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Abstract: Output stabilization of uncertain discrete-time non linear models via an 
observer is a problem that can be considered through a Takagi-Sugeno framework. This 
work provides systematic design procedures by using direct Lyapunov’s method with a 
non quadratic Lyapunov’s function. This leads to LMI conditions that can be efficiently 
solved. This result always includes the quadratic case. Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
The stabilization of uncertain nonlinear models is a 
large domain. A way to get systematic procedures to 
derive control laws is to use the model in one of its 
Takagi-Sugeno (TS) (Takagi and Sugeno 1985) 
form. This way commonly uses the direct 
Lyapunov’s method to get LMI (Linear Matrix 
Inequalities) conditions. Solutions that can satisfy 
such a problem can be found efficiently by using the 
interior point algorithm (Boyd et al. 1994). The first 
works used a quadratic Lyapunov function and a 
parallel distributed compensation (PDC) control law 
(Wang et al. 1996; Tanaka et al. 1998). Other 
Lyapunov functions were also proposed. In the 
continuous case a fuzzy Lyapunov function were 
used (Blanco, et al. 2001; Tanaka et al. 2001) but the 
presence of the derivative of the activation function 
makes the results “poor”. Interesting works are 
related to piecewise Lyapunov functions (Johansson 
et al. 1999). Finally in the discrete case, some results 
are presented in (Guerra and Vermeiren 2004) which 
use a non quadratic fuzzy Lyapunov function that 
shares the same rules than the models. The use of 
this Lyapunov function ensures that the solutions 
obtained in the quadratic case are included.  
The stabilization of uncertain models received an 
increasing attention. Several results are available in 
the continuous and the discrete case. Examples of 
results using norm bounded linear models are given 

in (Xie and De Souza 1992). For uncertain Takagi 
Sugeno models some results are available too. An 
example, in the continuous case with the utilization 
of a quadratic Lyapunov function, the stabilization 
via sate feedback is given in (Lee et al. 2001). And 
finally in the discrete case with or without state 
delays with the utilization of a non quadratic 
Lyapunov function, some results are given in (Guerra 
et al. 2004)  
In this work, we are interested in the uncertain 
discrete Takagi Sugeno’s fuzzy models case. A non 
quadratic Lyapunov’s function is designed to obtain 
LMI conditions for the output stabilization of 
uncertain TS fuzzy models via an observer and a non 
PDC control law. 
 
The paper is organized as follows. A first part 
presents the notations and some basic properties. 
These ones are mainly useful matrix properties that 
allow dealing with uncertainties for discrete models. 
A relaxation scheme for LMI conditions is also 
proposed (Liu and Zhang 2003). The main result is 
then presented. This one gives the LMI conditions to 
be satisfied for a control law together an observer to 
stabilize an uncertain discrete fuzzy model. They are 
obtained using a non quadratic Lyapunov function. 
The obtained results are shown to always include the 
quadratic case. At last an example is provided to 
show the effectiveness of the proposed approach. 
 



2. NOTATIONS AND MATERIAL 
 
We consider the following notations, with ( ) 0ih ≥i  
scalar positive functions and matrices of the same 
dimension  iY { }1, ,i r∈ … : 
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A star (  indicates a transpose quantity in a 
symmetric matrix. Congruence of a symmetric 
definite positive matrix  with Y  
corresponds to the following quantity: . 

)*

0TP P= >
0TYPY >

The next lemmas will be useful in the paper. The 
first one is well known (Xie and De Souza, 1992). 
The second one corresponds to a property given in 
(De Oliveira et al. 1999) and modified in the context 
of non-quadratic stabilization of discrete TS models 
(Guerra and Vermeiren 2004).  
 
Lemma 1: With X ,  and  matrices of 
appropriate dimension the following inequality 
holds.   

Y 0TF F= >

1T T T TX Y Y X X FX Y F Y−+ ≤ +  (1) 
 
Lemma (Schur’s complement): With 0TP P= > , 

 and 0R > X  matrices of appropriate dimensions, 
the two following properties are equivalent: 

(i)     (ii) 1 0TP X R X−− > ⇔ ( )*
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⎣ ⎦
 

 
Lemma 2 (extension to the Schur’s complement ): 
With ,  and 0TP P= > 0R > X  matrices of 
appropriate dimensions, the two following properties 
are equivalent. 
(i)   (2) 0TP X RX− >

⎥

>
>

(ii) There exists  a matrix of appropriate 
dimensions such that: 

Ψ

( )*
0T

P
X R

⎡ ⎤
>⎢Ψ Ψ + Ψ −⎣ ⎦

  (3) 

 
Proof: Sufficiency: If , then 

 and with Schur’s complement 
(3) is obtained with . Necessity: Using the 
congruence with the row full rank matrix 

0TP X RX−
1 0TP X RR RX−−

RΨ =
TI X⎡ −⎣ ⎤⎦  

on the expression (3) gives immediately the result. 
 
Remark 1: If  is under constraint, the sufficiency 
is not more true. 

Ψ

 
The models considered are nonlinear affine models. 
Takagi-Sugeno’s models can exactly represent such 
models in a compact set of the state variables 
(Tanaka and Wang 2001). There exists a systematic 
way to put affine nonlinear models in the TS form: 

( ) ( )( ) ( )( ) ( )1x t f x t g x t u+ = + t

)

 (4) 
into: 
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With ( )z t  the premises vector which depends on 

state vector ( )x t  and r  represents the number of 
linear models. This last number grows exponentially 
according to the number of nonlinearities involved in 
the nonlinear model (Tanaka et al. 1998; Taniguchi 
et al. 2001). Note also that the TS representation of 
(4) is not unique (Taniguchi et al. 2001). By using 
this representation of the nonlinear models, the goal 
is to derive output stabilization conditions that only 
depend on the parameters of the linear models and 
the parameters of the control law and the observer. 
Excepted the convex sum property, no specific 
property of the membership functions ( )( )ih z t  are 
used. This means that the conditions will always be 
sufficient ones. Then, another goal is to get the less 
conservative conditions, i.e.: find conditions that 
solve the biggest set of problems.  
The obtained conditions derived from the 
stabilization of TS models are usually in the 
following form: 
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A way to get LMI conditions from (6) is to use the 
following relaxation scheme (Liu and Zhang 2003) 
based on a first one due to (Kim and Lee 2000) 
which is a good compromise between conservatism 
and complexity. This one will be used in all the 
theorems for the stabilization conditions. In our case, 
it corresponds to the following writing, with: 
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3. STATEMENT OF THE PROBLEM AND MAIN 
RESULT 
 
Consider the following TS uncertain fuzzy model 
with measurable premises: 
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With the uncertainties written as: 
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Consider also the non PDC control law: 

( ) ( )1 ˆz zu t F G x t−= −  (12) 



     

and the following TS fuzzy observer: 
( ) ( ) ( ) ( ) ( )( )1ˆ ˆ ˆ1 z z z zx t A x t B u t S K y t y t−+ = + + −  (13) 

 

 
With: ˆx x x= −  the error of prediction we can write: 
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The closed loop (TS model + control law + observer) 
is written as: 

(17) can be written:  where TW N N= +

1 1
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 (15) 

with z zA A A= + ∆ z  and z z zB B B= + ∆ . 
The following Lyapunov function which is clearly a 
non quadratic one is chosen: 
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Then using lemma 1 on , (21) is verified if 
(22) is satisfied (bottom of the page) with  and: 
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Remark 2: This function is a Lyapunov one and the 
proof can be found in (Guerra and Vermeiren 2004). 
 
The variation of the Lyapunov function (16) is 
negative if (19) holds (bottom of the page).  

Using lemma 2 for the expression ( ) 1
1 2

T
z zG G− −Γ + Γ  

(with 1
zX G−=  and zGΨ = ) and the Schur’s 

complement for the last parts of terms  and (3,3)Ω

(4,4)Ω  leads to the condition (23) (top of the next 
page).
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true if (20) holds (bottom of the page). Then by using 
the lemma 2, (20) is verified if (21) is (bottom of the 
page). The goal is to remove all terms that can not be 
put in a linear form. First the terms with 1

zG −  is 
treated. Consider from (21) the following terms: 
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The matrix in the inequality (23) can be split into two 
terms. The second one recovers all the uncertainties 
and the term 1

z z z zR S K C−− . Let us define the second 
term noted TM M∆ + ∆  where: 
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Using lemma 1 on TM M∆ + ∆  the following 
inequality is obtained, TM M ϑ∆ + ∆ ≤  with ϑ  
defined equation (26) (next page) and with 0ε > , 

0µ > , 0η > , 0λ > , ,  and 0Y > 0Χ > 0δ > . 
 

     

So the inequality (23) is verified if (27) (next page) is 
satisfied with: 
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Using the Schur’s complement on the terms of Θ  
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Where all the matrices are given in (28), (29), (30) 
and (31) next page. 
At last, notice that 0δ > , ,  and 1 0Γ > 2 0Γ >

0Χ >  are only multiplied with terms who are not 
depending on a LMI variable. Then they can be 
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Theorem 1: Consider the uncertain discrete fuzzy 
model (10) together the control law (12) and the 
observer (13). With  defined in (25) if there exists 
for given scalars 

k
ijϒ
0ε > , 0µ > , 0η >  and 0λ >  

matrices , 0T
i iP P= > 0T

i iP P= > , , , k
ijΧ 1

k
ijΓ 2

k
ijΓ , 

( ) 0
Tk k

i iQ Q= > , ( )Tk k
ij jiQ Q= , , iS iK , iF ,  and 

, 
iR

iG { }, , 1, ,i j k r∈ … , j i>  and scalars k
ijδ  such that 

the problem defined in (7), (8) and (9) is satisfied, 
then the closed loop fuzzy model is globally 
asymptotically stable. 
 
Proof: Existence of the 1

zG − . Let us notice that with 
 defined in and condition (7) we have 

. Therefore  which 

ensures that 

k
ijϒ

0T
k kG G+ > ( )

1
0

r
T

k k k
k

h G G
=

+ >∑
1

zG −  exists. Then we must check that the 
function defined in (16) is a Lyapunov function 
candidate (See Guerra & Vermeiren 2004). Then, 
according to (24) and to the expression of the k

ijϒ  the 
variation of the Lyapunov function is negative if:  
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With equations (7) and (8), (32) is verified if: 
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and with the definition of kΨ  and condition (9), (33) 
is true. 
 

4. EXAMPLE 
 
Considering the following nonlinear model in one of 
its Takagi-Sugeno’s form: 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 z z z z
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A
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3
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1
0

Ha
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,

[ ]1 2 0.2 0Ea Ea= = , 0Hb = ,  1 2 0Eb Eb= =

     



( ) ( ) ( )( )( ) [ ]1 2 11 1 cos / 2 0h z h z x t= − = − ∈ 1   

 
The LMI solver SEDUMI gives a solutions in the 
non quadratic case but not in the quadratic one (i.e. 

 and ) and this solution gives 
the following observer and control law parameters: 

i iP G P= = i iS P P= =

[ ]1 0.3395 0.7796F = − − , [ ]2 1.999 2.820F = − −

1

12.61 9.3
4.609 10.94

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

9.629 2.132
1.888 9.312

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 and 1

0.1084
0.1128

K
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2

0.2471
0.0191

K
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

The next figures show the evolution of the state and 
its estimate, figure 1 and the evolution of the 
estimation error for each state, figure 2, for the 
following initial conditions:  for the 

model and  for the observer. 

( ) [ ]0 5 3 Tx =

( ) [ˆ 0 3 5 Tx = −

     

]
Equipotentials of the Lyapunov function are also 
plotted figure 1 to show they are far to be ellipsoids. 
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Fig. 1. State trajectory and its estimate. 
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Fig. 2. Evolution of the estimation errors 
 
 

5. CONCLUSION 
 

In this paper, conditions for the output stabilization 
of a class of uncertain nonlinear discrete models are 
given. They are developed using a Takagi-Sugeno 
fuzzy model representative of the nonlinear model, 
this one being exact in a compact set of the state 
variables. These conditions were obtained by the 
utilization of a non quadratic Lyapunov function and 
some matrix properties and are given in the form of a 
LMI problem. This work seems to be the first to 
propose a non quadratic approach for the output 
stabilization via a nonlinear observer and a non PDC 

control law. This approach includes the classical 
quadratic approach. An example is given to show the 
effectiveness of the approach.  
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