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Abstract: A computationally very efficient method is proposed to compute a
guaranteed robustness margin, by combining methods which compute a guaranteed
µ upper bound over a frequency interval and those which eliminate frequency
intervals inside which µ is less than a treshold. The µ upper bound is computed
at several frequency points simultaneously either using the LMI Control Toolbox
or the µ Analysis and Synthesis Toolbox. The method compares very favorably
with existing µ methods. The algorithm is available on the web as part of the new
version of the Skew Mu Toolbox (SMT). Copyright c©2005 IFAC.
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1. INTRODUCTION

Consider a closed loop subject to neglected dy-
namics and parametric uncertainties. The issue is
to compute (an estimate of) the robustness mar-
gin, i.e. the maximal size of model uncertainties
for which closed loop stability or performance is
still guaranteed. This robustness margin is ob-
tained as the inverse of the maximal structured
singular value (s.s.v.) µ(ω) over the frequency
domain [0, +∞).
Since computing the exact value of µ is known
to be NP hard, a guaranteed robustness margin is
usually obtained by computing an upper bound of
µ(ω) on [0, +∞). The best known upper bound
is the polynomial-time one proposed in Fan et al.
(1991) and Young et al. (1995). Nevertheless two
difficulties remain:

• Computing the optimal value of this upper
bound, which is obtained as the solution of
an LMI problem, can become cumbersome
in the case of largely repeated parametric
uncertainties. As a consequence the routine
mu.m of the µ Analysis and Synthesis Tool-

box proposes to compute a suboptimal value
of this upper bound with a reasonable com-
putational requirement. An option enables to
tune the trade-off between this requirement
and the accuracy of the upper bound (see
Young et al. (1995)).
• Nevertheless the routine mu.m is to be called

at each point of a frequency gridding, and
more generally the µ upper bound is usu-
ally computed on a frequency gridding of
[0, +∞). This solution may not be reliable,
especially in the case of flexible systems, since
it is impossible to guarantee that the critical
µ peak was not missed between two points
of the frequency gridding. Moreover comput-
ing the µ upper bound on a fine frequency
gridding, so as to reduce the probability to
miss a peak, can be time-consuming. In this
context the solution is either to compute a
guaranteed µ upper bound βi over a union
of frequency intervals [ωi, ωi+1], i.e. µ(ω) ≤
βi ∀ω ∈ [ωi, ωi+1], or to eliminate frequency
intervals inside which it can be guaranteed
that µ(ω) is less than a given threshold (see



Sideris (1992); Magni et al. (1999); Ferreres
(1999); Ferreres and Biannic (2001); Ferreres
et al. (2003); Ly et al. (1998)).

In the spirit of Ferreres et al. (2003) a computa-
tionally very efficient method is described here to
compute a guaranteed robustness margin: meth-
ods for computing a guaranteed µ upper bound
over a frequency interval and for eliminating fre-
quency intervals inside which µ is less than a
treshold are merged into a single algorithm which
is available on the web as a part of the free Skew
Mu Toolbox (see Ferreres and Biannic (2004)).
The paper is organised as follows. Two prelimi-
nary technical results are presented in section 2,
which form the basis of the algorithm described in
section 3. In section 4, different ways of using the
algorithm are first presented on a simple system.
Then, a challenging example is proposed to com-
pare computational-time and accuracy with other
µ methods. Concluding remarks end the paper.

2. TWO PRELIMINARY TECHNICAL
RESULTS

In this section, the two main technical results
which form the basis of our proposed algorithm
are presented. We first consider the problem of
computing a µ upper-bound which is simultane-
ously valid at several frequency points. Then, as
already proposed in Ferreres et al. (2003), we
briefly describe a simple test to compute a set
of frequency intervals inside which the µ upper-
bound is guaranteed to remain below a prescribed
level.

2.1 A fast µ upper-bound computation at several
frequency points

In Ferreres et al. (2003), this problem is solved by
an LMI approach. Here, to reduce the computational-
time, a specific approach is developed using the
routine mu.m of the µ Analysis and Synthesis
Toolbox.

Let us consider the standard interconnection
structure M(s) − ∆ where M(s) is a stable LTI
system and ∆ a mixed model perturbation con-
taining real scalars (associated to parametric un-
certainties) and full complex blocks (which rep-
resent neglected dynamics). The mixed-µ upper-
bound proposed in Young et al. (1995) is summa-
rized in the following proposition :

Proposition 1. If there exist scaling matrices D ∈
D and G ∈ G (see Young et al. (1995) for a
definition of these two sets) and a positive scalar
β such that :

σ

(

F−1/4

(

DM(jω)D−1

β
− jG

)

F−1/4

)

≤ 1 (1)

with F = I + G2, then µ(M(jω)) ≤ β.

For any given frequency point, the problem of
minimizing β with respect to scaling variables D
and G is solved (possibly sub-optimally) quite
efficiently with the routine mu.m. However, by
such an approach, the scalings might not be “ro-
bust” versus frequency variations, especially near
flexible modes of the system. To avoid this prob-
lem and thus improve the performance of the
frequency elimination technique (see the next sub-
section), we propose to compute an upper-bound
β and associated scalings which are simultane-
ously valid for two frequency points ω1 and ω2.

The proposed approach is simple. Let us first
denote Mi = M(jωi) and M0 = (M1 + M2)/2.
Then, β0, D and G can be obtained by a standard
use of the routine mu.m. Finally, it remains to
increase β0 until the singular value constraint (1)
is satisfied for M = M1 and M = M2. As stated
by the following proposition (whose proof is given
in appendix), the determination of β reduces to
generalized eigenvalues computation :

Proposition 2. With the notations of proposition
1 in mind, let us denote Ui = F−1/4DMiD

−1F−1/4

and V = −jG(I + G2)−1/2. Let us further define

β̂ as the largest positive scalar such that :
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then, for all β ≥ β̂,
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Remark 3. As already pointed out, all solutions
of equation (2) can be easily obtained as the
solutions of a generalized eigenvalue problem. Fur-
thermore, note that these eigenvalues are all real.

Remark 4. By a continuity argument, if ω1 and ω2

are sufficiently close, then β̂ also remains close to
β0. Conversely, a significant gap between β̂ and β0

means that ω1 and ω2 are not close enough, which
might lead to a conservative result.

2.2 Frequency elimination technique

The frequency elimination technique which we
propose here is essentially based on an extension
of the scaling validation method depicted in Fer-
reres et al. (2003). Following the above procedure,
suppose β, D and G have been computed and are



simultaneously valid for ω1 and ω2. It now remains
to check wether the scalings are valid on the whole
segment [ω1 , ω2]. The following technical result,
adapted from Ferreres et al. (2003), provides an
exact answer to the above question. Moreover,
without any further significant computations, it
also enables to detect additional intervals, outside
[ω1 , ω2] in which scaling matrices are valid as
well.

Lemma 5. Given ω1, ω2, β, D and G as intro-
duced above, set ω0 = (ω1 + ω2)/2 and com-
pute the augmented matrix H(ω0) as detailed in
proposition 2.5 of Ferreres et al. (2003). Denote
η1, . . . , ηq the real eigenvalues of H(ω0), then :
∀ω̂k = ω0 + 1

ηk

, k = 1 . . . q , ∃i such that :
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with M̂ = M(jω̂k)

The above lemma can be easily used to compute
a set of frequency intervals inside which scal-
ing matrices are valid. Suppose that the criti-
cal frequency points ŵk are sorted in ascending
order and consider the frequency segment Ik =
[ŵk , ŵk+1]. Select a frequency point inside Ik.
According to the lemma it is then readily checked
that if the scaling matrices are valid for this
point, they necessarily remain valid on the whole
segment. Several intervals may thus be obtained
at a very low cost, by iteratively considering all
segments Ik.

Remark 6. In Ferreres et al. (2003), a similar ap-
proach is used to check the validity of the scaling
matrices. However, only one segment is evaluated
at each iteration. Regarding computational-time,
our approach will then be more efficient, since
a larger number of frequency intervals may be
eliminated at each iteration.

3. DESCRIPTION OF THE ALGORITHM

We are now ready to describe the main steps of our
proposed algorithm which essentially consists in
iterating upper-bound computations (using sub-
optimal scaling matrices which are simultaneously
valid at two frequency points) and a powerful
frequency-elimination technique. The basic algo-
rithm is presented first, then some possible exten-
sions are described to improve the accuracy.

3.1 Basic algorithm

Define an initial frequency gridding {ω1, ω2, . . . , ωN}
and generate the associated set of intervals :

I = {Ik = [ωk , ωk+1] , k = 1, . . . , N − 1}

then repeat the following steps while I is not
empty :

(1) Consider an interval Ik of I and denote ωk =
(ωk + ωk+1)/2,

(2) Using the approach of subsection 2.1, com-
pute βk, Dk and Gk which are simultaneously
valid for ωk and ωk+1,

(3) If the above computation reveals that ωk and
ωk+1 were not sufficiently close (according to
Remark 4), add the central point ωk to the
gridding, update I and go back to step (1).
Otherwise, update βmax :

βmax = max(βmax, βk)

(4) Using method of subsection 2.2, compute the
set J of frequency intervals inside which
βmax, Dk and Gk are valid,

(5) Update I by removing all intervals of J :

I ← I − J

Remark 7. From the above description of the al-
gorithm, it clearly appears that the initial fre-
quency gridding is automatically refined if re-
quired. Consequently, it is useless to initialize the
procedure with a fine gridding.

Remark 8. The accuracy of the algorithm can be
easily tuned by adapting a tolerance parameter in
step 3. In that step indeed, it is decided wether
ωk and ωk+1 are sufficiently close or not. As al-
ready detailed, to ensure the validity of the scaling
matrices at two frequency points simultaneously,
the upper-bound βk is obtained by increasing
the nominal value (see subsection 2.1). When the
expansion factor remains close to 1 this clearly
means that the method is not hardly more conser-
vative than a standard gridding-based approach.
Then, a natural way to control the accuracy of
the µ upper-bound consists in observing the ex-
pansion factor and adding a frequency point (to
reduce the size of the segments) when it gets too
large.

Remark 9. This algorithm significantly differs from
the previous one proposed in Ferreres et al. (2003),
since :

• the computation of the scaling matrices is
no longer based on LMI-optimization, which
permits to consider more challenging prob-
lems with highly repeated uncertainties,
• the frequency elimination technique is more

efficient as it now fully exploits the result of
lemma 5. This is especially useful for high-
order systems where the number of elimi-
nated frequency segments at each iteration
may be significant.



Nevertheless, the overall architecture is not so
different. As an important point, it should be
emphasized that in both algorithms, sub-optimal
scaling matrices are used. This property plays a
key-role in the convergence proof of the algorithm
proposed in Ferreres et al. (2003). Consequently,
the convergence of this new algorithm can also be
established using the same guidelines.

Remark 10. The proposed algorithm is essentially
devoted to the computation of a guaranteed max-
imum value of a µ upper-bound over a frequency
range. It is not supposed to provide any accurate
information regarding secondary peaks of the µ
plot. This information can be obtained by com-
puting more accurately a shape of the µ upper-
bound as a function of frequency. This implies
slight modifications of step 4. First, βmax should
be replaced by βk. Then, as proposed in Ferreres
et al. (2003), only the detection of the main inter-
val (containing ωk) should be activated. Note that
such modifications might significantly increase the
number of iterations and then the computational
burden.

3.2 Further improving accuracy

The proposed method to compute a µ upper-
bound and associated scaling matrices which
are simultaneously valid at two frequency points
might give pessimistic results mainly because the
computation - based on mu.m - is performed in
two steps. As detailed in Ferreres et al. (2003),
the problem is clearly convex and can be solved
(at least theoretically!) - more optimally - using an
LMI solver. But remember that the computations
can become cumbersome for too largely repeated
uncertainties.

In order to optimize the tradeoff between accuracy
and computational-time, a combined approach
could be proposed. This one consists in applying
first the standard algorithm described above and
then in refining computations by an LMI approach
on the most critical frequency segments.

4. APPLICATIONS

The above algorithm has been implemented in
a Matlab routine mu max 3.m and is available
as part of the new version of SMT Toolbox (see
Ferreres and Biannic (2004)). This routine imple-
ments the basic algorithm with several options
in order to improve either the computational-
time or the accuracy. Optionally, it also permits
to perform computations on the borderline of a
truncated sector instead of considering the clas-
sical imaginary axis. Thus, the robustness of a
modal performance can be evaluated. For more

details, the reader is referred to the help file of this
function and the pdf document to be downloaded
with the Toolbox.

The first subsection illustrates the different ways
of using the algorithm on a very simple example,
while the second one compares the computational-
time and accuracy with other existing µ methods
on a challenging example. Both examples are
available with the Toolbox.

4.1 An illustrative example

In this subsection, we consider a very simple
fourth-order system initially proposed in DeGas-
ton and Safonov (1988) with three non-repeated
real uncertainties. The purpose here is just to
illustrate four different ways of parametrizing
the algorithm according to the objectives to be
reached :

• Parametrization 1: This is the most stan-
dard way to parametrize the algorithm. The
ojective here is to make the frequency elim-
ination technique as efficient as possible to
reduce computational time. This means, that
all possible intervals are eliminated at each
iteration. Moreover, to improve the accu-
racy, after a preliminary solution is given by
fast iterations (using mu.m), the algorithm
switches to slower (and potentially more ac-
curate) LMI-based iterations only on critical
segments,
• Parametrization 2: This parametrization

is the same as the first one, but now a µ
lower-bound is provided, which permits to
further improve the efficiency of frequency
elimination,
• Parametrization 3: Here, we are interested

in computing a precise shape of the upper-
bound as a function of frequency. For this
purpose the parametrization is adapted to
restrict frequency elimination only inside the
frequency segment for which an upper-bound
has been computed. Moreover the upper-
bound is evaluated by LMI optimization,
• Parametrization 4: In this last case, the

objective is totally different. Let be given a
test value µT , we would like to prove that µ ≤
µT . The parametrization of the algorithm
will be the same as the second one. Yet the
iterations here will progress differently, and
the switch to LMI optimization might not be
necessary.

For the ease of comparison between the above
parametrizations the same initial frequency grid-
ding was chosen in each case. We considered 25
linearly-spaced points between 0 and 100 rad/s. A
µ lower-bound has been computed with the help



of a specialized routine provided in the Toolbox
(see Ferreres and Biannic (2001)). We obtained :
µ = 0.2926. The test value in the fourth call of
the routine was µT = 0.31.

Table 1 and figure 1 summarize the results which
were obtained by the different parametrizations.
All computations were performed on a SunBlade
1500 Workstation. As expected the most time-
consuming approach is the third, while the last
one is very fast since no LMI step is required
here. The third column contains two numbers
separated by a ‘+’. The first one corresponds to
the number of fast iterations (based on mu.m)
while the second is associated to LMI iterations.
In the fifth column we have indicated the relative
gap between the upper and lower bounds, which
thus permits to estimate the conservatism.

Table 1. Comparison of the 4
parametrizations

Par. CPU time Iter. µ Gap
1 1.54 sec 20 + 3 0.2934 0.27%
2 0.77 sec 7 + 3 0.2930 0.14%
3 6.52 sec 108 + 3 0.2936 0.34%
4 0.43 sec 7 + 0 0.3094 5.74%

Interestingly, when a µ lower-bound is provided
the number of iterations can be significantly re-
duced without affecting the precision of the result.
On this example, the fifth column shows that the
precision is even higher. As expected, in the fourth
case, this gap is larger since the algorithm stops
as soon as an upper-bound less than µT is found.
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4.2 Further evaluation on a challenging example

In this subsection, a challenging example is con-
sidered. The system to be analysed exhibits 30
highly flexible modes ranging from 1 to 30 rad/s,
whose damping ratio lies between 10−5 and 10−1.
Furthermore, the uncertainty block contains 4,
but highly repeated parametric uncertainties :

∆ = blkdiag (δ1I10 , δ2I10, δ3I8, δ4I2)

On such a high-order system, methods which con-
sist in extracting frequency and considering it
as an additional real uncertain parameter cannot
be applied. The repetition of frequency would

indeed be much too high. Moreover, faster ap-
proaches combining LMI-based computations of
sub-optimal scaling matrices and a frequency
elimination technique, still not work here because
of high repetitions of the parametric uncertainties.
On this example, for each frequency segment, the
computation of D-G matrices involves the resolu-
tion of LMIs with 269 variables, which might take
more than 20 min. Consequently, the approximate
global computational-time (30 iterations at least)
would certainly exceed 10 hours.

Comparisons on a truncated system For the ease
of comparison, a truncated system is first consid-
ered. The simplification consists in removing the
first two uncertainties, so that the new system
still has 60 states, but a reduced-size uncertainty
block :

∆r = blkdiag (δ3I8, δ4I2)

A µ lower-bound (using the approach proposed
in Ferreres and Biannic (2001)) is first computed
in order to evaluate the conservatism of the tech-
niques : µ = 37.7278. Then, four techniques will
be compared :

• Technique 1 : Standard application of the
proposed algorithm without any LMI step,
• Technique 2 : Standard application of the

proposed algorithm with LMI steps on the
most critical segments,
• Technique 3 : LMI-based D-G computa-

tions combined with a “local” frequency-
elimination technique. This method was pro-
posed in Ferreres et al. (2003) and is also im-
plemented in the Toolbox (mu max 1.m),
• Technique 4 : Classical griddind-based ap-

proach. A very fine frequency gridding con-
taining 1000 linearly-spaced points between
1 and 20 rad/s is generated.

Table 2. Comparisons of techniques

Tec. CPU time Freq. µ
1 6 sec [12.0017 , 12.0020] 39.25
2 69 sec [12.0017 , 12.0017] 37.79
3 997 sec [12.0017 , 12.0017] 37.73
4 70 sec 1.82 0.159 !

As expected (see table 2) the first technique re-
quires a very low computational-time, without yet
providing a too conservative upper-bound. The
gap between upper and lower bounds remains
indeed below 4%. As expected again, this gap
may be further reduced using LMI steps on the
critical frequency segments. By this approach, the
computational-time is higher but remains reason-
able. Note here that the precision on the frequency
segment where the maximum was reached is excel-
lent. The third technique reveals even more accu-



rate (upper and lower bounds are now extremely
close!) but also much more demanding. Finally,
the fourth technique clearly failed. The proposed
frequency gridding (containing 1000 points) was
not fine enough for this system including numer-
ous and poorly damped flexible modes. More pre-
cisely, let us compute (using mu.m) a µ upper-
bound for ω1 = 12.00164 and ω2 = 12.00165. We
respectively obtain µ1 = 3.24 and µ1 = 38.6.
This means that a uniform frequency gridding
between 1 and 100 rad/s, enabling the detection
of a more reliable (but not guaranteed!) upper-
bound should contain 107 points! The correspond-
ing computational-time would then be approxi-
mately 200 hours!

Application on the full-complexity system Let us
now come back to the initial system, on which our
proposed algorithm (technique 1) is still applica-
ble. The following results were obtained :

CPU time Freq. µ µ

20 sec [12.0017 , 12.0038] 62.29 61.06

The gap between upper and lower bounds is
around 2 %. Furthermore, the computational-time
remains quite low despite the complexity of the
problem.

5. CONCLUSION AND FUTURE WORK

In this paper, a new algorithm has been devel-
oped to compute a guaranteed µ upper-bound on
a frequency range. Its efficiency (accuracy and
computational-time) has been demonstrated on a
challenging example. Such a technique could be
very useful for example to evaluate the robustness
of flight control systems on large flexible transport
aircrafts. In a future work, the method should be
adapted in order to handle time-varying uncer-
tainties as well.

Appendix A. PROOF OF PROPOSITION 2

By a Shur complement, and noting that β is
strictly positive, it is easily seen that the following
matrix inequality :

[

0 Ui

U∗

i 0

]

+ β

[

I V
V ∗ I

]

> 0 (A.1)

is equivalent to :

(Ui/β + V )
∗

(Ui/β + V ) < 1 (A.2)

By definition of the singular value, the above
inequality may be rewritten :

σ (Ui/β + V ) < 1 (A.3)

which corresponds to inequality (3).

Noting that σ(V ) < 1, we observe that for suf-
ficiently high values of β the inequality (A.1) is
always satisfied. Let us now introduce β∗, as the
largest real value of β for which the hermitian ma-
trix in (A.1) becomes singular. The existence of a
real β∗ (to be obtained by a generalized eigenvalue
computation) is guaranteed since the matrix in
(A.1) is hermitian and moreover it is singular for
β = 0. Thus, for all β > β∗, the inequality (A.1)
is strictly satisfied. Recalling that (A.1) and (A.3)
are equivalent, and finally invoking a continuity
argument (to transform strict inequalities into
non-strict ones) permit to conclude the proof.
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