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Abstract: The selection of a suitable Lyapunov function is a critical step in the stability 
analysis of nonlinear systems. The appropriate choice can lead to the possibility of guar-
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1. INTRODUCTION 
 
The formal definition of system stability is at the 
focus of differential and integral analysis, having 
engaged the attention of leading mathematicians and 
physicists including Torricelli, Laplace, Lagrange 
and others. However, it was only in 1892 that a clear 
criterion established, with the publication of the work 
of the Russian mathematician, Lyapunov (Lyapunov, 
1907). He defined a scalar function inspired by a 
classical energy function (Lyapunov's direct 
method), which has three important properties that 
are sufficient for establishing the domain of attrac-
tion of a stable equilibrium point: (a) It must be a 
local positive definite function, (b) it must have con-
tinuous partial derivatives, and (c) its time derivative 
along any state trajectory must be negative semi-
definite (Slotine and Li, 1991). While Lyapunov 
theory provides powerful guarantees concerning a 
system’s stability once an appropriate function is 
identified, it regrettably provides no guidance on 
how to select it.  
 
This paper introduces a novel approach for the auto-
mated generation of a Lyapunov function for the 
analysis of a given dynamic system using genetic 
programming (GP). The genetic program, which is 
an optimization method inspired by natural evolu-
tion, evolves an improved Lyapunov function, driven 

by its required properties as described above, in such 
a way that the resulting region of attraction is maxi-
mized.  The paper is structured as follows. First, we 
review the formal definition of Lyapunov functions. 
Then, the approach used to generate Lyapunov func-
tion using genetic programming is described in some 
detail. Three typical autonomous nonlinear systems 
are then analyzed using the approach. 
 

2. LYAPUNOV STABILITY PRINCIPLES 
 
This study concerns stability analysis of autonomous 
systems, of the general form:  

( )x f x=  (1) 
where x = Rn

. A system is said to be autonomous if f 
does not depend explicitly on time. An equilibrium 
point of the system of Eq. (1), x = x*, is one that 
satisfies: 

*( ) 0f x =  (2) 
An equilibrium point is said to be stable in the sense 
of Lyapunov if for any n-dimensional ball of radius  
ε > 0 there exists an n-dimensional ball of radius 
δ(ε), such that for any trajectory x(t0,x0), starting in δ, 
then 0( , )x t x < ε  for any t > 0. Otherwise, the 
equilibrium point is unstable. These conditions are 
stated formally as: 



     

0 ( ) ( )  0x x t tδ ε ε< ⇒ < ∀ ≥  (3) 
This definition binds an equilibrium point to its 
domain of attraction without requiring it to be 
asymptotic stable.  An equilibrium point is also said 
to be asymptotically stable if it is stable, and if in 
addition there exists some r > 0 such that 

0x r< implies that 0( , ) 0x t x →  as .t → ∞  
A function v(x) is said to be a Lyapunov function if it 
satisfies two main properties: (a) v(x) must be locally 
positive definite, meaning that it is bounded from 
below by a constantly increasing function equal to 
zero at the origin; (b) the derivative of v(x) with 
respect to time: 

( ) ( ) ( )dv x v x f x
dt x

∂
=

∂
, (4) 

must be semi-negative definite in the domain of 
attraction. This type of function must exist around a 
stable equilibrium point (Shankar, 1999) encapsu-
lated by an attraction domain in the ball Br, of radius 
r, where the above properties are satisfied. Further-
more, for systems of the type of Eq. (1), asymptotic 
stability is guaranteed if the function’s derivative 
(Eq. 4) is locally negative definite (Slotine and Li, 
1991). 
 

3. SELECTION OF LYAPUNOV FUNCTIONS 
USING GENETIC PROGRAMMING 

 
Genetic programming (GP) is an optimization 
method inspired by the principles of Darwinian evo-
lution (Koza, 1992). The GP is based on simple rules 
that imitate biological evolution. Unlike conventional 
optimization techniques that manipulate the parame-
ters of an initial estimate of the solution, GPs main-
tain a population of potential models, each structured 
in a tree-like fashion, with basis functions linking 
nodes of inputs and constants, as illustrated by the 
example chromosome in Figure 1. The probability of 
a given model surviving into the next generation 
dependent on the performance of each individual, 
evaluated using a fitness function, with the most 
successful (efficient) chromosomes having a higher 
probability to reproduce. In synthetic evolution, bio-
logical reproduction is mimicked by operators such 
as crossover (pairing) and mutation, which create a 
generation of offspring solutions. Crossover gener-
ates new features in the solution space by combining 
genetic information, while mutation accomplishes 
this by adding random perturbations. Fitness-propor-
tional selection, combined with these genetic opera-
tors produces generation after generation of offspring 
solutions. Since the more appropriate solutions are 
given higher probabilities to reproduce, one would 
expect improved solutions over generations.  
 
The work reported here is based on the GP code 
developed in a previous study (Grosman and Lewin, 
2004), who demonstrated that it has the capacity to 
generate compact nonlinear models that accurately 
predict the input-output system behavior without 
requiring the user to specify the model complexity in 
advance. This is achieved mainly due to the adaptive 
nature of the fitness function adopted. This and addi-

tional features described by (Grosman and Lewin, 
2004) make the code superior to generic genetic 
programming codes (e.g., McKay et al., 1997). 
The approach is harnessed to the automated genera-
tion of Lyapunov functions. First, the candidate 
model tree is further specified by addition of con-
stants that fully define the models, which then 
become the principal degrees of freedom that are 
adjusted to optimize the model performance. For 
example, the model in Figure 1 has two degrees of 
freedom, requiring the insertion of two parameters, 
and is sent to the optimizer as: y = u3×(θ2u1+θ1u2). 
This procedure is important to ensure that a good 
candidate model structure is not dropped because of 
a possible poor fit resulting from insufficient 
“tuning” parameters. After this procedure is over the 
derivative function (Eq. 4) has to be created for each 
candidate model. This is accomplished analytically 
using symbolic computation of v(x) and ( )v x  using 
MATLAB®. 

u1 u2 

u3 
× 

+

 
Fig. 1. Tree structure for model: y = u3×(u1+u2). The multi-

plication functional is positioned at the root of the 
tree, and u3 and u1 + u2 are its branches. 

 
The candidate Lyapunov functions and their deriva-
tives are required to satisfy the two Lyapunov prop-
erties summarized in Section 2. First, the degree to 
which these properties are satisfied in a small ball in 
the vicinity of the origin are checked (in all three 
examples described below, the radius of this initial 
ball radius was set at 10-3). The candidate function 
score is computed using a discretized grid positioned 
around the origin, and graded according to: 

-- ( 1)2 i
i

r D V
if r +⋅ + −= − ⋅  (5) 

where ri is the radius of the ball for candidate i,  D+ is 
the number of semi-positive time derivates on the 
grid excluding zero derivate at the origin, and V– is 
the number of negative candidate function values on 
the grid including the origin. For example, a grid, in 
the vicinity of the origin, that includes fifteen com-
pounds points, where two of them are positive 
Lyapunov function derivates and three of them con-
tain negative Lyapunov function values, is evaluated 
as: 

33 10 (2 3 1) -410 2 9.97 10if
−− − ⋅ + −= − ⋅ = − × , i.e., its 

value is 99.7% of the maximum possible score on the 
given radius. This penalization is sufficient to 
eliminate this candidate from further consideration. 
 
Note that the optimizer attempts to minimize Eq. (5). 
Thus, the candidate function that satisfies the condi-
tions in the initial ball gradually increases its radius 
until one of the conditions is violated.  Candidates 
that violate the conditions in the initial ball are 
graded by their relative successful grid points using 
(Eq 5). Clearly, the candidates that satisfy the 
Lyapunov conditions in the initial ball are graded 
according to their largest convergence region, satis-



     

fying the Lyapunov conditions. The fitness of such 
models always exceeds those that violate the condi-
tions in the initial ball. Furthermore, note that Eq. (5) 
evaluates the cost function as -ri , while D+ is equal 
to zero and V– is equal to one, thus satisfying the two 
Lyapunov conditions. Consequently, the function 
enables the detection of the maximum radius that 
satisfies the Lyapunov conditions. Finally, it is noted 
that the function as defined previously is designed to 
analyze asymptotical stable equilibrium points, 
which are usually of interest in most control systems 
analyses. However, it can be easily transformed to 
examine stability in the general Lyapunov sense. 
 
The score recorded for each candidate is actually the 
volume of the ball attained in each case. However, 
the score appropriate for a GP is a fitness value in the 
range between zero and unity. This is mapped using 
the function: 

1ˆ
1 1/i

i
f

V
=

+
 (6) 

where 2
i iV r= is the volume of the region of attrac-

tion obtained with the candidate function i. Evi-
dently, candidates that exhibit large regions of 
attraction will achieve fitness values approaching 
unity, while those with small regions of attraction 
will score poorly. As described previously, our GP 
penalizes candidates with excessively complex 
models, by implementing the following correction:  

ˆ

1 exp( [ ( )])
i

i
b c

f
F

n Mγ β
=

+ − +
 (7) 

In the above formulation, nb, sums the number of 
branches in the model tree; the model in Figure 1, for 
example, shows a model with four branches. The 
fitness function in Eq. (7) with nb is penalized if it 
contains significantly more branches than that of the 
best model in the parent population, Mc. Thus, Mc is 
continuously reset to the number of branches of the 
best detected model in each new generation. More-
over, the additional adjustable parameters, γ  andβ, 
are used in shaping the penalizing sigmoid, such that 
Eq. (7) favours simpler models. In this way, Mc 
moves the centre of the sigmoid each generation, 
while γ  controls its slope and β its intercept (the 
larger β  is, the larger number of branches greater 
than Mc that are accepted). 

 
4. EXAMPLES 

 
The approach was tested on three second order 
dynamical systems, all of which have stable equilib-
rium points at the origin and exhibit an unstable limit 
cycle demarcating the domain of the attraction. 
 
4.1 Example 1 (Slotine and Li, 1991, pg. 64). 
 
The state equations for this system are: 

2 2 2
1 1 1 2 1 2

2 2 2
2 2 1 2 2 1

( 2) 4

( 2) 4

x x x x x x

x x x x x x

= + − −

= + − +
 (8) 

This has a steady equilibrium point at the origin and 
an unstable limit cycle at a radius of 2 , which is 

actually the boundary of the stable domain of attrac-
tion, as shown in Figure 2. 
 
Five distinct GP runs were carried out on this system, 
each manipulating populations of 25 solutions, run-
ning for 50 generations. The best Lyapunov function 
was identified as: 

2 2
1 2( )v x x x= +  (9) 

Although this is the trivial “energy” function, it is 
noteworthy that it was identified by the GP despite 
the fact that all five runs were initiated from random 
starting conditions, without any a priori information. 
Furthermore, the optimization computed 2  as the 
radius of the domain of attraction. 

 
Fig. 2. x1–x2 phase plane for Example 1. The bold line 

indicates the unstable limit cycle that demarcates the 
region of attraction, and the stars indicate various 
initial conditions. 

 
4.2 Example 2 (Shankar, 1999, pg. 194). 
 
The state equations for this system are: 

( )
( )

2 2
1 1 1 2 2

2 2
2 2 1 2 1

1

1

x x x x x

x x x x x

= + − −

= + − +
 (10) 

As on the previous case study, the system has a 
stable equilibrium point at the origin and a limit 
cycle that separates between the domain of attraction 
and the unstable region. This limit cycle is located at 
a unit radius from the origin, as shown in Figure 3. 
 
As in the first example, five GP runs were executed, 
which identified the intuitive Lyapunov function of 
Eq. (9), as the function that guarantees the largest 
radius of convergence. In this case, the maximum 
radius found by the GP approach was unity, which is 
the theoretical value. Table 1 illustrates one of the 
GP runs for Example 2, which graphically demon-
strates the power of the method to identify the 
appropriate Lyapunov function. Note the way the 
two-dimensional surfaces are adjusted during the 
evolution until the final “best” Lyapunov function is 
achieved in generation 9. 
The examples this far appears to indicate that the 
approach merely confirms the intuitive idea that an 
appropriate selection of Lyapunov functions is the 
generic form:   



     

( ) ,Tv x x Px=  (11) 
where P is a positive definite matrix. In a similar 
vein, Krasovskii's method (Slotine and Li, 1991) 
suggests Lyapunov functions of the form v(x) = 
fT(x)f(x). In general, as will be seen in the next exam-
ple, the approach can be helpful in identifying 
appropriate Lyapunov functions, when intuitive 
judgement leads to sub-optimal results. 

 
Fig. 3. x1–x2 phase plane for Example 2. The bold line 

indicates the unstable limit cycle that demarcates the 
region of attraction, and the stars indicate various 
initial conditions.   

 
4.3 Example 3. Van der Pol's equation. 
 
The state equations for this system are: 

( )
1 2

2 4
2 2 1 1 10.5 1 0.1

x x

x x x x x

=

= − − + −
 (12) 

As shown in Figure 4, this system has a stable equi-
librium point at the origin, with a domain of   attrac-
tion __ surrounded by an unstable limit cycle that is 
itself surrounded by another stable limit cycle. Note 
that contrary to the previous two examples, the limit 
cycles are not circular.  
 
The goal is to find the best Lyapunov function, 
meaning the one that will guarantee the largest 
attraction domain. However, as shown in Figure 5, a 
Lyapunov function of the generic form of Eq. (9) 
leads to a semi-definite negative derivative in the 
domain, rather than the desired definite negative de-
rivative. This fact prevents the GP to continue the 
search outside the initial ball as mentioned in the 
previous section. Furthermore, such a solution is 
insufficient for this example, since it is known that it 
exhibits asymptotic stability at the origin (if the 
origin was the only stable domain this would be 
sufficient for asymptotic stability). 
 
Figures 6 and 7 confirm the power of genetic 
programming in finding appropriate Lyapunov func-
tions. Both figures describe example quadratic 
functions generated by the GP, which would be hard 
to arrive at intuitively. The one that is plotted in 
Figure 6 is the following function: 

2
2 1 1 2( ) 1.122( 0.85694 (1.2364 )),  = + +v x x x x x  (13) 

which gives a convergence radius of 1.11. In con-
trast, the solution plotted in Figure 7: 

2
1 1 2

2
1

( ) 1.007 1.0219( 1.0063

     1.9265 (0.77835 )) ,

= + −

−

v x u u u

Sin u
 (14) 

involves sin(x1). As shown in Figure 4, this solution 
guarantees a larger attraction domain (of radius 1.96) 
than that of Eq. (11) and of the trivial semi-negative 
domain of Eq. (8), with both of the latter regions of 
attraction being equal. In contrast, the intuitive 
method of Krasovskii gives a radius of convergence 
of only 0.31.  

 
Fig. 4. x1–x2 phase plane for Example 3. The solid inner 

line indicates the unstable limit cycle that demarcates 
the region of attraction, the solid outer line is the stable 
limit cycle, and the dotted lines indicate two stable 
domains of attraction detected by the GP. The stars 
indicate various initial conditions. 

Figure 8 displays the evolution of the radius of 
attraction for Van der Pol's equation, as the GP 
searches for the appropriate functional form of the 
Lyapunov function. Note that all of the candidates 
identified are quadratic in form, which is not essen-
tial but expected, seeing as that function most be 
locally positive definite.  
 

5. CONCLUSIONS 
 

This paper has presented a novel approach for the 
automatic generation of Lyapunov functions suitable 
for stability analysis of nonlinear systems. More 
specifically, the capability of genetic programming 
has been demonstrated to disclose the 'best' 
Lyapunov function for three two-dimensional 
dynamical systems. While on first two examples the 
genetic programming identifies the well-known 
quadratic Lyapunov function, a result that could have 
been done without the power of genetic program-
ming, the third example demonstrates the ability of 
the GP to detect complex structures for Lyapunov 
function, which could have been identified by hand 
only by chance. It is believed that the described 
methodology could give rise to many important 
applications in the field of stability and process 
control. This ability has yet to be tested on more 
challenging systems, with the ultimate goal of our 
research being to design nonlinear stable controllers 
by enlarging the domain of the attraction using 
genetic programming. 
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Fig 5. Surface representation of the generic Lyapunov 

function of Eq. (9) for Example 3.   
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Fig 6. Surface representation of the Lyapunov function of 

Eq. (13) for Example 3. In this case, the surface of the 
derivative is negative except the origin, guaranteeing 
asymptotic stability. 
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Fig 7. Surface representation of the Lyapunov function of 

Eq. (14) for Example 3. This functional form exhibits a 
negative derivative, thus guaranteeing asymptotic 
stability, as well as a larger attraction domain. 

 

Fig. 8. Evolution of the optimal radius of domain of attrac-
tion for Example 3. Note the gradual evolution of the 
functional form of a successful Lyapunov function, 
giving Eq. (14) from the 117th generation. 

 
 



     

Table 1: A typical evolution of the GP-derived Lyapunov function for Example 2.  
 

( )v x  ( )v x  

 
Generation 1-5: 2

1v x=  

  
Generation 6-7: 2 2 2

1 2(  )v x x= +  

  
Generation 8: 2 2

1 2exp(  )v x x= +  

  
Generations 9-50: 2 2

1 2v x x= +  

  


