice in general.
Because of the system’s nonlinearity there may be
another new way to achieve optimal productivity
in a production process. Here, a control strategy
based on online optimization of the complete fu-
ture trajectory is advantageous.

The paper is organized as follows: After some
remarks on the optimal trajectory planning in
section 2, section 3 gives a summary of the state
estimators used. In section 4 the application of two
modell predictive control strategies is shown. The
NMPC and the Online Trajectory Planning (OT)
are applied to disturbed fed-batch fermentations
of Streptomyces tendae producing the antibiotic
nikkomycin.

2. THE OPTIMAL OFFLINE TRAJECTORY

In fed-batch processes the productivity is affected
by the costs of the fermentation, including e.g.
feeding components and personal costs, and the
gained value of the product. In economy, e.g. the
function

Φ =
Gain
Costs

(1)

is used to characterize the productivity of a pro-
cess. Main intention for an optimal trajectory is
the maximization of the productivity. Under the
assumption that set-up and cleaning are fixed
costs, and the costs of the feeding are small com-
pared to the gain of the product, the objective
function for optimization of the trajectory can be
written as

max
x0,u1,...,uN ,tend

mproduct(tend). (2)

The product nikkomycin is formed as a so-called
secondary metabolite. It’s rate of production

µNi =
(
µmax1

K1

K1 + gAa
(3)

+µmax2

K2

K2 + gNu

)
gDNA

depends on intracellular, online unmeasurable
states, such as the internal concentrations of
amino acids (Aa), nucleotides (Nu), and DNA.
That’s why it is not easy to find the optimal
trajectory by using manual or simple statistical
planning methods. A nonlinear optimization al-
gorithm has to be used. In order to apply nu-
merical optimization algorithms, it is necessary to
provide a parametric input sequence. In general,
it is possible to choose any parametric function.
Commonly used are zero- and first-order hold
sequences with fixed or variable time increments.

To achieve maximum productivity, trajectory op-
timizations using zero-, first- and second-order
hold feeding trajectories for three nutrients (am-
monia, phosphate, and glucose) were compared.
Additionaly, the initial values of these substrates
at the start of the fermentation could be changed.
Figure 1 shows the results of the optimizations.
Although the trajectories of the nutrients show
major differences, the product yield (mNi) is
nearly the same for all three predictions. Taking
a look at the internal compartments the trends
of DNA and nucleotides after t = 60 h, which
mainly influence the formation of the product, are
nearly the same. That is why the simplest, zero-
order hold parametrization of the input trajectory
is chosen for the following process control.

For the comparison of the closed-loop controls
presented in section 4 the optimal trajectory was
recalculated using fixed initial conditions. The
new trajectory shows another input sequence but
equally the same amount of product.

3. STATE ESTIMATION

During a fermentation process the real state dif-
fers from the model prediction due to uncertain-
ties. Thus it is necessary to adjust the state pre-
dictions by integrating the online accessible mea-
surements.

A classical state estimation algorithm for nonlin-
ear state space systems is the Extended Kalman-
Filter (EKF) (Gelb, 1974). As some of its equa-
tions are needed as well for the Constrained-EKF
considered next, the well-known EKF equations
are given here for completeness.

time-update:

˙̂xt = f(x̂t, u(t), t), tk < t < tk+1 (4)

x̂t(tk+) = x̂
(+)
k

Ṗ(t) = F(x̂t)P(t) + P(t)FT (x̂t) + Q (5)

P(tk+) = P(+)
k

F(x̂t) =
∂f

∂x

∣∣∣∣
x=x̂t
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Fig. 1. Comparison of simulated optimal trajectories using different parametrizations of the feedings.
Subscripts: X - dry biomass, Ni - nikkomycin, D - DNA, R - RNA, Pr - proteins, Aa - amino acids,

Nu - nucleotides, U - structural elements, Am - ammonium, Ph - phosphate, C - glucose.

measurement-update:

x̂
(+)
k = x̂

(−)
k +Kk

(
ymeasured

k
− h(x̂(−)

k , tk)
)

(6)

P(+)
k =

[
I−KkH

(−)
k

]
P(−)

k (7)

Kk = P(−)
k H(−)T

k ·
(
H(−)

k P(−)
k H(−)T

k + Rk

)−1

x̂
(−)
k = x̂t(t = tk−)

P(−)
k = P(tk−)

H(−)
k =

∂h

∂x

∣∣∣∣
x=x̂

(−)
k

As an alternative to the EKF, the optimization-
based algorithm named Constrained-EKF (Rao
et al., 2003) can be used. Based on the same
equations for the time-update (eqn. 4 and 5)
the measurement-update is calculated as a maxi-
mum a posteriory estimation. The update ξ̂

k−1
=

x̂
(+)
k − x̂

(−)
k is calculated by the following equa-

tions.

min
ξ̂

k−1

ΦCEKF(ξ̂
k−1

) (8)

ΦCEKF(ξ̂
k−1

) =
1
2

ξ̂
T

k−1
·P(−)−1

k · ξ̂
k−1

+
1
2

(
ymeasured

k
− h((x̂(−)

k + ξ̂
k−1

), tk)

)T

·R−1
k ·

(
ymeasured

k
− h((x̂(−)

k + ξ̂
k−1

), tk)

)
(9)

loBound ≤ ψ(x, u, tk) ≤ up
Bound

For unconstrained, state space systems with linear
measurement equation this measurement-update
is equal to the update algorithm of the EKF.
The update of the covariance matrix P can be
performed the same way as by the EKF (eqn. 7) or
by using the estimated Hessian matrix of an SQP
optimization algorithm. The main advantage of
the CEKF is the possibility to consider constraints
while estimating the state of the system. DNA,
for example, must have a value of 2-4% of the dry
biomass in the problem considered. As the EKF
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Fig. 2. Comparison of state estimation by a EKF and a CEKF in an experiment. VBase denotes the
volume of fed base for pH control. Subscripts see fig. 1.

violates this and other constraints its performance
is worse.

Figure 2 shows a comparision of the state esti-
mation by an EKF and a CEKF. Although the
matrix Q of the EKF was adjusted by a nonlinear
optimization of the estimation quality, in this case
the EKF fails, because the linearization in the
EKF algorithm is invalid if constraints are met.
The CEKF meets the constraints and is therefore
more reliable than the EKF while working with
this highly constrained problem.

Another known optimization-based constrained
state estimator is the Moving-Horizon-State-
Estimation (MHE). The estimation quality of the
MHE is just as good as the estimation quality of
the CEKF in this case (Heine, 2004). Compared to
the CEKF, the MHE needs much more calculation
time (some hours), while the CEKF is nearly as
fast as the EKF (some seconds).

4. MODEL PREDICTIVE PROCESS
CONTROL

Because of the strong system’s nonlinearity and
the dynamic setpoint trajectory there is no way
using classical linear control strategies for such
kind of processes.

Nonlinear Model Predictive Control (NMPC)

NMPC is often the first and a well-known choice
for controlling such systems. The main objective
of MPC is following an offline planned trajectory
by finding an optimal way from the actual pro-
cess state back to this trajectory. Therefore, an
input sequence is calculated which minimizes the
difference between the prediction and the offline
trajectory (eqn. 10 and 11).

min
uk+Ncomp

, . . . ,

uk+Ncomp+Ncontrol

ΦNMPC

(
uk+Ncomp

, . . . ,

uk+Ncomp+Ncontrol

)
(10)

ΦNMPC =

k + Ncomp

+Npred∑

i = k
+Ncomp + 1

[(
xref (ti)− x̂(ti|tk)

)T(11)

·Wi ·
(
xref (ti)︸ ︷︷ ︸

offline

trajectory

− x̂(ti|tk)︸ ︷︷ ︸
model

prediction

)]

Only the first part of this new control strategy
is realized, because after the next measurement
arrives, the optimization is rerun. While optimiz-
ing the input sequence, not the whole process
is simulated. The system’s response is evaluated
inside the prediction horizon, only. Changes of
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Fig. 3. Application of NMPC to a fed-batch fermentation of Streptomyces tendae. Subscripts see fig. 1.

the control trajectory are performed within the
control horizon. The only way to find the opti-
mal control for nonlinear constrained processes
is given by numerical optimization. Because of
the required computing time, the NMPC is only
applicable to rather slow systems.

Online Trajectory Planning (OT)

If the system is strongly disturbed, the optimal
way back to the offline planned trajectory may
not be the way to maximum productivity. It
is also not assured, that constraints are met,
if not the whole future trajectory is simulated.
Therefore, first the lengths of the prediction and
the control horizon have to be set up to the end
of the fermentation. Due to the fact that the
whole future process is simulated, even strong
constraints can be met. This is very important,
e.g. for the reaction volume. The volume in the
experiments performed is limited to ten liter. If
the volume reaches this constraint, controllability
is lost, because no additional feeding is possible.
Second, the objective function (eqn. 11) itself
has to be modified. Instead of minimizing the
distance between the prediction and the offline
trajectory, the maximum productivity itself is the
target. In fact, the same cost function is chosen
as used for planning the offline trajectory (eqn.
2). Every single control step achieves maximum
productivity at the end of the process.

Comparison of NMPC and OT applied to dis-
turbed fermentations

For the comparison of the NMPC and the OT a
disturbance scenario was chosen, and both con-
trol strategies where applied to control such a
defined disturbed fermentation. The disturbance
was applied by a temperature shift of +9 K within
the first 20 hours with the consequence of a
nearly doubled growth rate. In the model used for
state estimation and optimization this tempera-
ture shift was not known. As online- or atline-
measurements the volume of fed base used for
correction of the pH-value and the dry biomass,
available 1.5 hours after sampling, are used. The
state estimation was performed by a CEKF.

Figure 3 shows the realization of a NMPC con-
trolled fed-batch fermentation of Streptomyces
tendae. The prediction horizon was set to 40 h,
the control horizon to 30 h. Despite of the strong
disturbance the state estimator works very well,
and the controller gets the system nearly back to
the offline trajectory. A slightly smaller amount
of product was produced then offline predicted.
Figure 4 shows as a comparison an OT controlled
fermentation. As a result of the control, nearly
the same amount of product as for the NMPC
controlled fermentation was produced. Taking a
look at the trends of the measured nikkomycin, it
can be seen that the production slows down when
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Fig. 4. Application of OT to a fed-batch fermentation of Streptomyces tendae. Subscripts see fig. 1.

reaching the end of both fermentations. This effect
is not jet modelled. That is why both controllers
are not able to prevent the production rate from
slowing down. A comparison of the production
rates before this unknown effect happens, shows
the higher productivity of the OT. Moreover, the
largest nikkomycin concentration measurements
were obtained in the OT-experiment. The OT uses
the higher growth rate at the beginning of the
fermentation for an earlier start of the production.

5. CONCLUSIONS

The application of the Nonliner Model Predictive
Control (NMPC) and the Online Trajectory Plan-
ning (OT) to disturbed fed-batch fermentations
of Streptomyces tendae is presented here. The OT
seems to be able to achieve higher productivity
(Heine et al., 2002). But in the presented case it
is only as good as the classical NMPC. Although
a higher computational burden is obtained com-
pared to the classical NMPC, the OT possesses
higher potential with increasing computing power.

Furthermore, an optimization-based estimation
algorithm, the Constrained-EKF, is used. For the
considered biological compartment model it pro-
vides a more accurate and more reliable state
estimation compared to the EKF.
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