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Abstract: Optimal control of the engagement of a dry clutch is examined paying
particular attention to the driver’s comfort. Due to the strong constraints and large
errors of the torque control for internal combustion engines, only the normal force
on the clutch disks is considered as controlled input. The resulting analytically
derived controller is tested on a highly realistic nonlinear model proving very good
performance. Copyright c©2005 IFAC
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1. INTRODUCTION

The engagement control of automotive dry clutch
is getting attention from automotive industry
as a mean of enhancing the comfort of manual
transmission (MT) passenger cars. The increasing
torque of modern engines coupled with the stiff-
ness reduction of the driveline make very hard for
the driver to meet standard comfort requirements
with a manually operated clutch, particularly in
the standing start scenario where the energy dissi-
pated in the clutch is maximal. The introduction
of an automated manual transmission (AMT) or,
eventually, a clutch-by-wire system is seen as a
mean of easing the driver task and, thus, enhanc-
ing his satisfaction about the car.

The control of powertrain systems is an ample
and well-established research field covering ther-
mic, chemical, mechanical and electric systems.

1 Corresponding author. Supported by ANRT.

The driveline alone has been the subject of dif-
ferent studies concerning, for example, optimal
shift strategies, hybrid vehicle management, en-
gine torque estimation, dry clutch controlled slid-
ing and engagement control.

Literature on dry clutch engagement control for
AMT transmissions is quite ample and many dif-
ferent approaches have been proposed: quantita-
tive feedback theory (Sliker and Loh, 1996), fuzzy
control (Tanaka and Wada, 1995) (Shuiwen et
al., 1995), model predictive control (Bemporad
et al., 2001) and decoupling control (Garofalo et
al., 2001). Also optimal control of a dry clutch
has been studied in some detail (Glielmo and
Vasca, 2000) and (Garofalo et al., 2002).

To our best knowledge all the solutions proposed
in control literature use either the engine and
clutch torque, or the engine torque alone. The
torque of an internal combustion engine under
dynamic charge is difficult to master and heavily



constrained particularly at the low rotation speeds
found during a standing start making such an
approach impractical. Moreover, even admitting
perfect control of the engine torque, the proposed
solutions leave residual oscillations of the power-
train after the engagement.

The main contributions of this paper are: ob-
taining a closed form for a finite-time optimal
control based an improved version of the opti-
mality criterion introduced by Glielmo (Glielmo
and Vasca, 2000) avoiding all residual oscillations
using the clutch as only controlled input and
introducing a novel nonlinear LuGre model of
the clutch and the rest of the driveline driveline.
Numerical results obtained this highly realistic
model with actual car parameters highlight the
good performances of the controller.

2. DYNAMIC MODEL

2.1 Simulation model

The scheme of a powertrain is shown in Fig. 1.

Engine torque is transmitted through the driveline
to the wheels, friction forces between the wheels
and the ground accelerate the vehicle mass. Since
an internal combustion engine has a minimal
rotational speed, called idle speed, the clutch has
to assure a smooth transition from zero to minimal
speed. Apart this basic task the clutch also allows
easier gear shifting and temporary decoupling of
the engine and the powertrain.

The dynamic equations describing the system in
Fig. 1 are given by:




Jeω̇e = Γe − Γc

Jgω̇g = Γc − Γd/α
Jtlω̇tl = Γd/2− ktlθtl − βtl(ωtl − ωwl)
Jtrω̇tr = Γd/2− ktrθtr − βtr(ωtr − ωwr)
Jwlω̇wl = ktlθtl + βtl(ωtl − ωwl)−RwFxl

Jwrω̇wr = ktrθtr + βtr(ωtr − ωwr)−RwFxr

θ̇tl = ωtl − ωwl

θ̇tr = ωtr − ωwr

Mv̇ = Fxl + Fxr

(1)

where ωe is the engine rotational speed; ωg the
gearbox speed; ωtr and ωtl the right and left
transmission speeds; ωwr and ωwl right and left
wheel speeds; v the vehicle speed; θtr and θtr the
right and left transmission torsion; Γe the engine
torque; Γc the clutch torque and Γd the differential
torque; Fxr and Fxl the right and left longitudinal
wheel friction forces; ktr and ktl the right and left
transmission stiffness coefficients; βtr and βtl the
right and left transmission damping coefficients;
Rw the wheel radius and α the gearbox reduction.

The clutch torque, Γc, is defined by the normal
force controlled LuGre model. This solutions as-

sures a simple continuous, albeit nonlinear, al-
ternative to the linear piecewise switching model
usually proposed in literature.

żc = ωe − ωg − σ0c
|ωe − ωg|

gc(ωd − ωg)
zc

Γc = Fn

[
σ0czc + σ1ce

(
ωe−ωg

ωdc

)2

żc + σ2c(ωe − ωg)
]

Fn is the normal force exerted on the clutch disks.
Friction is modeled through a nonlinear spring-
damper dynamic system whose internal state z
is analogous to the bristle flection in the bristle
friction model. Detailed explication of the model
and its parameters is can be found in (Olsson et
al., 1997).

Right and left tire longitudinal friction forces
are defined by a similar averaged lumped LuGre
model (Canudas de Wit et al., 2003):

vri = v −Rwωwi

gi(vri) = µci + (µsi − µci)e−|vri/vsi|1/2

żi = vri − σ0i
|vri|

gi(vri)
− κ|ωwiRw|zi

Fxi = Fz [σ0izi + σ1iżl + σ2i(vri)]

i = {r, l}

The differential torque Γd is defined by imposing
ωg = 1/2(ωtr + ωtl).

2.2 Simplified model

In order to reduce the complexity of the model
the following simplifications are made:

• only the sliding phase is considered so that
Γc ' γFn since ωe > ωg during a standing
start

• the two sides of the transmission behave
symmetrically

• perfect adherence of the tire with no dy-
namic effects, effectively collapsing the Lu-
Gre model in Fx = RwΓw

• vehicle mass is transformed in the equivalent
rotational inertia

• all the elements after the gearbox are trans-
formed in their engine-side equivalent

the resulting simplified system is thus:




J̄e ˙̄ωe = Γ̄e − γFn

J̄g ˙̄ωg = γFn − k̄tθ̄ − β̄t(ω̄g − ω̄v)
J̄v ˙̄ωv = k̄tθ̄ + β̄t(ω̄g − ω̄v)
˙̄θ = ω̄g − ω̄v

(2)

where:

J̄e = Je + Jd

J̄g = Jg + 1/α2(Jtr + Jtl)
J̄v = 1/(αRw)2M + 1/α2(Jwr + Jwl)
k̄t = 1/(2α2)(ktr + ktl)
β̄t = 1/(2α2)(βtr + βtl)
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Fig. 1. Powertrain scheme

Jv

ktl

βtl

Je

Γe Γc

Jg

Fn

Fig. 2. Simplified powertrain scheme

J̄v is the equivalent vehicle inertia measured on
the engine side of the gearbox and γ = 2µdRc

where µd is the dynamic clutch fiction coefficient
and Rc is the mean radius of the clutch disks.
This model is sufficiently simple to be used for
designing the controller while still capturing the
main dynamic of the the driveline.

3. CONTROLLER DESIGN

3.1 Control objectives

The control objective is reaching the clutch’s
engagement, i.e. ω̄e = ω̄g, while assuring the
comfort and minimising the dissipated energy and
actuator activity. A finite-time optimal control
approach with prescribed final states has been
chosen since it assures the engagement to take
place in a limited time window. The optimal
controller is designed for the simplified system 2
with Fn as controlled input and Γe as known non-
controlled input.

Oscillations induced in the powertrain by the
sudden change of torque due to the action of
the clutch are an important element of the en-
gagement comfort. In order to suppress, or at
least reduce, these oscillations it is necessary that
the torque Γc(t−s ) transmitted by the clutch just
before the engagement equals the engine torque
Γe(t+s ) minus the engine inertia torque. Express-
ing this equivalence in terms of the speeds at the
sides of the clutch gives the so called no-lurch
condition (Garofalo et al., 2001) which requires
that ˙̄ωe(t−s ) − ˙̄ωg(t−s ) = 0. This condition does
not guarantee the driveline equilibrium after the
engagement; numerical simulations, in fact, show

that even when this condition is met the surplus
elastic energy in the transmission can cause resid-
ual oscillations.

Ideally after the engagement all the powertrain
elements should rotate with same speed and ac-
celeration:

ω̄e = ω̄g = ω̄v

˙̄ωe = ˙̄ωg = ˙̄ωv =
Γe

(J̄e + J̄g + J̄v)

Defining y1 = ω̄e − ω̄g and y2 = ω̄g − ω̄v, through
simple algebraic manipulation the simplified sys-
tem (2) can be written as:





ẏ1 =
β̄t

J̄g
y2 +

k̄t

J̄g
θ̄ +

1
J̄e

Γe − 1
Jt1

Γc

ẏ2 = − β̄t

Jt2
y2 − k̄t

Jt2
θ̄ +

1
J̄g

Γc

˙̄θ = y2

(3)

where

Jt1 =
J̄eJ̄g

J̄e + J̄g
Jt2 =

J̄gJ̄v

J̄g + J̄v

The final conditions that assure a perfect equilib-
rium at the end of the engagement for this model
are:

y1(tf ) = 0 y2(tf ) = 0 (4)

θ(tf ) =
1
kt

J̄vΓe(tf )
J̄e + J̄g + J̄v

Γc(tf ) =
(J̄g + J̄v)Γe(tf )
J̄e + J̄g + J̄v

Due to the physical structure of the clutch the
main limitation of the actuator is the slew rate
of the normal force Fn. Adding the extra state
equation Γ̇c = u to the simplified system and
weighting the new input u allows to limit this
aspect of the actuator activity since Γc ∝ Fn.



3.2 Optimisation problem

All the control objectives defined in the previ-
ous subsection define the following optimisation
problem: finding u(t) on T = [t0, tf ] such that
minimises:

J =

tf∫

t0

[
y2
1(t) + a y2

2(t) + b u2(t)
]
dt

under the following constraints:





ẏ1 =
βt

J̄g
y2 +

kt

J̄g
θ +

1
J̄e

Γe − 1
Jt1

Γc

ẏ2 = − βt

Jt2
y2 − kt

Jt2
θ +

1
J̄g

Γc

˙̄θ = y2

Γ̇c = γu

(5)

with prescribed initial and final states:

y1(t0) = y10 y2(t0) = y20

θ̄ = θ̄0 Γc(t0) = 0

y1(tf ) = 0 y2(tf ) = 0

θ̄(tf ) =
1
kt

JvΓe

J̄e + J̄g + J̄v
Γc(tf ) =

(J̄g + J̄v)Γe

J̄e + J̄g + J̄v

under the assumption that Γe is a measured non-
controlled input. Even dropping the hard final
state constraints in favour of an heavy weighting
of the final states in the cost function does not
allow the use of a LQ controller since (5) is not
stabilisable under the same assumptions made in
subsection 3.3 for Γe.

The more general differential analysis theory
(Agrawal and Fabien, 1994) defines the optimal
input u(t) as:

u = − 1
2b

λ4

where λ4 is defined by the following Two Point
Boundary Value Problem (TPBVP):

ẋ = ALx + BLΓe (6)

where Γe is a known non-controllable input and:

x =
[
y1 y2 θ̄ Γc λ1 λ2 λ3 λ4

]T

AL=




0
β̄t

J̄g

k̄t

J̄g
− 1

Jt1
0 0 0 0

0 − β̄t

Jt2
− k̄t

Jt2

1
J̄g

0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
2b−2 0 0 0 0 0 0 0

0 −2a 0 0 − β̄t

J̄g
− β̄t

Jt2
−1 0

0 0 0 0 − k̄t

J̄g
− k̄t

Jt2
0 0

0 0 0 0 − 1
Jt1

− 1
J̄g

0 0




BL =
[
1/J̄e 0 0 0 0 0 0 0

]

with the following boundary conditions:

y1(t0) = y10

y2(t0) = y20

θ̄(t0) = θ̄0

Γc(t0) = Γc0

y1(tf ) = y1f

y2(tf ) = y2f

θ̄(tf ) = θ̄f

Γc(tf ) = Γcf

3.3 Analytic solution

Solving the TPBVP implies finding λ1(t0) . . . λ4(t0)
that satisfy the boundary conditions in tf effec-
tively transforming (6) in an initial value problem
(IVP). Standard TPBVP numerical resolution
methods, such as the shooting method, are not
an interesting option for online implementation of
the controller due to their calculation cost.

Assuming Γe constant 2 over the interval T , (6)
can be written as an homogeneous linear system
with a non-controllable constant state Γe:

ẋ = ALx + BLΓe ⇒ ż = ĀLz

where

z =
[
y1 y2 θ̄ Γc λ1 λ2 λ3 λ4 Γe

]T

Since the system is linear:

z(tf ) = e
¯AL tf z(t0) = Φtf

z(t0)

Defining:

z̄(t0) =
[

y10 y20 θ̄0 Γc0︸ ︷︷ ︸
ȳ0

λ10 λ20 λ30 λ40︸ ︷︷ ︸
λ̄0

Γe
]T

z̄(tf ) =

[
y1f y2f θ̄f Γcf︸ ︷︷ ︸

ȳf

λ1f λ2f λ3f λ4f︸ ︷︷ ︸
λ̄f

Γe

]T

2 The same line of reasoning holds for Γe linearly time-
dependant.



we get:



ȳf

λ̄f

Γe


 =




ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

ϕ31 ϕ32 ϕ33







ȳ0

λ̄0

Γe


 (7)

whose first line defines the linear system:

ϕ12λ̄0 = ȳf − ϕ11ȳ0 − ϕ13Γe

which, since ϕ12 is invertible, defines λ̄0 as a
function of ȳ0, ȳf and Γe. Once this initial value
is known the feedback controller is defined by an
opportune partition of AL:

˙̄λ = Aλλ̄ + Bλ

[
y1

y2

]

u =
[
0 0 0 −1/(2b)

]
λ̄

3.4 Resulting controller

The normal force

Fn(t) =

t∫

t0

u(τ)dt

where u is defined by the dynamic feedback:

˙̄λ = Aλλ̄ + Bλ

[
y1

y2

]

u =
[
0 0 0 −1/(2b)

]
λ̄

is the optimal clutch engagement control relative
to the weight function:

J =

tf∫

t0

[
y2
1(t) + a y2

2(t) + b u2(t)
]
dt

for the system 2 under the assumption that Γe is a
known constant or linearly time dependant input.
The initial state of the controller is defined by the
a linear combination of the initial and final states:

λ̄0 = ϕ−1
12 (ȳf − ϕ11ȳ0 − ϕ13Γe)

4. NUMERICAL RESULTS

Simulations different optimal engagement for the
same standing start scenario with various a and b
parameter settings are shown in Fig. 3, 4 and 5.
The a parameter weights the transmission torsion
derivative. High values of a reduce the transmis-
sion torsion even if his effect is quite limited, Fig.
3, due to the finite-time nature of the controller
that imposes the engagement to be completed at
time tf .
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Fig. 3. Detail of the optimal engagement speed
profiles for different values of a. (Dotted line
a = 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

1600

Time [s]

R
ev

ol
ut

io
ns

 p
er

 m
in

ut
e 

[R
P

M
]

b=103 

b=10−3 

Fig. 4. Optimal engagement speed profiles for
different values of b. (Dotted line b = 1)

The b parameter weights the slew rate of the
clutch actuator. High values, thus, give a slower
clutch movement thus allowing a higher engine
speed. Again, due to the finite-time nature of the
controller, the engagement must be complete at
time tf ; in order to compensate the slower initial
acceleration and higher engine speeds, controllers
with high values of b have to dissipate more energy
in the clutch in the second half of the engagement
process.

Numerical simulations of an optimal engagement
using the perviously derived controlled applied to
the nonlinear model 1 have been carried out. Fig.
6 and 7 show the speed profiles and acceleration
during a standing start simulation for a mid-
sized car (Megane Scénic II) equipped with a
2.0 litres atmospheric petrol engine for tf = 0.8,
a = 1 and b = 10. It can be noticed that the
optimal control performs remarkably well in spite
of the model errors introduced by the complete
system. Residual oscillations of the driveline are
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Fig. 5. Optimal engagement clutch torque profiles
for different values of b. (Dotted line b = 1)
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Fig. 6. Engine, gearbox and vehicle speeds for the
optimal controller applied to the complete
model

less than 0.005m/s2, at least six times lower than
the human perception threshold thus assuring a
high level of comfort.

5. CONCLUSIONS

The engagement of a dry clutch for an auto-
mated manual transmission vehicle under real-
istic control and resources constraints has been
considered. The finite-time optimal control prob-
lem obtained from this specifications has been
addressed using the dynamic lagrangian method
with analytical solution of the resulting Two Point
Boundary Value Problem. The control law thus
obtained has the structure of a dynamic feedback
with initial states defined by a linear combination
of initial and target driveline states. The proposed
controller has been tested using a novel, highly
realistic, nonlinear model on the standing start
scenario with very good results.
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