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Abstract: We present a controller design based on the immersion and invariance
method for an active suspension system, and compare the result with a back-
stepping control law. Simulation results show that the immersion and invariance
controller can stabilize the full-order system as well as the backstepping controller
in the nominal case, but is more robust to some parameter changes in the system.
Moreover, when there is an unknown parameter, the adaptive immersion and
invariance controller also gives closer response to the known parameter case than
the adaptive backstepping controller. Copyright c©2005 IFAC

Keywords: immersion and invariance method, backstepping control, active
suspension system

1. INTRODUCTION

(Astolfi and Ortega, 2003) propose the immersion
and invariance (I&I) method as a new tool to
design a controller for nonlinear systems. This
method is particularly useful when we know a
stabilizing controller of a nominal reduced-order
model and we would like to robustify it with
respect to higher-order dynamics. A control law
could be designed so that the full system dynamics
is asymptotically immersed into the reduced-order
one (the target system). They apply the technique
to design a stabilizing controller for a magnetic
levitation system, a global tracking controller for
a flexible joint robot and an adaptive controller
for a visual servoing system.

In this paper, we present a controller design based
on the immersion and invariance method for an
active suspension system.

2. THE IMMERSION AND INVARIANCE
METHOD

Main results about the immersion and invariance
technique can be summarized in the following
theorem (Astolfi and Ortega, 2003).

Theorem Consider a nonlinear system

ẋ = f(x) + g(x)u (1)

where x ∈ Rn and u ∈ Rm. Let x∗ ∈ Rn be the
equilibrium point to be stabilized and let p < n.

Suppose we can find mappings

α(·) : Rp → Rp π(·) : Rp → Rn c(·) : Rp → Rm

φ(·) : Rn → Rn−p ψ(·, ·) : Rn×(n−p) → Rm

such that the following conditions hold.

(A1) (Target system) The system

ξ̇ = α(ξ) (2)

with state ξ ∈ Rp, has a globally asymptotically
stable equilibrium at ξ∗ ∈ Rp and x∗ = π(ξ∗).

(A2) (Immersion condition) For all ξ ∈ Rp,

f(π(ξ)) + g(π(ξ))c(π(ξ)) =
∂π

∂ξ
α(ξ) (3)

(A3) (Implicit manifold) The following set iden-
tity holds

{x ∈ Rn|φ(x) = 0}
= {x ∈ Rn|x = π(ξ) for some ξ ∈ Rp}

(4)



(A4) (Manifold attractivity and trajectory bound-
edness) All trajectories of the system

ż =
∂φ

∂x
[f(x) + g(x)ψ(x, z)] (5)

ẋ= f(x) + g(x)ψ(x, z) (6)

are bounded and satisfy

lim
t→∞

z(t) = 0 (7)

Then, x∗ is a globally asymptotically stable equi-
librium point of the closed-loop system

ẋ = f(x) + g(x)ψ(x, φ(x))

In this case, we say that the system (1) is I&I
stabilizable with respect to the target dynamics
(2)

The immersion and invariance method can be
extended to the problem of adaptive stabilization
of nonlinear systems under the following assump-
tion.

(A5) (Stabilizability) There exists a parameter-
ized function Ψ(x, θ), where θ ∈ Rq, such that for
some unknown θ∗ ∈ Rq, the system

ẋ = f∗(x) := f(x) + g(x)Ψ(x, θ∗) (8)

has a globally asymptotically stable equilibrium
at x = x∗.

The system (1) under the assumption (A5) is said
to be adaptively I & I stabilizable if the system

ẋ= f(x) + g(x)Ψ(x, θ̂ + β1(x)) (9)
˙̂
θ= β2(x, θ̂)

with extended state (x, θ̂) and the functions β1

and β2, is I & I stabilizable with target dynamics

ξ̇ = f∗(ξ). (10)

Theorem Consider the system (1) with assump-
tions (A5) and (A6) (Linearly parameterized con-
trol) the function Ψ(x, θ) may be written as

Ψ(x, θ) = Ψ0(x) + Ψ1(x)θ (11)

for some known functions Ψ0(x) and Ψ1(x).

Assume that there exists a function β1 : Rn → Rm

such that (A7) (Realizability) (∂β1/∂x)f∗(x) is
independent of the unknown parameters.

(A8) (Manifold attractivity and trajectory bound-
edness) All trajectories of the error system

ẋ= f∗(x) + g(x)Ψ1(x)z (12)

ż =
[
∂β1

∂x
g(x)Ψ1(x)

]
z (13)

(14)

are bounded and satisfy

lim
t→∞

g(x(t))Ψ1(x(t))z(t) = 0.

Then, (1) is adaptively I & I stabilizable with the
parameter update law given by

β2(x) = −∂β1

∂x
f∗(x). (15)

3. ACTIVE SUSPENSION SYSTEMS
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Fig. 1. A quarter-car model for active suspension
design

Consider a quarter-car model of an active suspen-
sion system consisting of a single wheel and axle
connected to the quarter portion of the car body
through a passive spring-damper and a hydraulic
actuator, as shown in Figure 1. The equations of
motion of the system are

Mbẍs +Ka(xs − xw) + Ca(ẋs − ẋw)− ua = 0
Musẍw +Ka(xw − xs) + Ca(ẋw − ẋs)

+Kt(xw − r) + ua = 0
(16)

where Mb and Mus are the masses of car body
and wheel, xs and xw are the displacements of
car body and wheel, Ka and Kt are the spring
coefficients, Ca is the damper coefficient, r is the
road disturbance and ua is the control force from
the hydraulic actuator, which is given by

ua = APL

where A is the piston area and PL is the pressure
drop across the piston.

The pressure drop PL is related to the hydraulic
load flow Q and the spool valve displacement xv

according to the equations (Merritt, 1967)

Vt

4βe
ṖL = Q− CtpPL −A(ẋs − ẋw) (17)

Q= sgn [Ps − sgn(xv)PL]

×Cdwxv

√
1
ρ

[Ps − sgn(xv)PL] (18)

where Vt is the total actuator volume, βe is the
effective bulk modulus, Ctp is the total leakage
coefficient of the piston, Cd is the discharge co-
efficient, w is the spool valve area gradient, ρ is



the hydraulic fluid density and Ps is the supply
pressure.

The spool valve displacement xv is controlled by
the voltage u to the servovalve, which is modeled
by a first-order differential equation

ẋv =
1
τ

(−xv + u) (τ > 0) (19)

Let x1 = xs, x2 = ẋs, x3 = xw, x4 = ẋw, x5 = PL

and x6 = xv, we obtain the state equations of the
system as:

ẋ1 = x2

ẋ2 =− 1
Mb

[Ka(x1 − x3) + Ca(x2 − x4)−Ax5]

ẋ3 = x4 (20)

ẋ4 =
1

Mus
[Ka(x1 − x3) + Ca(x2 − x4)

−Kt(x3 − r)−Ax5]

ẋ5 =−βx5 − αA(x2 − x4) + γx6w3

ẋ6 =
1
τ

(−x6 + u)

where α =
4βe

Vt
, β = αCtp, γ = αCdw

√
1
ρ and

w3 = sgn [Ps − sgn(x6)x5]
√

[Ps − sgn(x6)x5]
(21)

The essential objectives of the active suspension
design are to reduce vertical car body acceleration
for passenger comfort and to increase the tire-to-
road contact for handling and safety. Other con-
siderations include suspension travel and power
consumption. In (Lin and Kanellakopoulos, 1997)
the regulated variable is proposed as

z1 = x1 − x̄3 (22)

where x3 is the output of the nonlinear filter
˙̄x3 = −(ε+ κ1ϕ(ζ))(x̄3 − x3) (23)

This nonlinearity is intentionally introduced so
that the system can emphasize different objectives
under different operating conditions.

In (23), ε > 0 and κ1 ≥ 0 are constants, ζ = x1 −
x3 is the suspension travel, and the nonlinear
function ϕ(ζ) is defined as

ϕ(ζ) =



(
ζ −m1

m2

)4

if ζ > m1

0 if |ζ| ≤ m1(
ζ +m1

m2

)4

if ζ < −m1

(24)

where m1 ≥ 0 and m2 > 0.

For comparison to our design, we shall consider
the following control laws:

• the backstepping control law in (Lin and
Kanellakopoulos, 1997), which is computed
in four steps resulting in

u =
τ

w3
α4 (25)

where the fourth stabilizing function α4 is

α4 =−c4z4 − µγz3 − b4h
2
4z4 +

1
τ
x6w3

+
1

2|w3|
|x6|w2 − g4 (26)

• the adaptive backstepping control law in (Lin
and Kanellakopoulos, 1996), in which θ = αA
is taken to be the unknown parameter. The
update law is given by

µ
˙̂
θ = Γτ4, (27)

where Γ > 0 is the adaptation gain and τ4
is the tuning function. The control law is
obtained by substituting θ̂ for the unknown
parameter θ.

For more details about various terms in (25)-(26)
and (27), see (Lin and Kanellakopoulos, 1997) and
(Lin and Kanellakopoulos, 1996), respectively.

4. I & I CONTROLLER DESIGN

The immersion and invariance design is performed
in two steps. In the first step, we choose a target
system and design a stabilizing controller for this
reduced-order model. In the second step, we mod-
ify the control law obtained in the first step to get
the immersion and invariance controller for the
full-order model (20).

The target system is chosen as

ξ̇1 = ξ2

ξ̇2 =− 1
Mb

[Ka(ξ1 − ξ3) + Ca(ξ2 − ξ4)− ua]

ξ̇3 = ξ4 (28)

ξ̇4 =
1

Mus
[Ka(ξ1 − ξ3) + Ca(ξ2 − ξ4)−Ktξ3 − ua]

ξ̇3 =−(ε0 + κ1ϕ(ζ))(ξ3 − ξ3)

We use the backstepping technique to design a
stabilizing control ua for the target system as

ua =Mb

{
− (c1 + c2)z2 − (ε0 + κ1ϕ(ζ))z1

+(c21 − 1 + c1(ε0 + κ1ϕ(ζ)))z1

−κ1
dϕ

dζ
(ξ2 − ξ4)ζ

}
+Ka(ξ1 − ξ3) + Ca(ξ2 − ξ4)

where c1, c2 are positive constants and z1 = ξ1 −
ξ3, z2 = ξ2 − α1, and

α1 = −c1z1 − (ε0 + κ1ϕ(ζ))ζ (29)



Next, the mapping x = π(ξ) is chosen to be
x1

x2

x3

x4

Ax5

x6w3

 =


ξ1
ξ2
ξ3
ξ4

ua(ξ1, ξ2, ξ3, ξ4)
ub(ξ1, ξ2, ξ3, ξ4)

 (30)

where ub is to be determined shortly. The mani-
fold x = π(ξ) can be implicitly described by

φ(x) =
[
Ax5 − ua

x6w3 − ub

]
= 0 (31)

Define [
η1
η2

]
=

[
Ax5 − ua

x6w3 − ub

]
(32)

and choose

ub =
Aα

γ
(x2 − x4) +

1
γA

(βua + u̇a) (33)

we obtain

η̈1 + βη̇1 − γAη̇2 = 0

Now, let

η̇2 = − 1
γA

(k1η̇1 + k2η1) (34)

we get
η̈1 + (β + k1)η̇1 + k2η̇1 = 0 (35)

If we want to place the poles of the off-the-
manifold dynamics (35) at −p1 and −p2, we can
solve for k1 and k2 from

p1 + p2 = −(β + k1), p1p2 = k2

Finally, the control law is given by

u=
(
τ

w3

) {
x6w3

τ
+

1
2 |w3|

|x6|w2

− 1
γA

(k1η̇1 + k2η1) + u̇b

}
(36)

where

w2 = −βx5 − αA(x2 − x4) + γx6w3 (37)

5. ADAPTIVE I & I CONTROLLER DESIGN

We select θ∗ = αA to be the unknown parameter
to be estimated as in (Lin and Kanellakopoulos,
1996). The target dynamics is

ẋ1 = x2

ẋ2 =− 1
Mb

[Ka(x1 − x3) + Ca(x2 − x4)−Ax5]

ẋ3 = x4

ẋ4 =
1

Mus
[Ka(x1 − x3) + Ca(x2 − x4)

−Kt(x3 − r)−Ax5]

ẋ5 =−βx5 − θ∗(x2 − x4) + γx6w3

ẋ6 =
1
τ

(−x6 + u(x, θ∗))

where u(x, θ∗) is the backstepping control law
(25) which stabilizes the target system when θ∗
is known.

The implicit manifold condition (A3) in this case
is

φ(x, θ̂) = θ̂ − θ∗ + β1(x) = 0

and the off-the-manifold coordinate is

z = θ̂ − θ∗ + β1(x)

Its derivative is

ż = β2(x) +
∂β1

∂x
[f0(x) + f1(x)θ∗ + g(x)u]

Hence, the parameter update law is chosen as

β2(x) = −∂β1

∂x

(
f0(x) + f1

[
θ̂ + β1(x)

]
+ g(x)u

)
where

f0(x) =



x2

− 1
Mb

[h(x)−Ax5]

x4
1

Mus
[h(x)−Kt(x3 − r)−Ax5]

−βx5 + γx6w3

−1
τ
x6


and

f1(x) =


0
0
0
0

−(x2 − x4)
0

 , g(x) =



0
0
0
0
0
1
τ


h(x) = Ka(x1 − x3) + Ca(x2 − x4)

If we choose

β1(x) = k sgn[−(x2 − x4)]x5

where k > 0 is a constant, then the parameter
update law becomes

˙̂
θ=−k sgn[−(x2 − x4)]

(
− βx5 − (x2 − x4)

×(θ̂ + β1(x)) + γx6w3

)
(38)

and the off-the-manifold dynamics is

ż = −[k(x2 − x4) sgn(x2 − x4)]z (39)

From (39), it can be seen that z is bounded and
converges to zero as t→∞.

6. SIMULATION RESULTS

The computer simulations are performed using
parameter values given in (Lin and Kanellakopou-
los, 1997) as follows:



α= 4.515× 1013 N/m5

β = 1 s−1

γ = 1.545× 109 N/(m5/2kg1/2)

τ = 1/30 s

Ps = 1500 psi

A= 3.35× 10−4 m2

As in (Lin and Kanellakopoulos, 1997), we use
µ = 10−7 to rescale the state x5, i.e. x5 = µx5,
to improve numerical accuracy and we modify w3

in the denominator (only) of the control laws (25)
and (36) to be

w3 =
{

0.5 if 0 ≤ w3 ≤ 0.5
−0.5 if −0.5 ≤ w3 < 0

to avoid division by zero.

We also assume the following limits:

• Suspension travel limits: ± 8 cm.
• Spool valve displacement limits: ± 1 cm.

and let the road disturbance r be

r =
{
a(1− cos 8πt), 0.5 ≤ t ≤ 0.75

0, otherwise

For a = 0.04, the height of the bump is equal to 8
cm.

The design parameters are

ε0 = 1.5, m1 = 0.055, m2 = 0.005, κ1 = 0.0125,

b3 = b4 = 0.01, c1 = c2 = c3 = c4 = 200,
p1 = p2 = 1200

We compare the results between the immersion
and invariance control law (36) and the backstep-
ping control law (25) in the following cases:

(1) Fig. 2 is the nominal case.
(2) Fig. 3 is when α is increased by 5%.
(3) Fig. 4 is when α is decreased by 5%.

Fig. 2. Comparison of immersion and invariance
(thick line) and backstepping (thin line) con-
trollers in the nominal case

Fig. 3. Comparison of immersion and invariance
(thick line) and backstepping (thin line) con-
trollers when α is increased by 5%

Fig. 4. Comparison of immersion and invariance
(thick line) and backstepping (thin line) con-
trollers when α is decreased by 5%

In Figure 2, it is readily seen that the immer-
sion and invariance controller can stabilize the
full-order system as well as the backstepping
controller, with somewhat larger overshoot but
smaller undershoot in the car body acceleration.
The body travel, the suspension travel and the
wheel travel are similar in both cases.

When α is increased by 5%, the car body accel-
eration becomes more oscillatory when the back-
stepping controller is used, but remains essentially
the same when the immersion and invariance con-
troller is employed. On the other hand, when α
is decreased by 5%, the body acceleration ex-
hibits larger overshoot and undershoot under the
backstepping control, but becomes flatter under
the immersion and invariance control. Notice that
the suspension travel remains within the required
limits in all cases considered.

The results show that the immersion and invari-
ance controller can stabilize the full-order system



as well as the backstepping controller in the nom-
inal case, but is more robust to some parameter
changes in the system.

In the case of adaptive I & I control, we compare
the results between the immersion and invariance
parameter update law (38) and the tuning func-
tion parameter update law (27) in the following
cases:

(1) Fig. 5 is when α is unknown and θ̂(0) is
greater than the actual value θ∗ by 10 %.

(2) Fig. 6 is when α is unknown and θ̂(0) is less
than the actual value θ∗ by 10 %.

Fig. 5. Comparison of immersion and invariance
(thin line) and tuning function (dashed line)
update laws with the known parameter case
(thick line) when θ̂(0) is greater than θ∗ by
10 %

From Figures 5 and 6, we can see that the car
body acceleration in the case of the immersion and
invariance update law has smaller overshoots and
undershoots than the case of the tuning function
update law, while the suspension travel and the
car body and wheel positions in both cases are
very similar to the known parameter case. Also,
the I & I parameter estimator gets closer to the
true parameter value than the tuning function pa-
rameter estimator. Therefore, it can be concluded
that for the active suspension system considered
in this work, the immersion and invariance param-
eter update law performs better than the tuning
function update law.

Fig. 6. Comparison of immersion and invariance
(thin line) and tuning function (dashed line)
update laws with the known parameter case
(thick line) when θ̂(0) is less than θ∗ by 10 %
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