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Abstract: An approach based on optimization is described to construct state
estimators that provide a stable dynamics of the estimation error and minimize a
Lp measure of the estimation error. The state estimator depends on an innovation
function made up of two terms: a linear gain and a feedforward neural network.
The gain and the weights of the neural network can be chosen in such way to ensure
the convergence of the estimation error and minimize the Lp performance index,
after a suitable discretization of the state and error space. Simulation results are
reported. Copyright c©2005 IFAC
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1. INTRODUCTION

Many methods to perform state estimation for
nonlinear systems are reported in the literature.
Two different frameworks are usually considered
for both continuous-time and discrete-time sys-
tems. The first is related to the case where no
noise affects a system, hence uncertainty in the
plant is due only to the initial state and to a lim-
ited access to the state variables. The solution of
such a problem enables one to design an estimator,
usually called “observer.” The second framework
concerns a system setting where disturbances af-
fect both the dynamics and the measures. The
solution of the estimation problem in the presence
of noise is usually called “filter.” The designs of
both observers and filters for general nonlinear
systems with convergence guarantees are still dif-
ficult tasks.

A comprehensive discussion of the various con-
tributions to nonlinear estimation by different
approaches is beyond the scope of the paper
(the interested reader is referred to (Walcott et

al., 1987; Misawa and Hedrick, 1989) for the ob-
server problem and to (Haykin et al., 1997) for a
survey of filtering).

The first result on observer design for nonlin-
ear systems was obtained by Thau (Thau, 1973),
where sufficient conditions to design an asymp-
totically stable observer were presented. Further
investigations on the so-called high-gain observers
were carried out later on (Gauthier et al., 1992).
These estimators ensure a fast convergence of the
estimation error but require a sufficiently large
gain, which can cause instability when used in cas-
cade with a regulator for the purpose of feedback
control. Stability conditions on the estimation er-



ror for observers were also proposed in (Raghavan
and Hedrick, 1994); they are essentially based on
the idea of accounting for the nonlinearity by
means of the corresponding Lipschitz inequality.
An algebraic Riccati equation is introduced to
guarantee convergence for the estimator. Further
investigations by Rajamani gave new interpreta-
tions of these results (Rajamani, 1998), as well as
discussions and suggestions to face design issues
(Rajamani and Cho, 1998).

As previously pointed out, there exist numerous
methods to filter the state of a noisy system.
The disturbances that affect the system and/or
the measurement equations can be regarded as
either unknown deterministic inputs or stochastic
random variables within a probabilistic frame-
work. Here we focus on estimators that admit a
Lp bounded estimation error, p ∈ [1,∞] , which
can be considered also as a performance index
(Alessandri and Sanguineti, 2001b).

More specifically, state estimation problems are
considered for continuous-time, nonlinear dy-
namic systems with Lipschitz nonlinearities by
means of a full-order observer that is constructed
using an innovation function made up of two
terms: a linear gain and a parameterized nonlinear
structure. Under some regularity assumptions on
the system and measurement equations and on the
innovation function, a procedure is developed to
design such an observer with the parameterized
structure implemented by means of a class of ap-
proximating networks such as feedforward neural
networks.

In order to guarantee the convergence of the
estimation error and a satisfying Lp performance
index, a quadratic Lyapunov function is sought
for. The design parameters (i.e., the linear gain
and the weights of the neural network) can be
chosen in such a way to suitably constrain the
derivative of a quadratic Lyapunov function to
be negative on a sampling grid of points on the
Cartesian product of the state space and the
estimation error space. This is accomplished by
minimizing a cost function that penalizes the bad
estimation performances and the constraints that
are not satisfied in correspondence of the sampling
points. It is worth noting that the selection of the
design parameters is made completely off line (see
also (Alessandri et al., 1999)).

Under assumptions on the distribution of the
sampling points and smoothness of the Lyapunov
function, the negative definiteness of the deriva-
tive of the Lyapunov function is ensured, thus the
resulting observer provides a convergent estima-
tion error. In particular, it is shown that conver-
gence is obtained by using special deterministic
sequences that aim at optimizing the dispersion
of the sampling points (a measure that quantifies

“how uniformly” the points are spread). The use
of such sequences in the context of neural net-
work learning has been introduced and analyzed
in (Cervellera and Muselli, 2004).

The paper is organized as follows. Section 2 is
devoted to the description of the considered class
of systems. In Section 3, the focus is on the stabil-
ity of the estimation error both with and without
disturbances. The proposed approach is presented
in Section 4 for a class of parameterized esti-
mators that can be constructed to perform state
estimation by using the powerful approximation
capabilities of neural networks. Final comments
are given in Section 5

Before concluding this section, let us briefly in-
troduced the following notations. For p ∈ [1,∞)
and a positive n, the space Ln

p consists of all
Lebesgue-measurable functions s : [0,∞) → R

n

such that
∫ ∞

0
‖s(t)‖p

dt < ∞. The space Ln
∞ is

the set of all Lebesgue-measurable functions de-
fined on R

n that are essentially bounded, i.e., such
that ess. supt≥0 ‖s(t)‖ < ∞, where “ ess. sup ”
denotes the essential supremum (i.e., supremum
except on sets of measure zero). To deal with
possibly unbounded signals, the extension of Ln

p

spaces is defined as follows. For p ∈ [1,∞] ,

the extended space Ln
p e is defined as Ln

p e
4
=

{

s|sτ ∈ Ln
p , ∀ τ ≥ 0

}

, where

sτ (t)
4
=

{

s(t) , if t ≤ τ ,

0 , if t > τ .
. Moreover, for every

s ∈ Ln
p e and p ∈ [1,∞], let ‖s‖p, τ

4
= ‖sτ‖p.

Given a matrix M ∈ R
m×n , ‖M‖

4
=

sup
x∈R

n, ‖x‖=1

‖M x‖ denotes the matrix norm in-

duced by the Euclidean vector norm ‖·‖ . Given a
symmetric matrix S , λmin (S) and λmax (S) de-
note the minimum and maximum eigenvalue of S ,
respectively. Recall that ‖M‖ =

√

λmax(MTM) ,
i.e., ‖M‖ equals the square root of the spectral ra-
dius of MTM (as MTM is positive semidefinite,
it has nonnegative eigenvalues). For a symmetric
matrix S , ‖S‖ = |λmax(S)| .

2. SYSTEM DESCRIPTION

In the following, we shall consider class of systems
characterized by a linear measurement equation
and a dynamics with a linear part. The couple
of matrices that describe the linear part of the
dynamic equation and the measurements is ob-
servable. More specifically, let us consider

{ .
x= A x + f(x)
y = C x

, t ≥ 0 , (1)

where x(t) ∈ X ⊆ R
n and y(t) ∈ Y ⊆ R

m . Let
the nonlinearity f : X → R

n be Lipschitz in X ,



with the Lipschitz constant kf , and suppose that
(A, C) is observable.

Equations (1) refer to a general class of nonlinear,
essentially observable systems and to all systems
that are diffeomorphic to (1). For example, in
(Shim et al., 2001) necessary and sufficient con-
ditions are given to ensure the existence of a
diffeomorphism that transforms a quite general
nonlinear system in the form (1).

An admissible observer for (1) can be expressed
as:

.

x̂= A x̂ + f(x̂) + g (y − C x̂) ,

where z
4
= y − Cx̂ ∈ Z ⊆ R

m and the innovation
function g : Z → R

n is Lipschitz in Z. Let the in-
novation function g be chosen as the summation
of two contributions:

g (y − C x̂) = L (y − C x̂) + γ (y − C x̂) ,

where L is an n × m matrix and γ : Z → R
n is

Lipschitz in Z, with a Lipschitz constant kγ , and
γ(0) = 0. Hence the estimator dynamics is given
by

.

x̂= A x̂ + f(x̂) + L (y − C x̂) + γ (y − C x̂) . (2)

In the following, we shall consider the behavior of

the estimation error e(t)
4
= x(t)− x̂(t) in different

settings.

3. STABILITY OF OBSERVERS WITH AND
WITHOUT THE PRESENCE OF

DISTURBANCES

Consider the dynamics of the estimation error for
system (1) with the observer (2):
.
e= (A − L C ) e + f(x) − f(x̂) − γ (y − C e) . (3)

Consider the Lyapunov function V
4
= eT P e ,

where the matrix P is positive definite and sym-
metric; the derivative of V is given by

.

V = eT
[

(A − LC)
T

P + P (A − LC)
]

e

+ 2 [f(x) − f(x̂)]T P e − 2 γT (C e) P e (4)

As is usually done in the design of observers
for dynamic systems with Lipschitz nonlinearities
(Rajamani, 1998; Alessandri, 2002), by a simple
algebra we can compute upper bounds to the last
two terms of (4):

2 [f(x) − f(x̂)]
T

P (x − x̂)

≤ 2 kf ‖x − x̂‖ ‖P (x − x̂)‖

≤ k2
f (x − x̂)

T
P P (x − x̂) + (x − x̂)

T
(x − x̂)

and

−2γT [C (x − x̂)] P (x − x̂)

≤ 2 kγ ‖C (x − x̂) ‖ ‖P (x − x̂)‖

≤ k2
γ ‖C‖2 (x − x̂)T P P (x − x̂)

+ (x − x̂)
T

(x − x̂) .

From (4), using the above-written inequalities we
obtain

.

V ≤ eT
[

(A − LC)
T

P

+ P (A − LC) +
(

k2
f + k2

γ ‖C‖2
)

P P + 2 I
]

e .

As shown in (Rajamani, 1998), if there exist a
gain matrix L and a symmetric positive definite
matrix Q such that A − LC is stable and the
algebraic Riccati equation

(A − LC)
T

P + P (A − LC)

+
(

k2
f + k2

γ ‖C‖2
)

P P + 2 I = −Q (5)

has a symmetric, positive definite matrix P as so-
lution, then the estimator (2) admits a quadratic
Lyapunov function such that c1 ‖e‖

2 ≤ V ≤

c2 ‖e‖
2 and

.

V ≤ −c3 ‖e‖
2 , with c1

4
= λmin (P ) ,

c2
4
= λmax (P ) , and c3

4
= λmin (Q) . Hence we

conclude that (2) is a global exponential estimator
for the system (1). Note that the observability
hypothesis about (A, C) is a necessary condition
for the existence of a solution of (5).

Suppose that additive Lp disturbances affect the
dynamics and the measurement equations, that is,

{ .
x= A x + f(x) + w

y = C x + v
(6)

where w ∈ Ln
p e and v ∈ Lm

p e. The estimation
error dynamics is

.
e = (A − L C ) e + f(x)

− f(x̂) + w − L v − γ (C e + v) . (7)

It is easy to verify that the fulfilment of the Riccati
equation (5), we obtain

‖e‖p,τ ≤ η ‖w‖p,τ + λ ‖v‖p,τ + β (8)

for all τ ∈ [0,∞) with

η =
2λ2

max(P ) (‖A‖ + kf )

λmin(P ) λmin(Q)

λ =
2λ2

max(P ) (‖L‖+ kγ)

λmin(P ) λmin(Q)

β =

√

λmin(P )

λmax(P )
‖e(0)‖ ρ



where

ρ =







1 , p = ∞
(

2 λmax(P )

λmin(Q) p

)1/p

, p ∈ [1,∞) .

So far the problem of constructing observers has
been reduced to the solution of the Riccati equa-
tion (5). Unfortunately, it is difficult to find such
solutions for large values of the Lipschitz con-
stants kf and kγ . Thus, we shall address the
construction of state estimators according to a
different approach presented in the following.

4. DESIGN OF A PARAMETERIZED
ESTIMATOR

The design of the an estimator can be stated as an
optimization problem that aims both at obtaining
asymptotic stability and satisfying performances
of the estimation error. A particular class of
approximating networks can be used as part of
the innovation function of the estimator. More
specifically, we consider estimators described by
the following equation
.

x̂= A x̂ + f(x̂) + L (y − Cx̂) + γν (y − Cx̂, wν) ,(9)

where L ∈ R
n×m is a gain matrix and, for a

positive integer ν, γν is a function belonging to
the class Aν , defined as follows.

Definition 4.1.

Aν
4
= { γν : K×R

l → R
n , K compact , such that

(i) γν j(ξ, ωνj
) =

ν
∑

i=1

cij ϕi(ξ, κi), ϕi : K × R
l →

R, |cij | ≤ C, C ∈ R
+, κi ∈ R

l, i = 1, . . . , ν, j =

1, . . . , n, ων j
4
= col(cij , κi : i = 1, . . . , ν);

(ii) the functions ϕi(·, κi) are bounded in ag-
gregate, i.e., ∃M ∈ R

+ such that ∀i =
1, . . . , ν, ∀κi ∈ R

l, sup
ξ∈K

|ϕi(ξ, κi)| ≤ M ;

(iii) the functions ϕi(·, κi) are equicontinu-
ous,i.e., ∀ ε > 0 ∃ δε > 0 such that ∀ i =
1, . . . , ν, ∀κi, κ

′
i ∈ R

l if ‖ξ − ξ′‖ < δε then
|ϕi(ξ, κi) − ϕi(ξ

′, κ′
i)| ≤ ε;

(iv) the functions ϕi(·, κi) are Lipschitz, i.e.,
∀ i = 1, . . . , ν ∃Li ∈ R

+ such that ∀κi ∈

R
l, |ϕi(ξ, κi) − ϕi(ξ

′, κi)| ≤ Li|ξ − ξ′| ;

(v)

∞
⋃

ν=1

Aν is dense in G with respect to the

supremum }.

The class Aν defines a set of admissible inno-
vation functions. Once a type of approximating
networks, i.e., a mother function ϕi(·, ·) is cho-
sen, the Lyapunov function for the estimator (9)
depends on the values of L and wν . As to the

function ϕi, it is suitable to make a choice gen-
erating sets Aν whose closure is as large as pos-
sible: loosely speaking, the larger such a closure,
the wider the choice at our disposal for a Lya-
punov function. So we shall use approximating
networks that are dense in the space of continuous
functions on compact sets, i.e., in the neural-
network parlance, that enjoy the “universal ap-
proximation property.” Well-known examples of
approximating networks are feedforward neural
networks of the perceptron type, with at most ν

hidden units and bounded parameters and radial-
basis-functions with at most ν hidden units and
bounded input weights and variances. The proofs
of the fact that such functions are provided with
the density property in the space C(K, R

n), where
K ⊂ R

m is compact, can be found, for example,
in (Leshno et al., 1993) and (Kůrková, 1995).

To guarantee the possibility of finding an estima-
tor implemented with a “small” number ν of basis
functions also for vectors x to be estimated with a
large number of components, we shall employ so-
called “polynomially-complex approximating net-
works”. Such networks have the desirable property
that the number ν of basis functions required
to guarantee a fixed approximation accuracy has
to grow at most polynomially with the number
of variables (in the case of the estimator (9),
the dimension m of the measurement vector);
see (Kurková and Sanguineti, 2001; Kůrková and
Sanguineti, 2002; Zoppoli et al., 2002) for details.

Let us consider the following problem.

Problem OEPν . Given p ∈ [1,∞] and T > 0 ,
solve

inf
γν∈Aν

J(γν), (10)

where J(γν) = ‖x− x̂‖p,T , x , x̂ ∈ Ln
p e, w ∈ Ln

p e ,
v ∈ Lm

p e , and







.
x= f (x, w)
y = h (x, v)
.

x̂ν= f(x̂ν , 0) + γν (ων , y − h (x̂ν , 0)) .

(11)

As each Aν is a set of parameterized functions
with a fixed structure, the minimization has to be
performed with respect to the finite-dimensional
vector of parameters ων ∈ R

N (ν) , whereas Prob-
lem OEP entails an infinite-dimensional mini-
mization. This turns out to be evident by sub-
stituting γν into the differential equation of the
estimator and then into J . The cost functional
is a function of the parameter vector ων . With
a little notational abuse, we denote such a func-
tion by Jν(ων) . Thus, for each positive integer



ν the minimization with respect to the infinite-
dimensional set Aν is replaced by the minimiza-
tion with respect to the finite-dimensional vector
ων ∈ R

N (ν) .

Thus, we can define the following.

Problem OEP′
ν . Given T > 0 , find

inf
ων∈R

N(ν)
Jν(ων) . (12)

where Jν(ων) = ‖x−x̂‖p,T , x , x̂ ∈ Ln
p e, w ∈ Ln

p e ,
v ∈ Lm

p e , and







.
x= f (x, w)
y = h (x, v)
.

x̂ν= f(x̂ν , 0) + γν (ων , y − h (x̂ν , 0)) .

(13)

It is worth noting that the solution of this last
problem may not be unique, even if there exists
a unique minimum of Problem OEPν , as it might
happen that there is no one-to-one correspondence
between a vector ων ∈ R

N (ν) and an element
γν ∈ Aν .

The solution of Problem OEP′
ν may provide sat-

isfying estimation performances, which can be
preferably associated with stability requirements
for the estimation error. To this end, suitable
constraints must be added to the minimization
problem, as we will see in the following. Note that,
once the output y is known and the parameters
vector ων are chosen, the evolution of the esti-
mated state vector x̂ is completely determined. Of
course, the selection of L and γν must ensure the
stability of the estimation error, whose dynamics
is given by

.
e= (A − LC) e + f(x) − f(x̂) − γν (C e, ων) . (14)

If a quadratic Lyapunov function V = eT P e

is considered with P symmetric positive definite
matrix, we obtain

.

V = eT
[

(A − LC)T P + P (A − LC)
]

e

+ 2 [f(x) − f(x̂) − γν (C e, wν)] P e . (15)

Since the pair (A, C) is observable, there exist a
gain matrix L and a unique symmetric positive
definite matrix P as solution of the Lyapunov
equation

(A − LC)T P + P (A − LC) = −Q (16)

where Q is a given symmetric positive definite
matrix.

We consider a compact set Ē for the estimation
error. Given the compact set S = X × Ē, let us

denote by SM a set of M sample points si =

col(xi, ei)
4
= (xT

i , eT
i )T, ei 6= 0, i = 1, 2, . . . , M ,

that belong to S. Let us define the dispersion of
SM as

θ(SM )
4
= sup

s∈S
min

1≤i≤M
‖s − si‖ .

Therefore, in order to guarantee the asymptotic
stability of the estimation error, using Proposition
4 in (Alessandri and Sanguineti, 2001a) we impose
that for some ων ,

2 [f(xi) − f(xi − ei) − γν (C ei, wν)] P ei

−eT
i Q ei ≤ −c‖ei‖

2 (17)

where c > 0, l > 1, and θ(SM ) <
εM

LF
, si =

col(xi, ei) ∈ SM , as (i) is trivially satisfied.

Summing up, in order to construct an estimator
that solves Problem OEPν and has a stable (in
some sense) estimation error, we have to perform
the following steps.

1) Choose a time horizon T , an Lp measure for
the estimation error, and compact sets X, Ē ⊂

R
n.

2) Choose a composite model Aν with ν basis
functions ϕ; the admissible innovation functions
have to belong to Aν .

3) Choose a set SM ⊂ X×Ē of M sample points

si
4
= col(xi, ei), ei, i = 1, . . . , M with good

dispersion properties (e.g., belonging to a low-
discrepancy sequence).

4) Given c > 0, a gain matrix L , and two
symmetric positive definite matrices P and Q

such that (16) is satisfied, find ω∗
ν ∈ R

N (ν) such
that
4.1) ω∗

ν = argmin
ων∈R

N(ν)

‖e(ων)‖p,T ;

4.2)
.

V (si, ω̄) < −c ‖ei‖
2 for si ∈ SM , i =

1, 2, . . . , M , where c > 0;

4.3) θ(SM ) <
εM

LF
;

where LF be the Lipschitz constant of

F (s, ω̄)
4
=

.

V (s, ω̄) + c ‖e‖l with respect to s

and εM
4
= − max

1≤i≤M
F (si, w) > 0.

In order to satisfy the constraints in Step 4.2), we
employ a sum of suitable penalty functions

Jstab(ων)=

M
∑

i=1

(

max
{

0,
.

V (si, ων) + c‖ei‖
2
})2

.

(18)

This leads to a new problem that contains both
the performance and stability requirements, and
can be defined as

Problem S-OEP′
ν . Given T > 0 , find



inf
ων∈R

N(ν)
Jν(ων) + αJstab(ων) , (19)

where α > 0, Jν(ων) = ‖x − x̂‖p,T , x, x̂ ∈
Ln

p e, w ∈ Ln
p e , v ∈ Lm

p e , Jstab is given by (18),
and







.
x= f (x, w)
y = h (x, v)
.

x̂ν= f(x̂ν , 0) + γν (ων , y − h (x̂ν , 0)) .

(20)

Results on exact penalization can be found in
(Bertsekas, 1999) for a convenient choice of the
penalty parameter α.

5. CONCLUDING REMARKS

In Section 3, we pointed out the issues in design-
ing observers and filters for the considered class
of systems, which are related to the problem of
solving the Riccati equation (5). Unfortunately,
the solution of such equation is impossible for
large values of the Lipschitz constants kf and kγ .
This is a serious difficulty, which has suggested
to address the construction of state estimators
according to the approach formalized in Section
4. The main drawbacks of such an approach is
the necessity of suitably sampling the domain of
both state and estimation error spaces. Thus, in
practice we can apply it only to systems that
admits an invariant set and construct estimators
with a regional kind of convergence for the esti-
mation error, i.e., in other words assuming that
e(t) belongs to a bounded set.
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