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Abstract: Identification of functional motifs in a DNA sequence is fundamentally a 
statistical pattern recognition problem. This paper introduces a new algorithm for 
recognition of functional transcription start sites (TSSs) in human genome sequences, in 
which RBF neural network is adopted, and an improved heuristical method for 5-tuple 
feature viable construction is proposed and is implemented in two RBFPromoter and 
ImpRBFPromoter packages developed in Visual C++ 6.0. The algorithm is evaluated on 
several different test sequences sets. Compared with several other promoter recognition 
programs, this algorithm is proved to be more flexible with stronger learning ability and 
higher accuracy. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Today, science is advanced by new observations and 
technologies. Human Genome Project has led to a 
massive outpouring of genomic data, which in turn 
fueled the rapid developments of high-throughput 
biotechnologies. A new field of computational 
molecular biology, saying bioinformatics, is 
witnessing a revolution brought out by biological 
science, medical research and information science. 
Gene finding is one of the most important research 
fields in bioinformatics, i.e. prediction of gene 
location and gene products from experimentally 
uncharacterized DNA sequences (Roderic Guigo, 
1997; James W. Fickett, 1996) according to 
biological meanings. Promoter is a key DNA region 
tha t  con t ro l s  and  regu la tes  t r ansc r ip t ion . 
Computational prediction of eukaryotic promoters 
from the nucleotide sequences is one of the most 
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 attractive fields in sequence analysis nowadays, but 
it  is  also  a  very  difficult one since the 
transcriptional process is incomplete(Anders Gorm 
Pedersen, et al, 1999). There have been many 
computational approaches to this problem, such as  
Markov   chain model,   Linear   discriminant    
analysis,    Quadratic discriminant analysis and 
simple  neural  networks, which can be divided into 
two classes of general promoter recognition methods 
and specific promoter recognition methods. The 
general method is to identify TSS (Transcription 
Start Site) and/or core promoter elements for all 
genes in a genome. The specific methods focus on 
identifying specific regulatory elements, e.g. TF sites 
that are shared by a particular set of transcriptional  
related   genes  (Uwe Ohler and Heinrich 
Niemann,2001; James W. Fickett, et al,  1997; Tao 
Jiang,et al,  2002).  
 
 
 



     

 
Notably, compared with the feed forward network, 
RBF network is a widely used network model. As its 
name implies, this network makes use of radial basis 
functions. RBF neural network is designed to 
perform nonlinear mapping from the input space to 
the hidden-unit space and linear mapping from the 
hidden-unit space to the output space. Problems can 
be solved by transforming into a high dimensional 
space in a nonlinear manner. The structure of a RBF 
neural network indicates that a complex pattern 
classification problem cast in high dimensional space 
is more likely to be linearly separable than in a low 
dimensional space. It is promising to apply RBF 
neural network to promoter recognition. 
 
Although promoter recognition is a typical statistic 
pattern recognition problem, one difficulty lies on 
how to obtain available feature variables which 
represent biological meanings as well as statistical 
importance in order to improve the prediction 
accuracy.  k-tuple frequency measure is one of the 
most widely used methods. A global 6-tuple 
frequency measure has been used for promoter 
recognition as a “content” measure in the sense of 
Staden (Hutchinson, G.B., 1996). But it is suggested 
that this content approach should not consider all of 
the positional information that is crucial for the 
recognition of promoter. Also, a pure “signal” 
approach has no meaning in this case because of the 
large variation in the signal positions. However , a 
“mixed” approach, using position-specific windows, 
had been proposed by Michael Q. Zhang(Michael Q. 
Zhang, 1997) and proved to be powerful in the QDA 
algorithm in a program CorePromoter developed by 
Michael Q. Zhang.    
 
This paper focuses on promoter recognition in 
human genome with the aim of improving True 
Positive prediction numbers significantly. In order to 
explore the truth of promoter recognition, two 
different methods are implemented in two programs 
RBFPromoter and ImpRBFPromoter developed in 
VC++6.0, where RBF neural network is adopted, the 
later is a particularly creative one with an improved 
feature variable method.  In order to compare with 
that of Michael Q.Zhang, k is set to be 5 in both 
RBFPromoter and ImpRBFPromoter, the same as 
CorePromoter’s in promoter recognition. By using 
several different test sets, evaluation results 
demonstrate that RBFPromoter and 
ImpRBFPromoter are valid and efficient. 
 

 
 

2. RBF NEUTRAL NETWORK BASED HUMAN 
GENOME TSS IDENTIFICATION SYSTEM 

 
 

2.1 Structure of the system  
 
The system consists of four blocks conceptually 
shown in Fig1. Firstly, the input sequence is pre-
processed to satisfy the format requirements of the  
 
 

 
 

 
  
 

Fig.1 Schematic Representation of the system 
structure 

 
system, such as changing minuscule letters of 
sequences to capital characters. Then, a fixed-length 
window slides    along the   input   sequence to get 
feature variables based on 5-tuple frequencies. 
Finally, recognition block gives out recognition 
results. RBFPromoter is different from 
ImpRBFPromoter in the third block. 
 
 
2.2 Feature Variables of RBFPromoter 
 
In RBFPromoter, feature variable of an overlapping 
window shown in Fig 2 is calculated as that in 
CorePromoter :  
 
The 5-tuple value of a 5-tuple s in a window w can be 
obtained as following: 
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where  fw(s)  is the signal frequency of a 5-tuple s in a 
window w,  fb(s) is the background frequency as in 
Eq.(2). 
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where L and R indicate the left and the right nearest 
neighbour of  non-overlapping windows.  
 
Therefore, feature variable of a position-specific 
window w is defined as the mean of all 5-tuple values 
in this window.  

 
Fig.2 Over-lapping window feature variables 

(Michael Q. ZhangI, 1997) 
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2.3 Feature Variables of ImpRBFPromoter 
 
Although feature variables obtained in the 
overlapping window above are effective, surprising 
computing data increases the executing time to 
predict TSS even for one sequence. Based on statistic 
analysis of all 5-tuple frequencies in each position of  
120  sequences  in  a  training  set ,  it is found that 5- 
tuples   appear   in  different   regions   with   diverse 
 frequencies. For promoter regions (240bp sequence 
samples in -160～+80) and non-promoter regions 
(1360bp sequence samples outside of promoter 
regions), some 5-tuples concentrate on appearing in 
promoter regions whereas seldom in non-promoter 
regions. On the contrary, some 5-tuples have 
extensively higher frequencies in non-promoter 
regions than in promoter regions.  
 
In promoter regions of sequences in the training set, 
the 5-tuples whose appearance frequencies are in the 
top 20 are GGCGG, GGGCG, GCGGG, GGGGC, 
GGAGG, GCGGC, GGGAG, GCGCG, 
GCCGC,GGCTG,AGGGG, GCTGC, CGGGG, 
GAGGG, GCTAG, GGGGG, CCGCC, GGGCC, 
CTGGG, CGCGG. However, as TATA box is 
proven to be a typical signal of promoter, frequencies 
of all 5-tuples containing TATAX (X represents any 
of A, T, C, G) are not in the Top 20, actually in 
No.32, which may be caused by the statistical 
character of the training set. 
 
In non-promoter regions of sequences in the training 
set,  5-tuples whose appearance frequencies are in 
the top 20 are TTTTT, GGAGG, TTTCT, GGGAG, 
CCTCC, GGGGG, CTGGG, GAGGG, ATTTT, 
AGAAA, GGCTG, TGGGG, CCTGG, TTTTA, 
GGGGC, CTCCC, CCCAG, GAGGA, CAAAA, 
TGGGA. Consequently, it assumes that different 5-
tuples play different roles in distinguishing promoter 
region from non-promoter region. If 5-tuples could 
be chosen according to some relative function scores, 
an improved feature variables method could be 
developed based on over-lapping window as 
following: 
 
①Building frequency table of all 5-tuples in each 
position of  the 120 training sequences. 
 
Firstly, 8520 short sequences of the length 240bp are  
selected, which include 120 true samples in the 
position   between   640   and   880   and   8400  false 
samples in the position between 0 and 540 and 
between 980 and 1360, respectively, with the 
position of the first letter in the sequence marked 0.  
 
If there is no repetitive element, a 5-tuple is a short 
sequence in which the character of every position can 
be any one of A, T, C and G. There are 45=1024 
possible combinations. However, it is necessary to 
consider the affection of the repetitive element N. 
But it is impossible to judge the base pair elements of  
the 5-tuple NNNNN, so NNNNN is omitted without  
 
 

 
consideration. Thus it is essential to compute 55-
1=3124 5-tuples frequencies in each position of the 
8520 training samples. 
 
② Getting statistic frequencies of all 5-tuples in 
promoter regions and non-promoter regions 
according to the frequency table; 
 
③ Choosing a relative score function as following 
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where i represents 5-tuple, fretra(i) is the frequency 
of 5-tuple i in promoter regions and frefalse(i) is the 
frequency of 5-tuple i in non-promoter regions. The 
absolute value of the function for each 5-tuple is thus 
computed. Higher absolute value of the function 
shows more effect of the corresponding 5-tuple on 
distinguishing promoter region than on non-promoter 
region. As there are many choices of the relative 
function, the above function is chosen from several 
experiments to get the best recognition accuracy.  
 
④ Ranking 5-tuples decreasingly according to the 
relative score absolute value of the function and 
choosing the first n 5-tuples as the most important 
short sequences. Here, n is chosen to be 300.  
 
⑤ Eq. (1) is then applied. What is different is that 
only the n 5-tuples chosen in the fourth step are 
considered in the sequence window, the other short 
sequences are omitted. 
 
⑥ Introducing the score of CpG islands 
 
CpG islands are unmethylated regions of the genome 
that are associated with the 5' ends of most 
housekeeping genes and many regulated genes. The 
absence of methylation slows CpG decay, and so 
CpG islands can be detected. In fact, about 80% of 
CpG islands are common in man and mouse DNA 
sequences. Generally, CpG islands overlap the 
promoter and extend about 1000 base pairs 
downstream into the transcription unit. Identification 
of potential CpG islands during sequence analysis 
helps to define the extreme 5' ends of genes, 
something that is notoriously difficult with cDNA 
based approaches. Probably because they are 
associated with genes, CpG islands tend to be unique 
sequences  and  are  therefore  very  useful in genome 
mapping projects.  
 
There are mainly two rules to judge whether or not 
there are CpG islands in sequence windows, of which 
the first is whether the content of G+C is more than 
50% and the second is whether CGratio which is 
defined in (4) is more than 60%. 
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where Obs is the frequency of CG. 
 
and  
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If there are CpG islands in a sequence window, then 
the score of that window is added a constant value 
0.1, which is only an experimental value. Indeed it is  
better to build up an independent CpG islands model 
to get that constant value. 
 

2.2 Construction of a RBF neural network 
 
Radial basis function (RBF) neural network is a feed 
forward network, but different from the conventional 
feed forward network in connections between the 
hidden and output layers, which is shown in Fig3. 
For an RBF network, a node in the hidden layer 
represents a unique prototype and an output node 
represents a unique category. 
 
According to Fig 2, the input of the RBF neural 
network are feature variables of 13 dimensions in 
both RBFpromoter and impRBFpromoter. So there 
are 13 nodes in the input layer. The output layer has 
only one node, in which +1 represents true TSS and -
1 represents false TSS.  In this paper, Gaussian 
radius function is chose as the radial basis function. 
Let Xk be the input vector, m be the node number of 
the hidden layer, MX(j) be the connection weight of 
the jth hidden node, which is also the clustering  
center of the jth hidden node. The distributed 
parameter σj

2 represents data distributing condition in 
the hidden layer. Let Wj be  the  connection  weight 
between the jth hidden node and the output node, the 
output of the jth hidden node be Oj and the output of 
network be O, then  
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Fig3 strucuture of a RBF neural network 

                                                                                 

 
To improve the training efficiency of the hidden 
layer, an automatic clustering method is adopted as 
following. 
 
Firstly, a clustering radius R0 is set to be the product 
of the average of the minimum distance among 
training categories and a constantα  as in (7). 
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where P is the number of training samples. 
 
Then repetitive clustering is adopted. If a given 
training sample is in a region with the existing cluster 
radius R0, then it is included in that cluster and the 
clustering center is adjusted simultaneously. But if 
the sample is not included in any existing region, a 
new cluster is then produced. The center of the new 
cluster is that training sample. Therefore, little 
α andR0 always mean more clustering numbers.  
 
Finally, it is necessary to get the width of the hidden 
node. If the distances of the clusters’ centers are 
different, each node should select different width. 
The node which is much farther away from other 
centers should be given higher width, otherwise 
lower. In order to achieve this, it is essential to find 
out the distance of minimum clustering centers 
among different clusters. 
 
Automatic clustering algorithm is very effective to 
construct hidden node numbers because it needs 
compute only once for all training samples to finish 
all clustering.  
 
After the number and center of hidden nodes are 
obtained, LMS algorithm is adopted to solve this 
linear optimization of the linear equation units in 
order to train the weight between the hidden layer 
and the output layer. LMS is explained as 
followings:ΔWki=ηδk Oi in which η is the learning 
rate, Oi is the response output of the ith hidden node, 
ΔWki is the increment of the weight between the ith 
hidden node and the kth output node, δk is the error 
of the node k,δk =Tk - Ok ,where Tk is the ideal 
output value of the kth output node, Ok is the actual 
response output of the kth output node. In order to 
make sure the algorithm’s constringency, let 
η=p/(t+1), where  0<p<1 and t is the iterative times. 
 
 

3. TRAINING  SET 
 
In construction of the algorithm, training set is of 
specially crucial because all of the statistical data are 
extracted from the set and thus the set has a quite 
impact on the prediction accuracy of the algorithm. 
The choice of the training set is thus an important job,  

The output layer 

The hidden layer 

The input layer 



     

 
 
 
manual sequencing error must be  deleted,  the  range  
of any sequence in the training set should be 
representative enough, the number of sequences in 
the training set should be large enough to meet the 
requirements of the statistic, redundancy or 
homology presented within the data set must be 
reduced. As a result, firstly, a complete human 
promoter   sequence  set can be   downloaded     from  
EPD    (Eukaryotic      Promoter       Database)        at  
http://www.epd.isb-sib.ch, including 1796 sequences  
with the range from -499 to +100. Secondly, BLAST 
searching (GenBank, release 134) is adopted for each 
sequence   in   the   original   complete   set to extend  
qualified of the 1796 sequences from -800 to 800, of 
which 153 sequences can be extended. Thirdly, 
RepeatMasker are adopted to those153 sequences to 
mark repeated segments. Finally, a sequence set is 
obtained, in which 120 consist of training set and 33 
consist of verifying set. 
 
 

4. RESULTS 
 
In order to compare the system results thoroughly, a 
test set is considered which consists of 93 sequences, 
constructed by the following steps: 
 
①choosing 30 sequences of the length 1600bp 
randomly in the training set, which is 32.258% of the 
whole test set;  
 
②choosing 33 sequences of the length 1600bp 
randomly in the verifying set, which is 35.484% of 
the whole test set; 
 
③choosing 30 sequences of the length 600bp 
randomly in the downloaded EPD sequences, which 
is 32.258% of the whole test set. All of test set 
sequences are also run by the Internet in the web 
server of CorePromoter (http://rulai.cshl.org/tools/ 
genefinder/CPROMOTER/human.htm).The standard 
evaluation rules , such as  the specificity, sensitivity 
and correlation coefficient (CC) are used to evaluate 
the prediction results. Only the highest score can be 
regarded as the right prediction result, the strict 
evaluation result is shown in Tab.1.  
 
Tab.1 Strict evaluation result of the test set 
        RBFPromoter     ImpRBFPromoter      CorePromoter 

 Sn      0.3226           0.3333              0.0322 

Sp       0.3226           0.3333              0.0322 

 CC      0.3176            0.3176             0.0251 

  
 

where ( )FNTPTPSn +=      ( )FPTPTPS p +=                                                                                              

[ ]
( )( )( )( )FPTNFNTPFNTNFPTP ++++

=
(FP)(FN)-(TP)(TN)CC    

 

  
TP and FP are the numbers of true and false 
promoter predictions, respectively, TN and FN the 
numbers of true and false "non-promoter" predictions, 
respectively. 

Aiming at evaluating the algorithm more completely, 
the common test set used by James W. Fickett and 
Artemis G. Hatzigeorgiou in the Reference (James. 
W. Fickett  ,et   al,  1997)    is     adopted     to     test 
CorePromoter, RBFPromoter and ImpRBFPromoter.  

The evaluation results are shown in Tab2 . Of all 18 
mammalian sequences in which the transcription 
initiation site have been experimentally mapped, two 
sequences have no identification marks and searching 
results of one sequence do not match with the 
reference. Thus only 15 sequences containing 19 
promoters in a total of 27277bp are chosen. None of 
them matches a sequence in EPD (either at the level 
of identity or at the level of clear homology). The 
predicted TSS, explicit or implicit, was counted as 
correct if it was within 200bp 5’, or 100bp 3’, of any 
experimentally mapped TSS. 

 
Tab 2 Test results of the common test set 
 

Seq.  Audic  Autogene  GeneID  NNPP 
 
Se    4/19       6/19         9/19        11/19 
        21%       32%         47%        58% 
 
Sp    27fp       48fp         40fp       67fp 
      1/1010bp  1/568bp  1/682bp  1/407bp 
 
 
Seq.  P'Fin-d     TATA     TSSG     TSSW 
 
       
Se    5/19           6/19         5/19         8/19     
        26%          32%         26%         42% 
 
Sp    25fp          44fp         21fp         36fp 

1/1091bp  1/620bp  1/1299bp  1/758bp 
 

 
 
Seq  CorePromoter  RBFPromoter  ImpRBFPromoter 
 
Se       9/19              14/19          12/19 
           47%              74%            64% 
 
Sp      57fp               119fp        122fp 
         1/479bp         1/229bp     1/224bp 
 
 
 
For each program the Se (sensitivity, as the number 
and percentage of promoters correctly detected) and 
Sp  (specificity,  as  number  of   false   positives  and  
number  of  base  pairs  per  false  positive)  are given.  
Higher Sensitivity and smaller Specificity mean 
better recognition accuracy. 



     

 
 
 

5. DISCUSSION 
 
It is suggested by scientists that combining several 
models’ results could improve prediction accuracy. 
But if artificial neural network could play a better 
role in predicting TSS, high accuracy of each single 
model and reliable training set should be crucial. It 
could be seen that even the famous CorePromoter 
prediction results for different test sets are diverse 
greatly, which reveals poor performance of promoter  
recognition as a result of relying extremely on the 
quality and quantity of the training set. This means 
that   biological   properties   hiding   behind  original  
sequences are not reflected by the algorithm 
effectively. Another important problem is different 
signals in sequences. For example, although CpG 
islands are strongly associated with TSS, a factor that 
gives rise to experimental procedures for isolating 
promoters, it is still difficult to make full use of such 
a signal in the algorithm. Building up a special 
independent model for CpG islands would be helpful 
to improve the accuracy of the RBF neural network. 
At the mean time, it should be remembered that 
because of the limited sample size and the possibly 
skewed nature of the sample, results should be taken 
as provisional. 
 
 

6. CONLUSIONS 
 
A novel method of promoter recognition in the 
human genome is proposed in this paper where RBF 
neural network and an improved feature variable 
method are adopted and implemented in 
RBFPromoter and ImpRBFPromoter developed in 
VC++ 6.0. And the method is tested by different test 
sets. Test results reveal that compared with 
CorePromoter, RBFPromoter and ImpRBFPromoter 
have more flexible learning ability and higher TP 
predictions.  
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