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Abstract: In the paper the combined routing-scheduling problem which consists in scheduling of 
tasks on moving executors is considered. The case with non-preemptive and independent tasks, 
unrelated executors as well as  interval processing times to minimize the maximum lateness is 
investigated. The robust scheduling problem based on the modified relative regret function is 
formulated. The solution algorithm uses the result which allows to reduce an uncertain problem 
to a number of deterministic problems. Then the uncertain problem considered can be solved by a 
deterministic algorithm. The simple numerical example is given. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Solving task scheduling problems for modern dis-
crete manufacturing systems causes the necessity to 
take into account new assumptions which make the 
problems more complex and more difficult. Consid-
ering a movement of different elements of manufac-
turing systems is an example of such a new assump-
tion (Józefczyk, 1997, 2001; Averbakh and Berman, 
1999). The movement in discrete manufacturing 
systems may refer to different objects and may be 
understood and considered in different ways. One 
can speak about the movement of plants to be pro-
duced, and it is obvious. But one can also consider 
the movement of executors to perform manufacturing 
operations on plants located at stationary worksta-
tions. A model of the latter type is considered in the 
paper. A simple scheduling problem with unrelated 
executors performing a set of non-preemptive, inde-
pendent tasks to minimize the maximum lateness is 
investigated. The ready times for all tasks are as-
sumed to be the same. The task scheduling consid-
ered are connected also with traveling salesman prob-
lems with time windows, see (Dumas, et al., 1995) 
and (Desrosiers, et al., 1992) for a survey. The main 
idea of the problem under investigation is the follow-

ing. To perform a task an executor being the subject 
performing the tasks should drive–up to a work-
station located on a plane or in a space. Therefore, 
each task consists of two parts: the driving–up to the 
workstation and the performing of a job at the work-
station. The generalization of the term task leads to 
the generalization of the execution times which are 
the main data for every scheduling problem. Then the 
execution time is the sum of the driving–up time and 
the job performing time. Such a generalization de-
fines a new scheduling problem. 
 

The paper concerns the generalization of previous 
investigations towards the non-deterministic case, 
when the processing times are uncertain. The most 
popular and widely investigated approach to model 
the uncertainty in decision making problems is the 
stochastic approach. It is assumed that some prob-
ability distribution over the space of all possible 
realizations (scenarios) of all random parameters of 
the problem exists, and the objective is to determine 
a solution which fulfills a selected probabilistic per-
formance index. The main drawbacks of the stochas-
tic approach are discussed in (Kouvelis and Yu, 
1997). The robust approach to manage the uncer-



tainty is also very well known but has no disadvan-
tages of the stochastic approach. It has been used 
widely also for different discrete optimization prob-
lems (e.g. Yu, 1996; Gutierrez and Kouvelis,1995). 
Recently, increasing attention has been paid to the 
robustness approach based on regret functions to 
decision making – in general or to task scheduling – 
in particular. This approach leads to the solution that 
performs well across all scenarios and hedges against 
the worst of all possible scenarios. In the paper a 
modified worst-case relative regret function is ap-
plied for which the resulting task scheduling algo-
rithm is referred to as the worst-case relative regret 
task scheduling algorithm, see (Kouvelis and Yu, 
1997; Averbakh, 2000). 

 
The investigation of the non-deterministic version of 
the task scheduling on moving executors is deeply 
motivated. The uncertainty in the scheduling problem 
under consideration concerns mainly the execution 
times, i.e. both the driving–up times and the job per-
forming times. However, in the manufacturing sys-
tems both times are often results of other decision 
making problems, for example they are indirect re-
sults of a task or movement control (Józefczyk, 
2004a, 2002, 2003). Then the execution times being 
the parameters of the scheduling problem may be not 
only incomplete or plausible but also they would be 
unpredictable. In the latter case it is possible to spec-
ify the lower and upper bounds of these times and 
consequently to determine intervals instead of crisp 
values of these times like in the deterministic version 
of the scheduling problem. The main contribution of 
the paper is based on the result presented in (Aver-
bakh, 2000) that is generalized in terms of an objec-
tive function of min-max type. In (Józefczyk, 2004b) 
the problem which consists in minimization of the 
makespan has been considered. In the paper the 
modified version of the relative regret function is 
proposed. Then the result is applied to the uncertain 
version of the scheduling problem under considera-
tion which can be reduced to a number of problems 
without uncertainty. 
 
 

2. PROBLEMS OF TASK SCHEDULING  
TO MINIMIZE THE MAXIMUM LATENESS 

 
Let us consider the basic notation. A simple schedul-
ing problem with independent, non-preemptive tasks 
and unrelated executors as well as the same ready 
times is the basis for the considerations. However, it 
deals with the situation when each executor to per-
form the job should drive-up to the place (work-
station), where this job should be done. All assump-
tions imposed for the classical scheduling problem, 
i.e. for the problem without movement of executors 
are valid. For example, each task can be performed 
only by one executor. Moreover, it is assumed that 
each executor should begin its movement at a com-
mon workstation called a depot for executors (a de-

pot). No distinction between the set of tasks and the 
set of workstations in notation is introduced. Both 
sets are denoted as H = {1,2,...,H}, where H is the 
number of tasks to be executed and in the conse-
quence the number of workstations. The depot is 
distinguished and denoted as 1++++==== Hh . Then ====H  

{{{{ }}}}1++++∪∪∪∪ HH  is the set of workstations with the de-
pot. Analogously, R and R are the set of executors 
and the number of executors, respectively. The exe-
cution time hgr ,,τ  of the task h by the executor r 

after driving-up from the workstation g is not given a 
priori. It is the sum of the time the job is performed at 

the workstation I
,hrτ  and the driving-up time to the 

workstation from the other workstation II
,, hgrτ , i.e. 

II
,,

I
,,, hgrhrhgr τττ ++++==== . It is assumed that 

Hhhhr ...,,2,1,II
,, ====+∞+∞+∞+∞====τ . All execution times 

form a matrix 
Hh

HgRrhgr
,...,2,1

1,...,2,1,,...,2,1,, ][
====

++++============ τ�
� . 

Each task h is characterized not only by the execution 
time but also by the due-date dh . Let us assume that 
the tasks are sorted to fulfill the condition for the 
due-dates 

 . <,1,2,.., = ,for  , hgHhgdd hg  ≤  (1) 

Then one can define additionally the time interval 
being the period with the beginning at the start of the 
scheduling procedure and with the end defined by the 
due-date dl , where l, l = 1,2,...,H is the index of the 
time interval l. It is evident that the returns of the 
executors to the depot have no influence on the value 
of the maximum lateness and therefore are omitted. 
 
 
2.1 Optimization problem with moving executors 
 
Let us introduce a matrix of decision variables which 
constitutes the mapping between the sets of tasks and 
executors, namely  

 
Hlh

HgRrlhgr
,...,2,1,

1...,,2,1,...,,2,1,,, ][
====

++++============ α�
�

 , (2) 

where )0(1,,, ====lhgrα  if the performance of the task h 

by the executor r after driving-up from the work-
station g is started before the moment when the time 
interval l ends (otherwise). The proper form of the 
matrix �

�
 should guarantee, besides the admissible 

schedule, the determination of the continuous route 
for each executor with the beginning at the depot. 
The following conditions express such requirements 
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where )(Hh r is the last task performed by the execu-
tor r, 
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Besides obvious requirements (3) and (4), the others 
have the following interpretation. The term (5) 
guarantees that every task is performed by one 
executor and will be started before its due-date. The 
continuity of the routes of executors results from (6). 
The conditions (7) and (8) make sure that each 
executor starts once from the depot and the routes do 
not contain sub-cycles, respectively. The constraints 
(3)–(8) imposed on �

�
 constitute the set �  of 

admissible matrices �
�

. As the performance index the 
maximum lateness is used 
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To present the performance index in more convenient 
form for further considerations let us assume the 
additional notation. Two indices r and l are replaced 
by one index  

 )1( −−−−++++==== rHlk , (10) 

where the index l changes from 1 to H for every 
Rr ...,,2,1==== , i.e. for fixed r the increase of l in-

volves the same increase of k. The elements of the 
matrices ��  and �

�
 for every k are placed into vectors  

 
],...,,,...,,

...,,,,...,,,,[

,1,2,1,1,1,,2,

2,2,1,2,,1,2,1,1,1,

HHrHrHrHr

rrHrrrlk d

++++++++++++

−−−−====

ττττ
τττττ�

 (11) 

 
],,..,,,...,...,

,,,,...,,,1[

,1,2,1,1,1,,2,

2,2,1,2,,1,2,1,1,1,,

HHkHkHkHk

kkHkkklrk

++++++++++++

========

αααα
ααααα��

∆

 (12) 

where lhgrhgk ,,,,, αα ∆====  which constitute a new 

matrices ]...,,...,,,[ TTT
2

T
1 RHk ����� ====  and 

,,[ T
2

T
1 ��� ====  ]...,,..., TT

RHk �� . It is easy to see that 
in the matrix �  occur only R columns which are 
different with respect to the execution times and that 
correspond to R sections of H the same columns, i.e. 
in each of the first H columns besides of ld−−−−   the 

execution times hg,,1τ  appear, in each of the next H 

columns besides of ld−−−−  the execution times hg,,2τ  

take place and so on. For 2====R  and 3====H  the ma-
trix �  has the following form 

.
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Then the performance index can be expressed as 

 .max)( T

,...,2,1
L kk

RHk
,Q ����

====
====  (13) 

Now we can formulate the scheduling problem with 
moving executors as a discrete optimization problem 

)(�P  which consists in the minimization of )(L ��,Q  
with respect to the admissible �  for fixed value of 

� , i.e. ),(min L ��

��
Q

∈∈∈∈
, and ),(min)(*

L ���

��
QQ

∈∈∈∈
====∆ . 

 
 
2.2 Optimization problem without moving executors 
 
When the movement of executors is not considered 
the corresponding scheduling problem is the special 
case of the problem formulated in the previous sub-
section. It consists in minimization of the maximum 
lateness 

 ,max)( T

,...,2,1
L kk

RHk
,Q ���� ′′′′′′′′====′′′′′′′′′′′′

====
 (14) 

where ]...,,,,[ ,2,1, Hrrrlk d τττ−−−−====′′′′�  and 

,,1[ 1,kk α ′′′′====′′′′�  ]...,, ,2, Hkk αα ′′′′′′′′  with respect to the 

admissible matrix ]...,,,[ TT
2

T
1 RH���� ′′′′′′′′′′′′====′′′′ , where 

)0(1,,, ====′′′′====′′′′ lhrhk αα ∆  if task h performed by executor 
r starts before the end of interval l (otherwise). The 
constraints 

 ����
====

≥≥≥≥========′′′′
R

r
lhr hlHh

1
,, ,...,,2,1,1α  (15) 

constitute the set �′′′′  of admissible matrices �′′′′ . 
 
 
2.3 Version with moving executors and with interval 

processing times 
 
In many cases the exact values of the execution times 

hgr ,,τ  or their components are not known. Let us 

assume that ],[ ,,,,,, hgrhgrhgr τττ ∈ , where the val-

ues of hgr ,,τ  and hgr ,,τ  are given. Then each reali-

zation of the matrix �  of the execution times hgr ,,τ  

being the parameters of the scheduling problem 
)(�P  is called a scenario. The set T of all scenarios 



is the Cartesian product of all intervals 
],[ ,,,, hgrhgr ττ . The worst case approach is proposed 

to cope with such an uncertainty. The objective is to 
find the matrix �  that performs well for all scenarios 
in the sense of the maximum lateness (13). The ro-
bust optimization approach can be applied, e.g. 
(Rosenblatt and Lee, 1987; Kouvelis and Yu, 1997; 
Averbakh, 2000; Yager, 2004). The uncertainty in 
decisions due to the uncertainty in parameters k�  can 
be evaluated in different ways. Because the value of 

)(*
L �Q  can be negative for further considerations the 

modified relative regret function is used being the 
ratio  
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=

−
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The function fits with the proposition given in (Kou-
velis and Yu, 1997; Averbakh, 2000) for non-
negative values of the function corresponding to 

)(*
L �Q  and preserves all their properties for the 

negative values. Then an uncertain optimization 
problem referred to as UP consists in the minimiza-
tion of  
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with respect to ��∈ , i.e. 
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As the result the robust optimal matrix �~   expressing 
the robust scheduling of tasks as well as the optimal 
value of the worst-case relative regret function 

)~(~
LL �zz ∆====   are obtained. For the notational con-

venience it is assumed that any ratio ba /  is equal to 
0 for 0=b  and 0≠a  and to +∞  for 0== ba . 
Now we give an interpretation of the problem UP 
and the performance index (16). If the inequality 

 ε<<<<−−−− )(/))(),(( *
L

*
LL ���� QQQ  (18) 

holds for 0>>>>ε  then ��∈∈∈∈  is the relative ε –
optimal solution of )(�P . Moreover, let 

:{)( ��� ∈∈∈∈====εΓΓΓΓ  })(/))(),(( *
L

*
LL ε<<<<−−−− ���� QQQ  

be the set of all relative ε –optimal solutions of 
)(�P . For given 0>>>>ε  it is crucial to determine such 

solutions for all �  which fulfill the condition  

 �
T�

��

∈∈∈∈
∈∈∈∈ )(εΓΓΓΓ . (19) 

The existence of such �  depends on ε . For small ε  
the solution can not exist because the admissible 
solution for the determined �  may be unacceptable 

for the other one. We denote by )~(L �z  the least 
value of ε  for which (19) is fulfilled. If the inequal-
ity (18) is true for the worst case, i.e. 

ε<<<<−−−−
∈∈∈∈

)(/))(),((max *
L

*
LL ����

T�

QQQ  it is also true 

for every � . To enable the fulfilling of the inequality 
for possibly the least 0>>>>ε  it is necessary to mini-
mize it, i.e. to solve the problem (17). Then the value 

L
~z  is a measure of the uncertainty and finally the 
problem UP consists in the determination of such a 

��∈∈∈∈  that the relative deviation from )(*
L �Q , the 

worst with respect to � , called the worst-case rela-
tive regret function, is the least. 
 
 

3. WORST-CASE RELATIVE REGRET  
SOLUTION ALGORITHM 

 
Now we consider a new optimization problem PU ′′′′  

equivalent to UP. Let k
�  be the matrix �  with the 

execution times hgr ,,τ  belonging to the vector k�  

equal to hgr ,,τ . The other execution times of �  are 

equal to hgr ,,τ . The set of all matrices k
�  we denote 

as }...,,2,1,{ RHkk ========′′′′ �T . Then PU ′′′′  deals with 
the minimization of the maximum value of functions 

)(L, �kz  defined as 
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],...,,,...,, ,1,2,1,1,1,,2, HHrHrHrHr ++++++++++++ ττττ with re-

spect to admissible � , i.e. 

 
.

)(

)(
maxmin

)(maxmin

*
L

*
L

T

...,,2,1

L,
...,,2,1

k

k
kk

RHk

k
RHk

Q

Q

z

�

���

�

�

�

�

�

−
=

=∈

=∈

 (21) 

The lemma is true. 
Lemma. For any ��∈∈∈∈  

 )(max)( L,
,...,2,1

L �� k
RHk

zz
====

==== . (22) 

Proof of Lemma. Let �~  be the matrix for an arbi-
trary ��∈∈∈∈  for which the inequality  
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holds for T� ∈  and let �~  be the solution of )~(�P  
for fixed �~ . Moreover, let us denote by s such an 

index that RHkkkss ...,,2,1,TT ====≥≥≥≥ ���� . To notice 



that the value of the left hand side in (23) can not 
decline, if in �~  we increase s�

~  and decrease k�
~  for 

sk ≠ , it is enough to consider the equalities 
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On the other hand the value of the left hand side in 
(23) can not increase because of the definition of �~ . 
Using (16) and (24) the equation (22) can be imme-
diately justified   
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Finally, from )()( L,L �� kzz ≥  for sk ≠  results 

).(max)( L,
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In the consequence, for any ��∈∈∈∈  there is the ma-
trix �~  for which the inequality (23) holds. Therefore, 
the set of optimal solutions for PU ′′′′  doesn’t change 
if we replace T with T ′′′′  and hence the problems UP 
and PU ′′′′  are equivalent.  

Let us introduce the sets of matrices 
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and k is defined in (10). The last equation in (25) 
results from the definition of matrix � . The follow-
ing theorem is the basis for the determination of the 
worst-case relative regret task scheduling algorithm.  
 
Theorem. The sets of optimal solutions of )(� ′′′′′′′′P  

and PU ′′′′  are the same, i.e. to solve PU ′′′′  it is enough 
to solve )(� ′′′′′′′′P . 

Proof of Theorem. Notice that  
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Thus, to solve PU ′′′′  it is enough to solve )(� ′′′′′′′′P  be-
cause the values of elements of � ′′′′′′′′  are deterministic. 
It is necessary to stress that in general )(� ′′′′′′′′P  is not 
the task scheduling problem defined in Subsection 

2.1 because )(/ *
L

k
l Qd �  doesn’t fit the definition of 

due-dates. Now, we are able to present the solution 
algorithm for PU ′′′′ . 

1. Solve the problems P( k
� ), RHk ...,,2,1====  to ob-

tain the values )(*
L

kQ � . 

2. Solve the deterministic decision making problem 
related to )(�P , i.e. with new execution times de-

fined in (25), the due-dates equal to )(/ *
L

k
l Qd �  and 

the indices l, r, k connected according to (10). 
 
Because of the structure of the matrix �  in Step 1 it 

is enough to solve problems P( r
� ), Rr ...,,2,1==== , 

any time with the different column of �  containing 
the maximum values of hgr ,,τ  and the other execu-

tion times equal to rphgp ≠,,,τ . It is easy to for-

mulate the remark that for identical executors, in Step 
2 of the algorithm the deterministic task scheduling 
problem considered is solved with the execution 

times given in (25) and the due-dates )(/ *
L

k
l Qd � . 

 
 

4. NUMERICAL EXAMPLE 
 
To illustrate the solution algorithm the elementary 
numerical example is presented. It concerns the ver-
sion with stationary identical executors. The proper-
ties as well as the solution algorithm for the version 
with moving executors can be applied analogously. 
Let 2=R , 6=H  and the interval execution times 
as well as the due-dates are given in Table 1. During 
the first step of the algorithm two task scheduling 
problems are solved with the execution times pre-
sented in Table 2 and Table 3 for 1====r and 2====r , 
respectively. As the result the following values of the 

maximum lateness are obtained 1)( 1*
L ====�Q , 



Table 1 Data for the numerical example 

h 1 2 3 4 5 6 

hh ,1,1 ,ττ  4,6 1,3 6,8 2,10 5,7 2,6 

hh ,2,2 ,ττ  1,7 1,5 3,7 4,12 1,3 4,10 

hd  4 5 6 7 8 9 

Table 2 Data for the problem )( 1
�P  

h 1 2 3 4 5 6 

h,1τ  6 3 8 10 7 6 

h,2τ  1 1 3 4 1 4 

Table 3 Data for the problem )( 2
�P  

h 1 2 3 4 5 6 

h,1τ  4 1 6 2 5 2 

h,2τ  7 5 7 12 3 10 

Table 4 Data for Step 2 of the algorithm 

h 1 2 3 4 5 6 

h,1τ ′′  6 3 8 10 7 6 

)(/ 1*
L �Qdh  4 5 6 7 8 9 

h,2τ ′′  3.5 2.5 3.5 6 1.5 5 

)(/ 2*
L �Qdh  2 2.5 3 3.5 4 4.5 

 

2)( 2*
L ====�Q . The algorithm in Step 2 uses the data 

given in Table 4. As the final result the value 7~
L ====z  

as well as the matrix �~  which corresponds to the 
schedule (1, 2, 6) and (3, 4, 5) for 1====r and 2====r , 
respectively are determined. 
 
 

5. CONCLUSIONS 
 
It is obvious that taking into account the uncertainty 
of the processing times additionally increases the 
complexity of the task scheduling problem consid-
ered. For the case of the interval times the result 
given in (Averbakh, 2000) was generalized and used 
for the task scheduling problem under consideration. 
The algorithm proposed assumes the information of 
the exact solution of the scheduling problem when 
the NP–hard optimization problems should be solved. 
Therefore it is crucial to extend in further considera-
tions the approach for the approximate algorithms 
and in the consequence to enable solving large in-
stances of the scheduling problem. However it re-
quires a new definition of the relative regret function. 
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