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Abstract: This paper proposes a new design method of a PID controller. We design
the PID controller based on generalized minimum variance control (GMVC) with
a steady state predictive output (GMVCS). The proposed method has better
approximation than conventional design schemes since the orders of compensators
of a GMVCS law do not increase even if a dead-time increases. Furthermore, in
this paper it is shown that GMVCS has an advantage that it is possible to place
poles of the closed-loop system at desired places. Hence, the PID controller is
designed based on the pole-placement GMVCS. Finally, we illustrate numerical
simulation results in order to show the effectiveness of the proposed control
algorithm. Copyright c©2005 IFAC
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1. INTRODUCTION

In this paper, a design method of a PID controller
which has partial feedback compensators based on
Generalized Minimum Variance Control (abbrevi-
ated as GMVC) (Clarke, 1984) with a steady state
predictive output (GMVCS) (Sato et al., 2001) is
given. It is difficult that a controller of GMVC
is approximated by a PID compensator because
the order of the controller of GMVC depends on
a dead-time which is higher than the order of the
PID compensator, that is, 2. If a controlled plant
is given by a second-order plus dead-time model, a
numerator of a GMVC law is second-order and is
approximated exactly by a numerator of the PID
controller (Yamamoto et al., 1998; Yamamoto et

al., 1999). Since most chemical processes are ap-
proximated and represented by second-order plus
dead-time sufficiently, in this paper the controlled
plant is expressed as the above. However increas-

ing the dead-time of the controlled plant, the
order of the controller of GMVC increases and the
difficulty of approximation increases.

Since in designing GMVCS(Sato et al., 2001) the
steady state predictive output is used instead
of the dead-time predictive output, the order
of a GMVCS law is determined regardless of
the dead-time. Hence, the increase of the order
of GMVCS law is not caused by the increase
of the dead-time and remains in relatively low-
order. The method given in this paper designs
the PID controller approximating GMVCS law.
The PID controller used in this paper differs
from an usual PID controller and has partial
feedback compensators in order that the GMVCS
law is approximated by the PID controller well.
Thus an obtained PID controller will provide the
same control performance as GMVCS law. The
proposed method in this paper which is extended



from the conventional method (Sato et al., 2001)
achieves placing poles of a closed-loop system at
desired places.

Since conventional PID controllers (Yamamoto et

al., 1998; Yamamoto et al., 1999) approximate
the GMVC law by using a steady state gain
of controller, closed-loop poles given by using
the PID controller differ from those given by
using the GMVC law when the PID controller
is designed by the conventional methods. Hence
the conventional methods do not achieve pole-
placement accurately. On the other hand, the pro-
posed PID controller can achieve pole-placement
because GMVCS law can achieve pole-placement
and the proposed PID controller approximates
GMVCS law. The proposed PID controller is
equal to the GMVCS law when the orders of
coefficient polynomials of the GMVCS law except
the dead-time are 2 or less.

This paper is organized as follows. In section 2,
an ARMAX model to represent the controlled
plant is given. In section 3, the PID controller
to be tuned is obtained. GMVCS is introduced
and extended to achieve pole-placement control in
section 4. By comparing the PID controller with
the GMVCS law, the PID controller is designed in
section 5. Finally, numerical examples are given to
compare the proposed method with the conven-
tional PID control schemes and to evaluate the
proposed method

2. PROBLEM STATEMENT

Let consider a plant described by the following
discrete-time SISO model:

A[z−1]y(t) = z−kmB[z−1]u(t − 1) + ξ(t) (1)

A[z−1] = 1 + a1z
−1 + a2z

−2 (2)

B[z−1] = b0 + b1z
−1 + · · · + bmz−m (3)

where u(t) is the input, y(t) is the output, km is
the dead-time and ξ(t) is a noise. z−1 denotes the
backward shift operator.

The following assumptions are required for the
plant model described by (1):

[A.1] The dead time km, polynomials A[z−1] and
B[z−1] are known.

[A.2] The polynomial A[z−1] is stable.
[A.3] The noise ξ(t) is the white Gaussian noise

with zero mean.

The control problem in this paper is to design PID
parameters in the PID controller in order to make
the output y(t) follow a step-type reference input.

3. PID CONTROLLER

The proposed discrete-time PID controller is given
by:

∆u(t) = C1[z
−1]e(t)

−
(

C2[z
−1] − z−kmC3[z

−1]
)

u(t − 1) (4)

e(t) = w(t) − y(t) (5)

∆ = 1 − z−1 (6)

where w(t) is the reference input to be followed by
the output y(t). Although an usual PID controller
uses the only error between the reference input
and the output, this PID controller (4) contains
two partial feedback compensators C2[z

−1] and
C3[z

−1] to approximate a controller of GMVCS
(Sato et al., 2001).

The compensators C1[z
−1], C2[z

−1] and C3[z
−1]

are the following

Ci[z
−1] = kci

(

∆ +
Ts

TIi

+
TDi

Ts

∆2

)

(7)

where, i = 1, 2, 3. Parameters kci
, TIi

and TDi
are

the gain, the integral time and the derivative time,
respectively. The sampling interval is denoted by
Ts. The tuning problem is to design suitable values
of parameters kci

, TIi
and TDi

for the plant
model (1). This paper solves the design problem
by designing the PID controller (4) based on the
GMVCS law.

The proposed PID controller based on the GMVCS
law has three PID compensators while a conven-
tional method based on the GMVC law has one
PID compensator. Since the conventional method
uses the steady state gain of a controller of GMVC
law instead of the controller of the GMVC law,
control performance of the conventional method
differs from one of the original GMVC and control
performance may deteriorate. In the conventional
method, in order to obtain approximation exactly,
if more PID compensators are used instead of the
steady state gain, the more a dead-time increases,
the more the number of the PID compensator
increases. Then, the controller becomes complex.
On the other hand in this paper using only three
compensators, the PID controller can approxi-
mate the GMVCS law.

4. GENERALIZED MINIMUM VARIANCE
CONTROL WITH POLE-PLACEMENT
USING STEADY STATE PREDICTIVE

OUTPUT

In this section, to be compared with the PID
controller, the GMVCS law (Sato et al., 2001) is
derived first. And then, GMVCS is extended to a
pole-placement controller.



The performance index of GMVCS is the following
variance of a generalized output

J = E[Φs(t)
2]. (8)

GMVCS derives a control law by minimizing the
generalized output, the dead-time predictive out-
put y(t+km+1) of which is replaced by the steady
state predictive output y(s|t).

Φs(t) = P [z−1]y(s|t) + Q[z−1]∆u(t)

−R[z−1]w(t) (9)

P [z−1] = p0 + p1z
−1 + · · · + pnp

z−np (10)

Q[z−1] = q0 + q1z
−1 + · · · + qnq

z−nq (11)

R[z−1] = r0 + r1z
−1 + · · · + rnr

z−nr (12)

where, polynomials P [z−1], Q[z−1] and R[z−1] are
the design parameters. y(s|t) is defined as

y(s|t) = lim
j→∞

ŷ(t + j|t), (13)

and is calculated as follows (Kwok and Shah,
1994)

y(s|t) = gs∆u(t) + Fs[z
−1]

y(t)

P [z−1]

+ Gs[z
−1]

u(t − 1)

P [z−1]
(14)

gs =
B[1]

A[1]
(15)

es =
P [1]

A[1]
(16)

Gs[z
−1] = gsP [z−1] − esz

−kmB[z−1] (17)

Fs[z
−1] = esA[z−1]. (18)

The control law which minimizes the generalized
output (9) is given by the following without solv-
ing Diophantine equation

G1[z
−1]∆u(t) = R[z−1]w(t) − Fs[z

−1]y(t)

−Gs[z
−1]u(t − 1) (19)

G1[z
−1] = gsP [z−1] + Q[z−1] (20)

= g1,0 + g1,1z
−1 + · · · + g1,ng1

z−ng1

ng1 = max{np, nq} (21)

To calculate this controller, the leading term and
the remaining terms in polynomial G1[z

−1] mul-
tiplied by ∆u(t) of (20) are separated as

G1[z
−1] = g1,0 + z−1G′

1[z
−1] (22)

Then the controller (19) is rewritten by

∆u(t) =
1

g1,0

[

R[z−1]w(t) − Fs[z
−1]y(t) (23)

−(G2[z
−1] − esz

−kmB[z−1])u(t − 1)
]

G2[z
−1] = ∆G′

1[z
−1] + gsP [z−1] (24)

= g2,0 + g2,1z
−1 + · · · + g2,ng2

z−ng2

where the order of G2[z
−1] is same as the one of

G1[z
−1], that is, ng1 = ng2 and it is determined

regardless of the dead-time km.

Substituting the control law (23) into the plant
(1), a closed-loop system is given by

y(t) =
z−(km+1)B[z−1]R[z−1]

T [z−1]A[z−1]
w(t) (25)

+
gsP [z−1] + ∆Q − esz

−(km+1)B[z−1]

T [z−1]A[z−1]
ξ(t)

T [z−1] = gsP [z−1] + ∆Q[z−1]. (26)

In this paper, R[z−1] is designed as

R[z−1] = Fs[z
−1], (27)

then the closed-loop system becomes

y(t) =
z−(km+1)esB[z−1]

T [z−1]
w(t) (28)

+
gsP [z−1] + ∆Q − esz

−(km+1)B[z−1]

T [z−1]A[z−1]
ξ(t)

and then it follows from (16),(26) that a steady
state error is eliminated.

Since gs is a scalar and ∆ = 1 − z−1, it follows
from (26) that a pole-placement controller can be
achieved easily (Åström and Wittenmark, 1997).
To design P [z−1] and Q[z−1] uniquely, the first
term p0 in P [z−1] is fixed on 1, that is,

P [z−1] = 1 + p1z
−1 + · · · + pnp

z−np . (29)

And using the desired closed-loop characteristic
polynomial

Td[z
−1] = 1 + t1z

−1 + · · · + tnt
z−nt , (30)

P [z−1] and Q[z−1] are designed by the following

Q[z−1] = 1 − gs (31)

P [z−1] =
1

gs

(Td[z
−1] − ∆Q[z−1]). (32)

Then, Q[z−1] is a scalar and the order of P [z−1] is
max{nt, 1}. To obtain stability of the closed-loop
system, unstable zeros of B[z−1] = 0 must not be
included in Td[z

−1].

5. PID CONTROLLER BASED ON GMVCS

In this section the PID parameters of the PID
controller (4) are designed based on the GMVCS



law (19). Comparing the PID controller (4) with
the GMVCS law (23), the following relations are
obtained.

C1[z
−1] =

1

g1,0
Fs[z

−1] (33)

C2[z
−1] =

1

g1,0
G2[z

−1] (34)

C3[z
−1] =

1

g1,0
esB[z−1] (35)

Solving (33), the PID parameters of C1[z
−1] are

designed by the following equations

kc1
=−

1

g1,0
(f1 + 2f2) (36)

TI1 =−
f1 + 2f2

f0 + f1 + f2
Ts (37)

TD1
=−

f2

f1 + 2f2
Ts (38)

where,

Fs[z
−1] = f0 + f1z

−1 + f2z
−2. (39)

If the order of the desired characteristic polyno-
mial Td[z

−1] is 2 or less, (34) is solvable. The
assumption is reasonable in most case and the PID
parameters of C2[z

−1] are given as follows

kc2
=−

1

g1,0
(g2,1 + 2g2,2) (40)

TI2 =−
g2,1 + 2g2,2

g2,0 + g2,1 + g2,2
Ts (41)

TD2
=−

g2,2

g2,1 + 2g2,2
Ts. (42)

When m ≤ 2, it follows from (35) that the
PID parameters of C3[z

−1] are designed by the
following equations

kc3
=−

es

g1,0
(b1 + 2b2) (43)

TI3 =−
b1 + 2b2

b0 + b1 + b2
Ts (44)

TD3
=−

b2

b1 + 2b2
Ts. (45)

The proposed PID controller is equal to the
GMVCS law under the condition; max{m, nt} ≤
2. If m or nt are higher than 2, B[z−1], Fs[z

−1] and
G2[z

−1] are approximated by polynomials having
suitable order using reference (Sato et al., 2000)
and the PID parameters are designed using the
approximated polynomials.

6. NUMERICAL EXAMPLE

The proposed PID controller is designed for the
following continuous system having a long dead-
time.

G(s) =
3s + 1

(s + 1)(s + 2)
e−20s (46)

Using Ts = 1[s], (46) is transformed into a
discrete-time system. Then, the controlled plant
in discrete-time domain is represented by

(1 − 0.50z−1 + 0.050z−2)y(t)

= z−20(0.90− 0.62z−1)u(t − 1) + ξ(t). (47)

In this example, the closed-loop poles are assigned
to 0.88 and −0.1.

To design the PID controller, the GMVCS law is
derived first. The generalized output is designed
by:

Φs(t) = (1 − 0.56z−1 − 0.18z−2)y(s|t)

+ 0.5∆u(t) − R[z−1]w(t). (48)

Then, the GMVCS law is given as

(1 − 0.28z−1 − 0.088z−2)∆u(t)

= (0.48 − 0.24z−1 + 0.024z−2)e(t)

−{0.5− 0.28z−1 − 0.088z−2

−z−20(0.43− 0.30z−1)}u(t − 1). (49)

The proposed PID controller based on this control
law is given by following

∆u(t) = (0.48− 0.24z−1 + 0.024z−2)e(t)

−{(0.22− 0.088z−1)

−z−20(0.43− 0.30z−1)}u(t − 1).(50)

To be compared with the proposed method, a PID
controller designed by the conventional method
(Yamamoto et al., 1999) is obtained. To design
the conventional PID controller, the GMVC law
(Clarke, 1984) is also designed first. Then, the
generalized output is designed by

Φ(t + 21) = (−0.92 + 1.6z−1 − 0.15z−2)y(t + 21)

+ 1.8∆u(t) − R[z−1]w(t). (51)

In the conventional method, the design polyno-
mial R[z−1] is designed as F [z−1] and in this case

R[z−1] = F [z−1]

= 0.88− 0.44z−1 + 0.044z−2. (52)

Then, the GMVC law is given by



(1 + 0.72z−1 + 0.45z−2 + 0.32z−3 + 0.27z−4

+0.25z−5 + 0.25z−6 + 0.24z−7 + 0.24z−8

+0.24z−9 + 0.24z−10 + 0.24z−11 + 0.24z−12

+0.24z−13 + 0.24z−14 + 0.24z−15 + 0.24z−16

+0.24z−17 + 0.24z−18 + 0.24z−19 + 0.24z−20

−0.55z−21)∆u(t)

= F [z−1]e(t). (53)

This GMVC law differs from the GMVCS law
proposed in this paper, and the order is too large
to be approximated by the PID controller. The
conventional PID controller based on this control
law is given by following

∆u(t) =
1

6.1
F [z−1]e(t). (54)

By using the conventional method, approximation
error is too large since the higher order polynomial
is approximated by a static gain although the
order of the polynomial of the GMVC law is 21.

Simulation is conducted under the conditions that
the reference input w(t) is a rectangular wave with
amplitude 1.0 over a period of 100 steps and the
variance of random disturbance ξ(t) is 0.003. The
obtained PID parameters are shown in Table 1.

The closed-loop poles by each method are shown
in Table 2. By using GMVC, the closed-loop poles
are desired and stable. However, using the con-
ventional PID controller (Yamamoto et al., 1999)
based on the GMVC law, the number of poles
increases and some poles are near by unit circle
badly. Furthermore, the poles by the conventional
PID controller are not equal to those by the
GMVC. On the other hand, the poles of GMVCS
are desired and stable and the poles are the same
as those by the proposed PID controller based on
the GMVCS law.

Output results are shown in Fig. 1. The out-
put result by the conventional PID controller is
shown by the dashed line and does not diverge.
However, over-shoot emerges since the closed-loop
poles differ from those of the original GMVC.
While, the output result by the proposed PID
controller based on the GMVCS law is shown by
the solid line. As compared with the result by the
conventional method, the output converges to the
reference input faster than that by the conven-
tional method and the over-shoot is reduced. Fur-
thermore, the output result by the proposed PID
is same as an output result that by the GMVCS
law although omitted on account of space.

7. CONCLUSIONS

In this paper, a new design method of a PID
controller is proposed. PID parameters of the

PID controller are derived by designing the PID
controller based on a GMVCS law. The GMVCS
law is approximated by the PID controller using
three PID compensators exactly since the order
of the GMVCS law is independent of a dead-
time. Because the GMVCS is extended to a pole-
placement control system, pole-placement control
can be achieved by using the proposed PID con-
troller. Numerical examples are given to show
the effectiveness of the proposed method and to
compare with a conventional PID controller based
on a GMVC law with a static gain.

In this study it is assumed that plant parameters
are known. Therefore a self-tuning controller will
be needed to deal with the case in which the plant
parameters are unknown.
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Table 1. Obtained PID parameters

Design method Proportional gain Integral time Derivative time

Conventional method (Yamamoto et al., 1999) 0.059 0.74 0.12

C1[z−1] of the proposed method 0.20 0.74 0.12

C2[z−1] of the proposed method 0.088 0.67 0

C3[z−1] of the proposed method 0.30 2.3 0

Table 2. Closed-loop poles

Design method Closed-loop Poles

GMVC (Clarke, 1984) 0.88, −0.1

PID based on GMVC 0.97 ± 0.061i, 0.83 ± 0.36i, 0.67 ± 0.60i, 0.46 ± 0.77i,

(Yamamoto et al., 1999) 0.21 ± 0.88i, −0.060 ± 0.90i, −0.32 ± 0.84i, −0.56 ± 0.71i,
−0.74 ± 0.51i, −0.86 ± 0.27i, −0.90, 0.70, 0.37, 0.14

GMVCS 0.88, −0.1

PID based on GMVCS 0.88, −0.1
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Fig. 1. Output results by the conventional and the proposed methods


