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1. INTRODUCTION

The past four decades have seen considerable the-
oretical and empirical research on the detection
of structural changes in regression relationships,
dynamical systems, and econometric models. The
vast amount of statistical literature on this topic
nowadays represents the specific chapter in the
body of Change-Point Analysis – the rapidly de-
veloping branch of the mathematical statistics.

For detecting of change-points in regression mod-
els the cumulative sums of regression residuals
were used (see Brown et al., 1975). Regression
models with multiply structural breaks, as well
as point and interval estimates of endogenous
breaks in multivariate time series were considered
in (Bay and Perron, 1998; Bay et al., 1998). Many
results in detection and estimation of structural
changes in regression models including the limit
distributions of the maximum likelihood statistics,
the sums of regression residuals, and the sums
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of recursive regression residuals are studied are
systematized in (Csörgő and Horvath, 1997).

In spite of the vast economertic literature on
detection and estimation of structural breaks in
dynamic systems and regression models, most of
proposed methods suffer from certain substantial
drawbacks. First, the majority of methods utilize
the linear regression estimates constructed by all
decompositions of an obtained sample into some
quasi-stationary subsamples. It leads to a large
number of false structural breaks, because the
LSE’s of regression coefficients obtained by small
subsamples are, as a rule, rather bad, and the
asymptotic consistency demonstrated by many
authors is achieved only for tremendous data
volumes. Second, there is no research on the
asymptotic optimality of the proposed methods
of structural breaks detection and estimation.

In (Brodsky and Darkhovsky, 2000) nonparamet-
ric approach to retrospective change-point estima-
tion in some regression models were considered.



In this paper some generalizations of the results
from (Brodsky and Darkhovsky, 2000) are given,
namely:

a) the a priori theoretical low bound for the
error probability in change-point estimation for
regression and cointegration models. This bound
provides the theoretical basis for the proofs of the
asymptotic optimality of change-point estimates
and for the comparative analysis of these esti-
mates;

2) the asymptotically optimal method of change-
point estimation for regression models with de-
terministic predictors without the assumption of
ortogonality of the design matrix;

3) the asymptotically optimal method of change-
point estimation for regression and cointegration
models with stochastic nonstationary predictors.

2. A PRIORI INEQUALITIES

On the probability space (Ω,F ,Pθ) let us con-
sider a sequence of i.r.v.’s x1, x2, . . . , xN with the
following density function (d.f)

f(xn) =
{

f0(xn, n/N) 1 ≤ n ≤ [θN ],
f1(xn, n/N) [θN ] < n ≤ N,

(1)

where 1 > θ > 0 is an unknown change-point
parameter ([a] here and below is integer part of
number a) and the density function f0(x, t) 6=
f1(x, t) in some neighborhood t ∈ T (θ) of the
change-point parameter.

Consider the class MN of all estimates θ̂N of
the change-point parameter θ constructed by the
sample XN = {x1, . . . , xN}.

Theorem 2.1. For any 0 < ε < 1,

lim inf
N
N−1

ln inf
θ̂N∈MN

sup
0<θ<1

Pθ{|θ̂N − θ| > ε}

≥ −min

(∫ θ+ε

θ

J0(t)dt,
∫ θ

θ−ε

J1(t)dt

)
where

J0(t) = E0 ln
f0(x, t)
f1(x, t)

, J1(t) = E1 ln
f1(x, t)
f0(x, t)

Some particular cases of model (1) are given
below.

2.1 A broken trend in the mathematical expectation
φ(t) of Gaussian observations

In this case

f0(x, t) = h(x) exp(φ0(t)x−
1
2
φ2

0(t)), t ≤ θ

f1(x, t) = h(x) exp(φ1(t)x−
1
2
φ2

1(t)), t > θ,

where h(x) = 1/
√

2π exp(−x2/2), φ0(·) 6= φ1(·).

It follows from Theorem 1 the following low bound
for the error probability of any change-point esti-
mate θ̂N :

Pθ{|θ̂N − θ| > ε} ≥ (1− o(1))

exp

(
−N/2 min

( ∫ θ+ε

θ

J(t)dt,∫ θ

θ−ε

J(t)dt
))

where J(t) = (φ0(t)− φ1(t))2.

2.2 A linear deterministic regression with Gaussian
errors

Consider the following regression model

yn = c1(n)x1n + · · ·+ ck(n)xkn + ξn, (2)

where {ξn} is the sequence of independent Gaus-
sian random variables, ξn ∼ N (0, σ2), c(n) =
(c1(n), . . . , ck(n))∗ = aI(n ≤ [θN ]) + bI(n >
[θN ]), a 6= b, I(A) is an indicator function of set
A, ∗ is the transposition symbol.

Suppose that there exist functions fi(·) ∈ C[0, 1], i =
1, . . . , k such that xin = fi(n/N), n = 1, . . . , N .

In this case we obtain from Theorem 1 for all
estimates θN of the change-point parameter:

Pθ{|θ̂N − θ| > ε} ≥ (1− o(1))

exp

(
−N/2σ2 min

( ∫ θ+ε

θ

J0(t)dt,∫ θ

θ−ε

J1(t)dt
))

where J0(t) = (
∑k

i=1 fi(t)(ai − bi))2, J1(t) =
(
∑k

i=1 fi(t)(ai − bi))2.

2.3 A linear stochastic regression model with
independent Gaussian predictors

Here we consider model (2) where ξn ≡ 0, vec-
tors xn = (x1n, . . . , xkn)∗ are random and in-
dependent and there exist continuous functions
fi(·), σi(·), i = 1, . . . , k, such that xin are Gaus-
sian random variables, xin ∼ N

(
fi(n/N), σ2

i (n/N)
)
,

n = 1, . . . , N , the components xin, xjn are inde-
pendent if i 6= j and c(n) = (c1(n), . . . , ck(n))∗ =
aI(n ≤ [θN ]) + bI(n > [θN ]), a 6= b.

In this case we obtain from Theorem 1 for all
estimates θN of the change-point parameter:



Pθ{|θ̂N − θ| > ε}

≥ (1− o(1)) exp

(
−N/2 min

( ∫ θ+ε

θ

J0(t)dt,∫ θ

θ−ε

J1(t)dt
))

,

where

J0(t) =
(
φ0(t)
∆0(t)

− φ1(t)
∆1(t)

)2

+ 2
φ0(t)
∆0(t)

φ1(t)
∆1(t)(

1− ∆0(t)
∆1(t)

)
+ 2 ln

∆0(t)
∆1(t)

+
(

1 +
φ2

0(t)
∆2

0(t)

)(
∆0(t)
∆1(t)

− 1
)
,

and φ0(t) = a1f1(t) + · · · + akfk(t), ∆2
0(t) =

a2
1σ

2
1(t)+· · ·+a2

kσ
2
k(t), with analogous expressions

for φ1(t),∆1(t), J1(t).

3. ASYMPTOTICALLY OPTIMAL METHODS

From Theorem 1 it follows that the optimal speed
of convergence of change-point estimates to the
true values of change-point parameters is expo-
nential w.r.t. N . So the problem arises to find
methods for which this optimal exponential or-
der of convergence is attained asymptotically as
N → ∞. Below we propose such asymptotically
optimal methods of change-point estimation for
regression models with deterministic and stochas-
tic predictors. These methods can be considered
as generalisations of statistics proposed earlier by
Brodsky and Darkhovsky (2000) for regression
models. Note that Deshayes and Picard (1985)
considered the problem of detection of change-
points in the spectrum function of observations
and, in particular, in autoregressive models.

3.1 Non-random designs

Consider the regression model (2) where now
{ξi} is a sequence of centered and, in gen-
eral, dependent random variables. Remind that
xin = fi(n/N), n = 1, . . . , N and put F (t) =
(f1(t), . . . , fk(t))∗.

Let us formulate the assumptions for a collection
{fi} in this problem:

a) the functions {fi} are almost everywhere (w.r.t.
Lebesgue measure) continuous and bounded on
[0, 1];

b) for any 0 ≤ t1 < t2 ≤ 1 the matrix∫ t2

t1

F (s)F ∗(s)ds

is positively definite.

Put ∫ 1

0

F (s)F ∗(s)ds = R

Due to the assumptions, the matrix R is symmet-
ric and positively definite. Therefore there exists
the matrix R−1/2.

Define for any t ∈ [0, 1]

At =
∫ 1

t

F (s)F ∗(s)ds, Bt = R−At

Pt = R−1/2AtR
−1/2,

Qt = R−1/2BtR
−1/2

Due to the assumptions, the matrices Pt, Qt are
positively definite for any 0 < t < 1 and

Pt +Qt ≡ E

where E is the identity matrix in Rk.

Put
ã = R1/2a, b̃ = R1/2b,

Then the regression model can be rewritten as
follows under consideration

yi = F ∗(i/N)R−1/2c̃(i) + ξi

where c̃(i) = ãI(i ≤ [θN ]) + b̃I(i > [θN ]).

Denote

RN = N−1
N∑

i=1

F (i/N)F ∗(i/N).

Due to the assumptions RN → R as N →∞.

Define the vector

z(n1, n2) = R
−1/2
N

n2∑
i=n1

F (i/N)yi,

and the matrix (1 ≤ n1 < n2 ≤ N):

Pn2
n1

= R
−1/2
N

{
n2∑

k=n1

F (k/N)F ∗(k/N)

}
R
−1/2
N ,

For estimation of the change-point the following
statistic is used:

YN (n) = N−1
(
(PN

n+1)
1/2(Pn

1 )−1/2z(1, n)

−(Pn
1 )1/2(PN

n+1)
−1/2z(n+ 1, N)

)
.

An arbitrary point n̂ of the set argmax1≤n≤N ‖YN (n)‖
(‖ · ‖ is an Euclidean norm) is assumed to be
the change-point estimate. Define also the value
θ̂N = n̂/N as the estimate of the change-point
parameter θ.

Put Θ = [β, γ], 0 < β < γ < 1, β and γ are known
numbers.

Theorem 3.1. Suppose the sequence ξi, i = 1, . . . , N
in (2) satisfies Cramer’s and ψ-mixing conditions
and assumptions a), b) hold. Then the estimate



θ̂N converges to θ Pθ-a.s. and for any δ > 0 there
exist constants N(δ), A(δ) > 0, B(δ) > 0 such
that for N > N(δ) the following inequality holds:

sup
θ∈Θ

Pθ{|θ̂N − θ| > δ}

≤ A(δ) exp(−B(δ)N).

3.2 Random designs

In this paragraph we assume that predictors xji

in model (2) are random. On the probability
space (Ω,F ,Pθ) consider an increasing sequence
of σ-subfields {Fn}, n = 1, . . . , n of F , where
Fn represents all available information up to the
instant n.

Important examples of models with random pre-
dictors include the autoregressive model and the
the autoregressive model with exogenous inputs.

Cointegration models are also a particular case
of (2) with random predictors: if the d.f.’s of
predictors xji, j = 1, . . . , k, change at any time
i, e.g., in the case of unit root stochastic trends
or even ”explosive” trends, then the problem is to
detect and estimate instants of structural changes
in coefficients of model (2).

Put x(n) = (x1(n), . . . , xk(n))∗.

In this section we assume that the following as-
sumptions hold:

i) there exists continuous matrix function V (t), t ∈
[0, 1] such that for any 0 ≤ t1 < t2 ≤ 1

lim
N→∞

EθN
−1

[t2N ]∑
j=[t1N ]

x(j)x∗(j)

=
∫ t2

t1

V (t)dt

where
∫ t2

t1

V (t)dt is a positively definite matrix;

ii) the random vector sequence {(x(n), ξn)} satis-
fies ψ-mixing and Cramer’s conditions;

iii) the random sequence {ξn} is a martingale-
difference sequence w.r.t. the flow {Fn}.

Put

N−1
N∑

k=1

x(k)x∗(k) = VN

and
ã = V1/2

N a, b̃ = V1/2
N b,

Then the model under consideration model can be
rewritten as follows

yi = x∗(i)V−1/2
N c̃(i) + ξi

where c̃(i) = ãI(i ≤ [θN ]) + b̃I(i > [θN ]).

Define the vector

u(n1, n2) = V−1/2
N

n2∑
i=n1

x(i)yi,

and the matrix

T n2
n1

= V−1/2
N

{
n2∑

k=n1

x(k)x∗(k)

}
V−1/2

N

1 ≤ n1 < n2 ≤ N

For estimation of the change-point the following
statistic is used:

YN (n)

= N−1
(
(T N

n+1)
1/2(T n

1 )−1/2u(1, n)

−(T n
1 )1/2(T N

n+1)
−1/2u(n+ 1, N)

)
An arbitrary point n̂ of the set argmax1≤n≤N ‖YN (n)‖
is assumed to be the change-point estimate. Define
also the value θ̂N = n̂/N as the estimate of the
change-point parameter θ.

Theorem 3.2. Suppose conditions i)–iii) are satis-
fied. Then the estimate θ̂N converges to θ, Pθ-
a.s. and for any δ > 0 there exist constants
Ñ(δ), Ã(δ) > 0, B̃(δ) > 0 such that for N > Ñ(δ)
the following inequality holds:

sup
θ∈Θ

Pθ{|θ̂N − θ| > δ}

≤ Ã(δ) exp(−B̃(δ)N)

4. EXPERIMENTAL RESULTS

For testing the efficiency of the proposed method
for finite samples, some Monte-Carlo tests were
performed.

The following model of observations was consid-
ered:

yi = c0 + c1 xi + ξi, i = 1, . . . , N

where (x1, . . . , xN )∗ is the deterministic vector of
predictors; {ξi} is the Gaussian noise with zero
mean and unit dispersion; c0, c1 are regression
coefficients which change at the instant n0 =
[θ N ], 0 < θ < 1.

We note that the vector (x1, . . . , xN )∗ was taken
as one of dynamic series from the Russian eco-
nomic statistics (daily interbank credit rate from
01.01.95 to 31.12.2003, see Internet site of the
Central Bank of Russia).

The number of independent Monte-Carlo trials
for each test was equal to 2000. The threshold
estimates were obtained as follows. For each sam-
ple without change-points, the maximum of the
module of the decision statistic was computed,
then in 2000 trials the variation series from these



values was constructed and the 95-percent and
99-percent quantile of this series were computed.
These quantiles were assumed to be the deci-
sion thresholds with error levels 5-percent and 1-
percent respectively.

The values of the threshold C for the confidence
probablity of 95 percent were used below as deci-
sion boundaries in Monte-Carlo tests for samples
with changes in regression coefficients. The follow-
ing coefficients were considered:

– before the change-point: c0 = 0, c1 = 1

– after the change-point: c0 = δ, c1 = 1.

The parameter δ and the sample volume N were
varied in tests with the following quality charac-
teristics:

– empirical average of the maxima of the statistic
‖YN (·)‖ : C;

– empirical estimate of the 2nd type error proba-
bility: ŵN ;

– empirical estimate of the change-point parame-
ter θ̂N .

Table 1. Estimation of the change-point
parameter θ = 0.30, δ = 0.3; 0.4

N 300 400 500 700 1000
0.3 C 0.179 0.177 0.168 0.157 0.151

ŵN 0.64 0.55 0.33 0.13 0.03
θ̂N 0.340 0.322 0.332 0.324 0.307

0.4 C 0.220 0.211 0.208 0.195 0.192
ŵN 0.28 0.24 0.11 0.02 0.005
θ̂N 0.315 0.312 0.308 0.305 0.304

Table 2. Estimation of the change-point
parameter θ = 0.50; δ = 0.3; 0.4

N 300 400 500 700 1000
0.3 C 0.194 0.184 0.175 0.168 0.164

ŵN 0.62 0.50 0.25 0.05 0.01
θ̂N 0.456 0.485 0.501 0.502 0.499

0.4 C 0.231 0.221 0.215 0.214 0.211
ŵN 0.26 0.22 0.003 0.02 0
θ̂N 0.495 0.495 0.489 0.501 0.499

Comparing results in Tables 2 and 3 we conclude
that the qualitative characteristics of change-
point detection depend of the change-point pa-
rameter θ: detection of change-points at the both
ends of a sample is a more complicated task.

5. CONCLUSION

A new method of estimation of structural changes
in deterministic and stochastic regression models
is proposed. Unlike many earlier methods for

detection of structural breaks in regression and
cointegration models, this method is not based
upon LSE of regression parameters and therefore
is more robust to different errors in specification
of a model.

The a priori information-theoretical low bounds
for the error probability of change-point estima-
tion are proved that enable us to conclude that
the asymptotically optimal speed of convergence
of a change-point estimate to its true value is
exponential with respect to the sample volume
N . The same a priori low bounds can be used
for determination of the asymptotically optimal
confidence intervals in change-point estimation.

The method of change-point estimation proposed
in this paper is valid both for deterministic and
stochastic regressions and is asymptotically op-
timal in the above sense: the speed of conver-
gence of the change-point estimates constructed
according to this method is exponential w.r.t. the
sample volume N . This property is of substantial
practical importance, since in many situations in
econometrics and biomedecine it is hard to discern
between deterministic and stochastic predictors.

The above considered method of estimation of
unique change-point in regression and cointegra-
tion models can be generalized to the case of the
finite number of change-points. This generaliza-
tion is based upon some ideas from (Brodsky and
Darkhovsky, 2000).
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