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Abstract: A nonlinear dynamical system described by Lagrange’s equations is
considered. The system is subjected to uncertain external forces and controls
bounded by geometric constraints. A feedback control that satisfies the imposed
conditions and brings the system to a prescribed terminal state in a finite time
is proposed. The control is based on the decomposition of the system and uses
ideas of optimal control and differential games. Explicit formulas for the feedback
control are presented. Applications to control of robots and underactuated systems
are discussed. Computer simulation of motions of a double pendulum controlled
by one torque is presented. Copyright c© 2005 IFAC
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1. INTRODUCTION

The problem of designing feedback controls for
non-linear dynamical systems has been discussed
in a number of papers. In the present paper, an ap-
proach to feedback control that brings Lagrangian
systems to a prescribed terminal state in a finite
time under uncertain disturbances is discussed.
This approach is based on the decomposition of
a non-linear dynamical system with n degrees of
freedom and reduces this system to n independent
linear systems with one degree of freedom each.

The statement of the problem is given in Sec-
tion 2. A non-linear system described by La-
grange’s equations and subjected to disturbances
and control forces bounded by geometric con-
straints is considered. A feedback control law
which guarantees that the system reaches the de-
sired state in a finite time is sought for.

It is shown that under the assumptions discussed
in Section 3 the original control problem can be

replaced by control problems for subsystems with
one degree of freedom each. Thus, decomposition
of the system is feasible. For each of the subsys-
tems, the approach of the theory of differential
games is applied. To obtain a desired feedback
control for the original non-linear system, an aux-
iliary optimal control problem is used. The ob-
tained control law does not use exact expressions
of non-linear terms and disturbances in the equa-
tions of motion. Only maximal possible values of
these terms are essential. This control is robust
and not sensitive to small variations in the pa-
rameters of the system, small additional forces,
and other perturbations. In some cases it can be
close to an optimal one. Note that determining a
feedback solution for the optimal control problem
under constraints is a hard task. Familiar tech-
niques to achieve an optimal control in this case
are mentioned in the introduction of the paper
(Blanchini and Pellegrino, 2003).



A simplified version of the approach is described
in Section 4.

The main assumption made in the present paper is
valid for manipulation robots with electric drives
with high gear ratios. In Section 5, possible ap-
plications of the obtained results to the control of
robots are discussed.

In Section 6, the proposed method is used to swing
up a double pendulum. This example demon-
strates that this approach can be applied also
to underactuated systems with uncertainties. The
control law presented in this section differs from
earlier versions developed by the authors.

2. CONTROL OF UNCERTAIN DYNAMICAL
SYSTEM

Consider a nonlinear dynamical system described
by Lagrange’s equations

d

dt

∂T

∂q̇i
−
∂T

∂qi
= Qi + Pi(q, q̇, t), i = 1, . . . , n (1)

and subject to the controls Qi bounded by the
constraints

|Qi| ≤ Q0
i , i = 1, . . . , n. (2)

Here q = (q1, . . . , qn) is the vector of generalized
coordinates, Pi are external forces including un-
certain disturbances, Q0

i are given constants, and
T is the kinetic energy

T (q, q̇) =
1

2
(A(q)q̇, q̇) =

1

2

n∑

j,k=1

ajk(q)q̇j q̇k. (3)

Here ajk are the elements of the symmetric pos-
itive definite n × n matrix A(q). System (1) can
be rewritten as follows:

A(q)q̈ = Q + P(q, q̇, t) + S(q, q̇),

Q = (Q1, . . . , Qn), P = (P1, . . . , Pn),

S = (S1, . . . , Sn), Si =

n∑

j,k=1

Γijk(q)q̇j q̇k,

Γijk =
1

2

∂ajk

∂qi
−
∂aij

∂qk
.

(4)

Problem 1. Find a feedback control Q(q, q̇)
satisfying constraint (2) and bringing system (1)
(or (4)) from any initial state

q(0) = q0, q̇(0) = q̇0 (5)

to the prescribed terminal state

q(t1) = q1, q̇(t1) = 0 (6)

in a finite time (the instant of time t1 is not fixed).

The approach to Problem 1 is based on the
decomposition of system (4).

3. METHOD OF DECOMPOSITION

Denote A1 = A(q1) and multiply both sides of
(4) by A1A

−1(q). The system takes the form

A1q̈ = Q + R(q, q̇, t,Q),

R = A1A
−1(q)(P + S + Q)−Q.

(7)

Suppose that all motions under consideration lie
in some domain W in the 2n-dimensional (q, q̇)-
space. Assume that

|Ri(q, q̇, t,Q)| ≤ R0
i < Q0

i , i = 1, . . . , n (8)

for all t ≥ 0, all (q, q̇) ∈ W , and all Q satisfying
(2). Conditions (8) can be verified by means of the
following Lemma.

Lemma. Suppose that the inequalities

|A1z| ≥ µ1|z|, |[A(q)−A1]z| ≤ µ|z|,

|Pi + Si| ≤ νQ0
i , i = 1, . . . , n,

0 < µ < µ1, ν > 0

(9)

hold for any z ∈ Rn, all t ≥ 0, and all (q, q̇) ∈W ,
where µ1, µ, and ν are constants. Then, for all
t ≥ 0, all (q, q̇) ∈W , and all Q satisfying (2), the
following estimates are fulfilled:

|Ri| ≤ νQ0
i + µ(µ1 − µ)−1(1 + ν)|Q0|,

Q0 = (Q0
1, . . . , Q

0
n).

The proof of Lemma is given in (Chernousko,
1990).

Corollary. If ν < 1 and µ is sufficiently small,
then conditions (8) are satisfied. Consequently, to
ensure (8) it is required to increase the control
bounds Q0

i in (2) (and thus decrease ν) and
diminish the domain W (and thus decrease µ).

After the change of variables A1(q − q1) = y,
system (7) is reduced to

ÿi = Qi +Ri, i = 1, . . . , n. (10)

The terms Ri can be regarded as independent
uncertain disturbances subject to (8) and the
approach of differential games can be applied to
system (10). In this case, system (10) can be
considered as a set of n subsystems with one
degree of freedom each, whereas Qi and Ri are
the controls of the two players acting on the i-th
subsystem.



By the change of variables

yi = Q0
ix, Qi = Q0

iu, Ri = Q0
i v,

ρ = R0
i /Q

0
i < 1, ξ = [A1(q

0 − q1)]i/Q
0
i ,

η = (A1q̇
0)i/Q

0
i , i = 1, . . . , n,

(11)

the i-th subsystem in (10), the constraints (2) and
(8), and the boundary conditions (5) and (6) are
reduced to the normalized form

ẍ = u+ v, |u| ≤ 1, |v| ≤ ρ < 1,

x(0) = ξ, ẋ(0) = η, x(t1) = ẋ(t1) = 0.
(12)

Using the approaches of differential games and op-
timal control (Krasovskii, 1970), one can readily
obtain the feedback control u(x, ẋ) which brings
system (12) to the prescribed terminal state under
any admissible v in a minimal guaranteed time t1.
This control is given by

u(x, ẋ) = signψρ(x, ẋ), if ψρ 6= 0,

u(x, ẋ) = signx = −sign ẋ, if ψρ = 0,
(13)

where ψρ is the switching function defined by

ψρ(x, ẋ) = −x− ẋ|ẋ|[2(1− ρ)]−1. (14)

By means of the change of variables (11), the feed-
back control solving Problem 1 can be represented
as follows:

Qi(q, q̇) = Q0
iu(x, ẋ),

x = (Q0
i )
−1[A1(q− q1)]i,

ẋ = (Q0
i )
−1(A1q̇)i, i = 1, . . . , n.

(15)

Here u(x, ẋ) is given by (13) and (14) with ρ
defined by (11). The total time of motion is
finite and does not exceed the maximum of all
termination times corresponding to the degrees of
freedom.

4. SIMPLIFIED APPROACH

The game approach can be replaced by other
control methods. The simplest way is just to
ignore the disturbances altogether, i.e., to put
v = 0 in (12).

The dynamics of the system (12) under such a
simplified control is described by

ẍ = u(x, ẋ) + v, |v| ≤ ρ < 1,

x(0) = ξ, ẋ(0) = η.
(16)

Here the function u(x, ẋ) is given by (13) and (14)
with ρ = 0.
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Fig. 1. Trajectories for different values of ρ.

It has been shown in (Chernousko, 1990) that the
behavior of the nonlinear system (16) depends on
the parameter ρ in the following way (see figure 1).
The critical value of ρ is equal to the golden
section ratio

ρ∗ = 51/2 − 1 = 0.618 . . . . (17)

If ρ < ρ∗, then all trajectories of the system (16)
approach the point x = ẋ = 0 and reach it for
any admissible disturbance v(t). The number of
switches of the control u(x, ẋ) may be infinite, but
the time of the motion is finite.



If ρ = ρ∗, there exist special admissible distur-
bances such that the system stays in a bounded
domain but never reaches the point x = ẋ = 0.
Here periodical motions are possible.

If ρ > ρ∗, then there exist admissible disturbances
v(t) such that the corresponding trajectories are
unbounded and tend to infinity.

Therefore, the simplified control ignoring the dis-
turbances solves Problem 1 only if ρ < ρ∗, where
ρ is given by (17). The game control described in
this paper gives better results: it solves Problem 1
for ρ < 1.

Other versions of the decomposition approach and
their applications were suggested and discussed
in (Chernousko, 1992; Chernousko and Reshmin,
1998).

5. APPLICATION TO ROBOTS

Consider a manipulation robot which consists of
n rigid links connected consecutively by revolute
or prismatic joints. The angles of relative rotation
of the links and their relative linear displacements
for revolute and prismatic joints, respectively, are
denoted by q = (q1, . . . , qn). The equations of
motion for the manipulator can be presented in
the form (1) with the kinetic energy T given
by (3). The generalized forces here are torques
for revolute joints and forces for prismatic joints.
The terms Qi in (1) are the control torques
and forces created by the actuators in revolute
and prismatic joints, respectively. The terms Pi

include all external and internal forces except the
controls, namely, the weight, resistance, friction,
etc.

Assume that the robot is driven by independent
electric DC (direct current) actuators placed at
the joints. Note that state constraints q−i ≤ qi ≤
q+i , i = 1, . . . , n, which are often imposed in
practical problems can also be taken into account
in the decomposition approach. The equation of
balance of voltages in the circuit of the ith actu-
ator has the form

Li
dji
dt

+Riji +Nik
E
i q̇i = ui. (18)

Here, Li is the inductance, Ri is the electrical
resistance, kE

i is a constant coefficient, Ni is the
gear ratio, and ui is the electric voltage in the
circuit of the ith actuator. The electromagnetic
torque Mi = N−1

i Qi is proportional to the electric
current ji in the ith actuator

Mi = kM
i ji, kM

i = const > 0. (19)

The first term in (18) is usually small compared
with other terms and, hence, can be omitted.
Then (18) and (19) yield
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Fig. 2. Double pendulum.

Mi = kM
i R−1

i (ui −Nik
E
i q̇i), Qi = NiMi. (20)

Substituting Qi from (20) into equation (1), one
obtains

Aq̈ = Q∗ + S∗ + P, S∗ = S−Λq̇,

Λ = diag(N2
1 k

M
1 kE

1 R
−1

1 , . . . , N2
nk

M
n kE

nR
−1
n ),

Q∗ = (N1k
M
1 R−1

1 u1, . . . , Nnk
M
n R−1

n un).

(21)

The voltages ui of the actuators are usually re-
stricted by the constraints |ui| ≤ u0

i (u0
i are

constants) which are transformed into constraints
imposed on the components Q∗

i of the vector Q∗

from (21)

|Q∗

i | ≤ Q∗0
i = Nik

M
i R−1

i u0
i , i = 1, . . . , n. (22)

The results of Section 3 can be applied to system
(21) with constraints (22), and the feedback con-
trol voltages can be obtained in an explicit form.
More detailed analysis and numerous examples for
the control of manipulation robots are presented
in (Chernousko and Reshmin, 1998).

6. CONTROL OF A DOUBLE PENDULUM

The decomposition approach described above is
applicable to systems with n degrees of freedom
equipped with n actuators. Much more compli-
cated control problems arise if the system is un-
deractuated, i.e., if the number of actuators is
less than the number of degrees of freedom. As
an example, a double pendulum controlled by a
torque applied to the suspension axis is consid-
ered, see figure 2. The pendulum consists of two



rigid links B1 and B2. The revolute joint O1 with
a horizontal axis attaches the link B1 to a fixed
base B0. The links B1 and B2 are connected by
the revolute joint O2 the axis of which is parallel
to that of O1. The motion of such a system occurs
in a vertical plane. The center of mass C1 of the
link B1 lies on the ray O1O2. The center of mass
C2 of the link B2 does not lie on the axis of the
joint O2. The system is controlled by the torque
M applied to the joint O1.

The motion of this system is governed by La-
grange’s equations

(m2l
2
1 + I1) q̈1 +m2l1lg2 cos(q2 − q1) q̈2

−m2l1lg2 sin(q2 − q1) q̇
2
2 = M +G1 + v1,

m2l1lg2 cos(q2 − q1) q̈1 + I2 q̈2

+m2l1lg2 sin(q2 − q1) q̇
2
1 = G2 + v2,

G1 = g(m1lg1 +m2l1) sin q1,

G2 = gm2lg2 sin q2,

(23)

where qi is the angle of the deflection of the link Bi

from the vertical; lgi is the length of the segment
OiCi; l1 is the length of the segment O1O2; mi is
the mass of the link Bi; Ii is the moment of inertia
of the link Bi about the axis of the joint Oi; Gi is
the torque created by the gravity force at the joint
Oi; vi is the torque created by the disturbances
at the joint Oi; and g is the acceleration due to
gravity.

The control torque M is subjected to the con-
straint

|M | ≤M0, (24)

where M0 is a positive constant. Constraints are
also imposed on the disturbances

|v1| ≤ v0
1 , |v2| ≤ v0

2 , (25)

where v0
1 ≥ 0 and v0

2 ≥ 0 are given constants.

The following control problem can be formulated.

Problem 2. Find a feedback control M(q1, q̇1,
q2, q̇2) that satisfies (24) and steers the system
(23) from the given initial state

q1(0) = π, q2(0) = π,

q̇1(0) = 0, q̇2(0) = 0
(26)

to the prescribed neighborhood of the upper equi-
librium position

|q1 − 2πk| < ε, |q2 − 2πm| < ε,

k,m = 0,±1,±2, . . . ,

|q̇1| < ε′, |q̇2| < ε′,

(27)

where ε and ε′ are given constants which can be
arbitrarily small.

Problem 2 is solved under certain simplifying
assumptions concerning the control M and the
disturbances v1 and v2. It is assumed that on the
one hand, the constant M 0 in (24) is not too small
and, on the other hand, the constants v0

1 and v0
2

in (25) are not very large. In this case, a bounded
feedback control M(q1, q̇1, q2, q̇2) which satisfies
(24) and brings the system (23) from the initial
state (26) to the terminal state (27) in a finite
time for any admissible disturbances v1 and v2
satisfying (25) can be taken in the form

M = sign(ẋ− ψ̃), ẋ 6= ψ̃;

M = sign(ẋ), ẋ = ψ̃,

(28)

where x is the angle between the links

x = q2 − q1, ẋ = q̇2 − q̇1 (29)

and ψ̃(x) is a switching function defined by the
following relations:

ψ̃(x) = ψ(x− x̃),

ψ(·) = −(2X| · |)1/2sign(·),

x̃ = −f sign q̇1, (sign 0 = −1).

(30)

Here, X and f are positive control parameters
which are to be found. This control is of the
bang-bang type and switches between the two
limiting vales, i.e., M = ±M 0. The switching
curve ẋ = ψ̃(x) consists of two parabolic arcs
symmetric with respect to the point (x̃, 0). Note
that the variable x̃ and the velocity q̇1 change in
sign simultaneously. It has been proved that the
control law (28)–(30) can be used for the solution
of Problem 2 and a system of inequalities (bounds)
has been obtained for the admissible values of the
control parameters X and f . A specific procedure
for choosing or calculating these parameters has
been also proposed.

The control of (28)–(30) can be modified for
solving a more complicated problem.

Problem 3. Find a bounded control M(q1, q̇1,
q2, q̇2) which brings the system from any initial
position to the unstable equilibrium point q1 =
2πk, q2 = 2πm, k,m = 0,±1,±2, . . . , with zero
velocities q̇1 = q̇2 = 0 (in the absence of the
disturbance v2).
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A typical behavior of the projections of the phase
trajectory onto the planes (q1, q̇1), (q2, q̇2), and
(q2 − q1, q̇2 − q̇1) for the control law that solves
Problem 3 is presented in figures 3, 4, and 5.

7. CONCLUSION

The approach described above makes it possible to
design feedback controls that can bring nonlinear
dynamical systems to a prescribed terminal state
in a finite time.

The approach is based on the decomposition of
the system into simple subsystems. Methods of
optimal control and differential games are used to
obtain explicit formulas for feedback controls.

This approach does not assume the external forces
to be known; they can be uncertain, and only
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bounds on them are essential. The obtained feed-
back controls are robust, i.e., they can cope with
additional small disturbances and parameter vari-
ations. To ensure the robustness, we should only
increase the parameter ρ < 1 in (12)–(14), thus
creating a sufficient margin in control possibilities.

The approach presented can be applied also to the
underactuated systems with uncertainties.

8. ACKNOWLEDGEMENTS

The work was supported by the Programme
”State Support of Leading Scientific Schools”
NSh-1627.2003.1 and RFBR grant 05-01-00647.

REFERENCES

Blanchini, F. and F.A. Pellegrino (2003). Rela-
tively optimal control and its linear imple-
mentation. IEEE Transactions on Automatic
Control 48(12), 2151–2162.

Chernousko, F.L. (1990). Decomposition and sub-
optimal control in dynamic systems. J. Ap-
plied Mathematics and Mechanics (PMM)
54(6), 727–734.

Chernousko, F.L. (1992). Feedback control of a
nonlinear dynamic system. J. Applied Math-
ematics and Mechanics (PMM) 52(2), 157–
166.

Chernousko, F.L. and S.A. Reshmin (1998). De-
composition of control for robotic manip-
ulators. In: Proc. 4th ECPD International
Conference on Advanced Robotics, Intelligent
Automation and Active Systems. Moscow.
pp. 184–189.

Krasovskii, N.N. (1970). Game Problems of En-
counter of Motions. Nauka. Moscow (in Rus-
sian).


