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Abstract: This paper considers the problem of assigning the closed-loop eigenvalues of 
linear large-scale systems in a desired stable region using decentralized control. A new 
method for robust decentralized control of the system via eigenstructure assignment of the 
subsystems is given. Based on the matrix perturbation theory, sufficient conditions for 
eigenstructure of each isolated subsystem are derived, when these conditions are satisfied, 
the closed-loop poles of the overall system will be assigned in the desirable region.  Also, 
a new robustness measure is proposed, which does not need to calculate the eigenvectors 
and condition numbers. So the proposed measure has less computational burden than 
many of similar robustness measures. Based on the presented results, a new algorithm for 
decentralized robust pole assignment is suggested to design output feedback or state 
feedback. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Decentralized stabilization has been an active field of 
research for large-scale systems. Since 1960’s, many 
authors have considered this problem (Bailey, 1966; 
Jamshidi, 1997; Siljak, 1991).The early works were 
based on Lyapunov methods (Araki and Kondo, 
1972; Siljak, 1991). However, the stability results of 
the composite system are much dependent on the 
choice of the Lyapunov functions of the subsystems. 
Also, Lyapunov methods provide only sufficient 
conditions for stability of interconnected systems, 
and one may search in vain for stabilizing control. 
 
In (Grosdidier and Morari, 1986) structured singular 
value interaction measures are used as a tool for the 
design of decentralized control. The interaction 
measures consider the stability and performance of 
the closed-loop system. This method provides a 
sufficient condition (in terms of the subsystem 
design constraints) under which aggregation of the 
stable subsystem design yields an overall stable 

design. Also, Nett and Uthgenannt (1988) derived an 
explicit stability condition for 2-block systems. 
However, in both of these methods, it is assumed that 
the initial system is square, stable and minimum 
phase and for systems with high dimensions, it 
requires very complicated computations. 
 
Recently, a novel sufficient condition for 
decentralized stabilization of large-scale systems is 
proposed (Labibi, et al., 2000). In this method, the 
stability sufficient condition is stated as maximum 
eigenvalues of the hermitian parts of the state matrix 
of each isolated subsystem and the interaction matrix. 
On the other hand, another sufficient condition for 
robust stabilization of large-scale systems is 
proposed (Labibi, et al., 2003). The authors have 
shown that by appropriately assigning the 
eigenstructure of each isolated subsystem, the robust 
stability of the overall closed loop system will be 
guaranteed. 
 



 

     

However, in the mentioned approaches, exponential 
stability of the closed-loop system is considered and 
the poles can not be assigned in the desirable region. 
To overcome the mentioned problems in the previous 
methods, this paper presents a novel methodology for 
the design of decentralized controllers in which, the 
approach can be applied to non-square, non-
minimum phase and open-loop unstable systems as 
well. The main contribution of the paper is that the 
new approach is capable of regional pole assignment 
using decentralized control. The proposed 
methodology guarantees the closed-loop robust 
stability. 
 
In many practical design situations, there often exist 
perturbations or parameter variations in a system. In 
order to achieve closed-loop system with low 
eigenvalue sensitivity, some suitable measures of 
eigenvalue sensitivity has been introduced (Liu and 
Patton, 1998). In this paper, a new robustness index 
is introduced, which leads to computationally 
effective methods for robust controller design via 
normalizing the closed-loop state matrix. It allows 
the closed-loop poles to be assigned with minimum 
sensitivity to parameter perturbations within the 
specified region. 
 
The paper is organized as follows: In section 2, the 
problem of finding suitable decentralized dynamical 
controllers for the subsystems of a linear large-scale 
system is presented. Section 3 provides the necessary 
mathematical background for the next section. In 
sections 4, new sufficient conditions are achieved, 
when satisfied the overall closed loop poles are 
assigned in a specified region. In sections 5 an 
illustrative example is presented to show the 
effectiveness of the proposed method.  
 
 

2. PROBLEM FORMULATION 
 
Consider a large-scale system ),(sG  with the 
following state-space equations: 
 

                   
⎩
⎨
⎧

=
+=

)()(
)()()(

:
tCxty

tButAxtx
G

&                    (1) 

 
where nRx ∈ , ,mRu ∈ ,pRy ∈ ,nnRA ×∈ mnRB ×∈ , 
and npRC ×∈ , composed of L  linear time-invariant 
subsystems )(sGi , described by: 
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. It is assumed that all ),( iiii BA  are 

controllable and ),( iiii CA  are observable, also all 

iiB  and iiC  are of full rank. In (2), the term ∑ jij xA  
is due to the interactions of the other subsystems. The 
objective in this paper is to design a local dynamical 
output feedback: 
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for each isolated subsystem 
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such that the closed loop poles are assigned 
appropriately. Note that iR  is the i-th reference input 
vector. Finally, the decentralized controller 
 
                        )}({)( sKdiagsK i=                        (5) 
 
assigns the closed loop poles of the overall system in 
the desirable region such that they have minimum 
sensitivity to parameter changes, if some sufficient 
conditions are satisfied. 
 
 

3. PRELIMINARY MATHEMATICAL NOTES 
 
In this section several basic Theorems which are 
necessary to prove the Theorem of the next section 
are presented. In the following Theorems, the matrix 
A which satisfies the property  
 
                                  HH AAAA =                               (6) 
 
is called normal where, H denotes the conjugate 
transpose of the matrix. Also Schur decomposition 
will be used (Golub and Van Loan, 1989) to give 
some results on matrix perturbation theory. 
 
Theorem 3.1: Let  
 
                       NDAQQ H +=                            (7)          
 
be a Schur decomposition of nnCA ×∈  where 

),,( 1 ndiagD λλ K= ,  nnCN ×∈ is a strictly upper 
triangular matrix and Q is an appropriate unitary 
matrix. Suppose that nnCE ×∈ is an arbitrary matrix.  
If )( EA +∈ λµ  and p  is the smallest positive 

integer such that 0=pN , then  
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where: 
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(.)λ  means the eigenvalue of (.) and [ ]ijnN = , λ  

is the eigenvalue of the matrix A. 
Proof: see (Golub and Van Loan, 1989). 
 
Lemma 3.1:  Matrix nnCA ×∈  is normal if and only 
if in the Schur decomposition of matrix A, the matrix 
N  is equal to zero. 
 
Proof: see (Golub and Van Loan, 1989). 
 
Theorem 3.2:  Matrix nnCA ×∈  is normal if and only 
if : 
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where 

F
A  is the Frobenius norm of A. 

 
Proof: It is shown that unitary similarity 
transformations do not affect the Frobenius norm of a 
matrix. So, it can be concluded that: 
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If the matrix A is normal, then based on lemma 3.1, 
in equation (7)  N=0, and  
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and the sufficient condition is proved. In order to 
show the necessary part of the Theorem, since the 
Schur decomposition of the matrix A, is given as 
follows  
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it can be concluded that 0=ijn  and N=0, therefore 
the matrix is normal, and the proof is complete.       □ 
 
 

4. ROBUST DECENTRALIZED POLE 
ASSIGNMENT 

 
Consider a large-scale system ),(sG  with state space 
equations (1). The state space equations for each 
subsystem are given by (2). In general case, the 
designed controller for each subsystem is a 
dynamical controller. Assume that i-th controller 

)(sK i  in (3) has the following state-space equations 
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where cin

ci Rx ∈ is the state vector of the controller 

and also 
c

N

i
ci nn =∑

=1

. It is simple to show that 

designing the dynamical output feedback for the 
subsystem can be converted to design of a static 
controller, iK~ for the augmented subsystem with the 
following state space equation (Jamshidi, 1997; Liu 
and Patton, 1998): 
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where : 
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Applying the decentralized controller 

)}({)( sKdiagsK i= , the next theorem on the overall 
stability can be proved.  
 
Theorem 4.1: Assuming the decentralized controller 

)}({)( sKdiagsK i=  stabilizes the diagonal 
system )(sGd , where )}({)( sGdiagsG did =  and 

)(sGdi  is the transfer function of the i-th isolated 
subsystem, given by equation (4), then )(sK  
stabilizes )(sG  if  
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}{ iiAdiagAH −= ,  Re(.)  is the real part of (.) and 

iN  is obtained from the Schur decomposition of 

iiiiiii CKBA ~~~~ +  according to (7). Also p  is the 

smallest positive integer such that 0=p
iN . 

 
In addition if: 
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and: 
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the closed-loop poles of the overall system will be 
placed in the following region: 
 
                 αµβ −<<− )Re( k                         (22)         
 
where kµ  is the k-th eigenvalue of the overall closed 
loop system.  
 
Proof: Without loss of generality and for the sake of 
simplicity, assume that there is no external reference 
input. Considering equations (16), the overall closed-
loop system under the decentralized controller has 
the following state space equations: 
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where 
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In Theorem 3.2  
 
                                  HE ~=                                  (26) 
 
therefore the k-th eigenvalue of the overall closed-
loop system satisfies the following relation: 
 
              ),max(min /1

,...,1

p
jknnj c

θθλµ ≤−
+=

          (27) 

 
whereλ  is an eigenvalue of closed-loop diagonal 
state matrix )~~~~( CKBAd + , kµ  is an eigenvalue of the 

overall closed-loop state matrix )~~~~~( CKBHAd ++ ,     
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and dN  is the related matrix, obtained from Schur 

decomposition of the matrix )~~~~( CKBAd + . Since 

22

~ HH = , equation (28) can be written as: 
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Considering jkjk λµλµ −≤− )(Re , condition (27) 

can be written as: 
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for the specified jλ . In order to stabilize the overall 
closed loop system, the following conditions must be 
satisfied: 
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Therefore sufficient conditions for overall stability 
can be given as: 
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Since )~~~~( CKBAd +  is block diagonal, (32) can be 
satisfied if the following conditions are satisfied for 
the i-th isolated subsystem: 
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In a similar way, in order to place the overall closed-
loop poles in the following region 
 
                        αµβ −<<− )Re( k                      (34) 
 
it suffices to have: 
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Considering the Schur decomposition for the i-th 
isolated subsystem as given by 
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it is simple to show that the Schur decomposition for 
the diagonal system may have the following form: 
 
                 dddd

H
d DNQCKBAQ +=+ )~~~~(            (38) 

 
where: 
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From the above relations it is simple to show that  
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and therefore θ  is equal to mθ , which is defined by 
(19). So, from (33) it can be concluded that if 
condition (18) is satisfied the overall stability is 
guaranteed. In a similar way, conditions (20) and 
(21) can be derived.                                                   □                                                                                   
 
Remark: It is also possible to drive similar conditions 
for the imaginary part of the closed-loop poles.  
 
The final purpose is to provide a computational 
procedure for robust regional pole assignment via 
decentralized control. In order to have robustness of 
closed-loop poles against perturbations, several 
eigenvalue sensitivity indexes are introduced 
(Wilkinson, 1965; Kautsky, et al., 1985; Liu and 
Patton, 1998). They are usually based on the spectral 
condition number of the closed-loop modal matrix. 
Due to the fact that it is difficult to handle the modal 
matrix, a new robustness index is proposed. 
 
It is shown that if the set of eigenvectors of the 
system are assigned to be orthogonal, the closed-loop 
system will be well conditioned and the sensitivity of 
the closed-loop eigenvalues against perturbations and 
parameter variations of system will be minimized 
(Liu and Patton, 1998). Normal matrices have 
complete set of orthogonal eigenvectors (Strang, 
1986). Therefore, based on theorem 3.2, the 
following function can be used as an eigenvalue 
sensitivity index for matrix A: 
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The suggested methodology for robust decentralized 
pole assignment for large scale systems is explained 
in the following algorithm. 
 
Algorithm 4-1: 
1) Select parameters α  and β  such that: 
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2
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Note that, it is only a necessary condition for the 
problem to have a solution. If (43) is not satisfied, 
(20) and (21) will not be consistent 
 
2) For each isolated subsystem the eigenvalues 
should be selected such that  
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The above condition is another necessary condition 
for the problem.  
 
3) for each isolated subsystem, minimize the 
following cost function  
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subject to the conditions (20) and (21). 
 
4) if the optimization problem does not have a 
solution, change α  and β , and go to step 1. 
 
Since the algorithm tries to normalize the closed-loop 
matrix of each isolated subsystem (based on theorem 
3.2), the eigenvectors of the closed-loop subsystems 
are assigned to be orthogonal. Therefore the closed-
loop eigenvalues of the diagonal system has 
minimum sensitivity to perturbations of the 
parameters of the diagonal system. In order to 
perform robustness to perturbation of the interactions 
(off diagonal elements), the upper bound of the 
interactions is considered and relation (9) is modified 
such that:  
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where H∆  is the upper bound of perturbation for the 
matrix H . 
 
Since this procedure does not need to calculate the 
eigenvectors, in comparison with many other similar 
methods, the proposed method has less 
computational burden.  
 
 

5. ILLUSTRATIVE EXAMPLE 
 
Consider the system whose dynamics are described 
by 
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The system is unstable. The objective is to design a 
decentralized controller such that the real parts of the 
closed-loop eigenvalues are less than 2.0−=α and 
more than 7−=β . Since 2.6675

2
=H , condition 

(42) is satisfied. Using the method proposed in 
section 6, the decentralized controller: 
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assigns the overall closed-loop poles at {-5.2783,       
-3.4372 ± 2.0211i, -1.9059} and the design 
objectives are satisfied. In this example 3.17431 =θ  
and 3.03742 =θ .  
 
To solve the optimization problem, the Genetic 
Algorithms is used, which is used previously for the 
purpose of eigenstructure assignment (Patton and 
Liu, 1994; Esna Ashari and Khaki Sedigh, 2004). 
The closed-loop eigenvalues of subsystems are 
considered as the optimization parameters. Then at 
each step, the possible solutions for the eigenvalues 
of the isolated subsystems (chromosomes) will be 
produced using the random search operations. They 
are selected such that (44) is satisfied. Note that the 
chromosomes that are out of this range don’t satisfy 
(20) and (21), obviously. After that, matrix iK  is 
computed using any output feedback pole assignment 
method according to the selected eigenvalues for the 
i-th subsystem. Then the cost function (45) must be 
computed and a new generation of chromosomes 
should be created. Employing the genetic algorithms 
for the optimization problem, the global optimal 
solution will be calculated easily. 
 
Note that for the isolated subsystems: 
 
                  2,11.8312 38.0263,)( == iTiκ   
 
where (.)κ  denotes the condition number of (.) . 
Also iT  is the modal matrix for the i-th subsystem, 
which is composed of the eigenvectors of the 
subsystem. It can be shown that in spite of the 
stability of the overall closed-loop system, the 
sufficient condition proposed in (Labibi, et al., 2003) 
is not satisfied. It shows that the condition in (Labibi, 
et al., 2003) is more conservative than the new 
condition for this example. 
 
 

6. CONCLUSION 
 
This paper has introduced a new approach to design 
a robust decentralized controller for large-scale 
systems. For each isolated subsystem, sufficient 
conditions are achieved, which guarantee that the 
closed loop poles of the overall system will be 
assigned in the desired region. It is shown that by 
assigning the eigenstructure of each isolated 
subsystem via output feedback or state feedback 
appropriately, these conditions can be satisfied and 
the closed-loop state matrices become normal. Since 
the eigenvectors of the subsystems are orthogonal, 
the closed-loop system has minimum sensitivity to 

perturbations of the parameters of the system. Also a 
new robustness index is proposed, which leads to 
computationally effective methods for robust 
decentralized design. 
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