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Abstract: A nonlinear PID (NPID) controller for a class of linear plants with
output feedback is studied. The controller gains are modulated by the control error
and error rate to yield a closed-loop system for improved disturbance rejection.
An optimization problem involving constraints written as linear matrix inequalities
(LMIs) is solved to compute the controller parameters. A hard disk drive (HDD)
control application shows that the NPID outperforms the conventional PID by 9%
in disturbance rejection along with a consequent reduction by 20% in settling time
while the stability robustness is maintained. Copyright c© 2005 IFAC
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1. INTRODUCTION

The proportional-integral-derivative (PID) feed-
back control is to date the most common struc-
ture to deal with the servo problems due to its
simplicity. A general linear PID (LPID) control
structure is of the form

u(t) = kpe(t) + kd
de(t)
dt

+ ki

t∫
0

e(η)dη (1)

where kp, kd and ki are real constant parameters,
and e(t) is the control error with e(t) = r(t)−y(t),
r(t) and y(t) represents the reference input and
the system output, respectively. However, LPID
controllers are inherently linear systems and thus
are inevitably limited by linear system constraints
(Goodwin and Seron, 1997). Therefore, nonlinear
PID (NPID) control has received a great deal of
attention and it is expected to achieve perfor-

mance not obtainable by LPID control. Previ-
ous studies and applications have attempted to
use the NPID control on linear plants to im-
prove tracking accuracy (Xu, et al., 1995), reduce
overshoot (Wu, et al., 2004), decrease rise time
(Chen, et al., 2003) and compensate for friction
(Armstrong, et al., 2001). From the perspective
of control laws, NPID control can be categorized
into two broad classes (Armstrong, et al., 2001):
magnitude-based, those with the controller gains
modulated by the control error; and phase-based,
those with the controller gains modulated by the
control error and error rate explicitly.

The tracking servo in a hard disk drive (HDD) sys-
tem is referred to as track-following servo, whose
objective is to maintain the read/write head as
close as possible to the destination track cen-
ter when the information is being read from or
written to the disk. The HDD industry contin-
ues to strive for larger capacities on a smaller



form factor. This requires the track width be nar-
rower, which implies a lower error tolerance on the
tracking accuracy. Therefore, the track-following
servo system is required to efficiently compensate
for the disturbances caused by disk vibration,
spindle run-out, windage and external vibrations.
The task is conventionally fulfilled by a LPID-
like compensator (Kobayashi, et al., 1998). Such
linear controllers generally have to compromise
performance among good disturbance rejection,
insensitive to noise, robustness, and so on.

This paper studies the phase-based NPID control
of linear plants with output feedback. The selec-
tion of the controller parameters is addressed as
a linear matrix inequality (LMI) problem, which
can be solved efficiently in practice. The HDD
system is presented as an example to illustrate the
application of the NPID control. The experimen-
tal results show that NPID control outperforms
LPID control by 9% in disturbance rejection along
with a consequent reduction of 20% in settling
time while the stability robustness is maintained.

2. NPID CONTROL DESIGN

2.1 System Model in State Space

Consider a linear time-invariant (LTI) and strict
proper plant with its state space representation as
follows:


ẋ(t) = Ax(t) + Bu(t) + Gw(t)
y(t) = C1x(t) + D1w(t)
z(t) = C2x(t) + D2w(t)

(2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is

the control input, w(t) ∈ R
m is the disturbance

vector, y(t) ∈ R is the measurement output, and
z(t) ∈ R is the system output, respectively. A, B,
G, C1, D1, C2 and D2 are known real constant
matrices of appropriate dimensions. The following
assumptions on the plant (2) are made.

Assumptions:

(1) The plant is stabilizable with a LPID con-
troller of the form in (1);

(2) Output feedback is used, hence, only y(t) is
measurable;

(3) Regulation problem is considered here, that
is, r(t) ≡ 0.

The LPID controller can be designed using linear
control approaches. However, it is well known that
the pure differentiator in (1) is not physically im-
plementable because differentiation of the control
error containing high frequency noise components
will generate large control signal. The problem
can be improved by implementing the differen-
tiator as s

τds+1
, where τd is the time constant

with τd = 0.2
ω0

, and ω0 is the desired closed-loop
bandwidth (Franklin, et al., 2002). The modified
PID controller is then represented in state space
as follows:


ẋc(t) = Acxc(t) + Bce(t)
yc(t) = Ccxc(t) + Dce(t)
u(t) = Kyc(t)

(3)

where xc = [τd
ˆ̇e(t) − e(t),

∫ t

0
e(η)dη]T ∈ R

2

is the controller state vector, and yc(t) =
[e(t), ˆ̇e(t),

∫ t

0
e(η)dη]T ∈ R

3 is the measurable
controller output, and

Ac =


− 1

τd
0

0 0


 , Bc =


− 1

τd
1


 , Cc =




0 0
1
τd

0

0 1


 ,

Dc =
[

1
1
τd

0
]T

, K =
[
kp kd ki

]
. (4)

Folding the controller (3) into the plant (2), then
the closed-loop system is given by

{
ẋa(t) = Aaxa(t) + Gaw(t)
z(t) = C2axa(t) + D2w(t) (5)

where xa(t) = [xT
c , xT ]T ∈ R

n+2 is the aug-
mented state vector; and

Aa =
[

Ac −BcC1

BKCc A − BKDcC1

]
(6)

is the augmented closed-loop system matrix;

Ga =
[ −BcD1

G − BKDcD1

]
(7)

is the augmented disturbance input vector; and

C2a = [φ, C2] (8)

is the augmented system output vector, φ ∈ R
2 is

the zero vector.

Here, the closed-loop system matrix Aa is a func-
tion of the controller gain vector K ; it is however
fixed once K is determined. Hence, the system
performance is unchangeable online. In the next
section, a NPID controller with a time-varying
K(·) is presented to yield a closed-loop system
for improved disturbance rejection.

2.2 NPID Control Law

Our objective is to design a NPID control law
that will maintain the system output closer to zero
under the influence of disturbances. This can be
accomplished by shifting the constant controller



gain vector K in (4) into a time-varying controller
gain vector

K(·) =
[
kp(·) kd(·) ki

]
(9)

such that the closed-loop system dynamics is in-
stantly changed for favorable disturbance rejec-
tion. The NPID control law studied here is moti-
vated by that in Xu, et al. (1995). More specifi-
cally, K(·) is modulated according to whether the
system output is moving away from or toward the
desired target:

(1) Movement away from the target: kd(·) de-
creases while kp(·) increases to provide high
stiffness;

(2) Movement towards the target: kp(·) decreases
while kd(·) increases to provide high damp-
ing.

The NPID control law is illustrated in Fig. 1. The
improvement of the NPID control on disturbance
rejection can be qualitatively explained as: at
the shaded areas the higher control gain acts
as a stiff spring to constrain the system output
moving away from the target; while at the non-
shaded areas the lower gain and higher damping
act as an energy absorber to remove the energy
from the overall system. Thus, the NPID control
benefits from the nonlinear controller gains and
achieves higher disturbance rejection than that
under LPID control.

A nonlinear gain vector function K(·) satisfying
the NPID control law above can be constructed
as follows:

kp(·) = kp[1 + ναρ(e, ˆ̇e)] (10)

kd(·) = kd[1− (1 − ν)αρ(e, ˆ̇e)] (11)

ρ(e, ˆ̇e) =




1 if e(t)ˆ̇e(t) > 0
0 if e(t)ˆ̇e(t) = 0
−1 if e(t)ˆ̇e(t) < 0

(12)

where ν ∈ [0, 1] is the weighting factor indicating
the extent to which the nonlinear gain affects kp

and kd, respectively; and α ∈ [0, min( 1
ν
, 1

1−ν
)] is

the tuning parameter which determines the range
of the nonlinear gain and assures the gain invari-
ably positive. It is desired that α be maximized
for best performance improvement. This will be
illustrated later with an example shown in Fig. 2.

Combining (10)–(12) into (5) gives a nonlinear
closed-loop system of the form

{
ẋa(t) = AN (ρ)xa(t) + GN(ρ)w(t)
z(t) = C2axa(t) + D2w(t) (13)

where

AN (ρ) = Aa + αA∆(ρ) (14)
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Fig. 1. Illustration of NPID control, adapted from
Xu, et al. (1995).

A∆(ρ) =
[

φ φ

BK∆(ρ)Cc −BK∆(ρ)DcC1

]
(15)

K∆(ρ) =
[
kpνρ, −kd(1 − ν)ρ, 0

]
(16)

2.3 Selection of NPID Controller Parameters
Using an LMI Approach

For the derived NPID control system (13), sup-
pose a linear gain vector K has been designed to
assure Aa stable and ν is known, then a ques-
tion naturally arises: how to select the maximum
α that assures the nonlinear closed-loop system
asymptotically stable. The problem can be solved
analytically for a low order system. For example,
consider a second-order plant of the form

A =
[

0 1
a1 a2

]
, B =

[
0
1

]
, C =

[
1 0

]
. (17)

Assume both states of the plant are measurable
and the NPD control in (10)–(12) is applied. Then
the nonlinear closed-loop system is derived by{

ẋ1 = x2

ẋ2 = [a1 − kp(·)]x1 + [a2 − kd(·)]x2.
(18)

To study the stability condition of the system,
a natural Lyapunov function candidate may be
taken as the energy-like function

V (x) =

x1∫
0

[kp(·) − a1]ydy +
1
2
x2

2. (19)

Let kp(·) > a1, then V (x) is positive definite and

V̇ (x) = [kp(·) − a1]x1x2 + x2ẋ2

= −[kd(·) − a2]x2
2.

(20)

Given that kd(·) > a2, V̇ (x) is negative definite.
Hence, the maximum α satisfying the stability
condition is simply derived as

α = min{ 1
ν

,
1

1 − ν
,
kp − a1

νkp
,

kd − a2

kd − νkd
}. (21)

A numerical simulation of the example was carried
out. The parameters are selected as: a1 = −105,



0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

Time [ms]

e(
t)

 [µ
m

]
α=1.43  

α=0.5 
α=1.0 

α=0 (LPID) 

Fig. 2. Simulation result: disturbance rejection
improved when α increases.

a2 = −180, kp = 107, kd = 103, ν = 0.7 and
output disturbance source = 2sin(2π300t). Thus,
from (21), it follows that

α = min{1.43, 3.33, 1.44, 3.93} = 1.43 (22)

The simulation result in Fig. 2 shows that dis-
turbance rejection is gradually improved when
α increases within the region that satisfies the
stability conditions.

However, for a high order system the stability
problem becomes extremely complicated and no
systematic methods are available to find appro-
priate Lyapunov functions that satisfy the stabil-
ity conditions. But note that the proposed NPID
control system (13) is essentially switched among
three linear subsystems as follows:

AN(ρ) =




Aa + αA∆1 if ρ = 1
Aa + αA∆2 if ρ = 0
Aa + αA∆3 if ρ = −1

(23)

Therefore, a sufficient stability condition pre-
sented by Johansson and Rantzer (1998) can be
applied to the system (13) directly and restated
as follows:

Proposition 1: The NPID control system (13)
is exponentially stable if there exists a common
matrix P = P T > 0 for all the subsystems in
(23) such that

(Aa + αA∆i)T P + P (Aa + αA∆i) < 0,
i = 1, 2, 3.

(24)

The above proposition can be proved using a
globally quadratic Lyapunov function V (x) =
xT Px > 0 and thus V̇ (x) satisfies (24). Then
the system (13) is exponentially stable for every
trajectory in the state space.

Consequently, finding the maximum α that as-
sures the stability condition in Proposition 1 can
be formulated as an optimization problem in-
volving constraints written as LMIs (Boyd, et
al., 1994). The solution of the LMI problem is
then equivalent to solving a convex optimization
problem. The remarkable advantage here is that
efficient software (Gahinet, et al., 1995) is already
available to provide reliable numerical solutions.

Therefore, the following LMI problem gives the
conditions for the existence of the optimal α.

LMI Problem: Given the known matrices A∆i and
stable Aa, the maximum α that assures the NPID
control system (13) exponentially stable is the
solution of the following optimization problem in
the symmetric matrix P and scalar α:

maximize α (25)

subject to

P > 0, 0 ≤ α ≤ min(
1
ν

,
1

1 − ν
),

AT
a P + P Aa + α(AT

∆iP + P A∆i) < 0,
i = 1, 2, 3.

(26)

Remark: To speed up the computation, α =
min( 1

ν
, 1

1−ν
) can be set as an initial point. If there

exists a P satisfying (26), no more iterations are
required. The undesirable case happened when
α = 0 because the NPID control reduces to LPID
control. Thus, there always exists a P satisfying
(26) because Aa is stable.

2.4 Design Procedure

From the results obtained, the design procedure
for the NPID controller (9) can be summarized as
the following steps:

(1) Design a LPID controller (3) for the plant
(2) using an appropriate method such that
the resulting closed-loop system (5) has nec-
essary stability margin and sensitivity mag-
nitude for disturbance rejection.

(2) Replace the LPID controller gains in (5) with
the NPID controller gains (10)–(12) such
that (13) is obtained. Rewrite (14) as (23).

(3) Select ν according to the disturbance char-
acteristics, e.g., if the disturbance spec-
trum is more intensive below the open-loop
crossover, then ν > 0.5 is suggested because
kp improves the disturbance rejection within
this range more effectively than kd. Substi-
tute ν into A∆i and thus the matrices Aa

and A∆i are known. Find the maximum α
by solving the LMI problem (26). By far,
the NPID controller (9) is found with the
nonlinear gains given in (10)–(12).

To smooth the transition among the nonlinear
controller gains and thus reduce chattering, the
switching function (12) can be implemented with
an approximating function as follows:

ρ(e, ˆ̇e) =
exp[βesgn(ˆ̇e)] − 1
exp[βesgn(ˆ̇e)] + 1

(27)

where the constant β indicates the switching rate,
and it is determined by the order of magnitude of



e such that ρ(·) has a fast switch to ensure the
improvement of performance.

3. APPLICATIONS TO HDD SERVO
SYSTEMS

3.1 Dynamic Model of HDD

The voice coil motor (VCM) actuator in a HDD,
that is, the controlled object, consists of the VCM,
arm carriage, the suspension, the slider, and the
magnetic head. The control input u is a voltage
to the VCM driver. The control variable is the
position error signal (PES), which is the relative
error between the head positioning y and the
servo sectors prewritten on the disk surface. The
transfer function of the VCM actuator can be
represented as follows:

G(s) =
Y (s)
U(s)

=
k

s2

w2
n

s2 + 2ζwns + w2
n

(28)

where k is the loop gain, wn is the resonance
natural frequency, and ζ is the damping ratio. A
state-space model corresponding to the transfer
function can be given by


ẋ =




0 k 0 0
0 0 1 0
0 0 0 wn

0 0 −wn −2ζwn


 x +




0
0
0

wn


 u

y =
[
1 0 0 0

]
x

(29)

For the HDD studied here, the parameters of the
model are k = 2×106, ζ = 0.12, and wn = 2π5800
rad/sec.

3.2 NPID Control of HDD Track-following System

The NPID control is applied to the HDD track-
following servo system to provide precise head
positioning. The controller is designed following
the procedure presented in Section 2.4.

Firstly, using the loop shaping techniques, the
LPID controller (3) for the VCM actuator (29)
is obtained with the parameters:

kp = 15, kd = 0.003, ki = 1500, τd = 3 × 10−5.

The system specifications are derived as: phase
margin 45 deg, gain margin 10 dB, and open-loop
bandwidth 1.2 kHz.

Secondly, construct the NPID control system (13)
for the HDD system.

Finally, select ν = 0.7 since disturbances with low
and midrange frequencies are more concerned in

our study. Solving the corresponding LMI prob-
lem (26) gives α = 1.2 and a positive definite
solution P that guarantees the system stability.
Hence, the NPID controller is as follows:

kp(·) = 15[1 + 0.84ρ(e, ˆ̇e)],

kd(·) = 0.003[1− 0.36ρ(e, ˆ̇e)].

Moreover, the switching function ρ(e, ˆ̇e) is imple-
mented with (27). In the HDD servo, the order
of PES magnitude is nanometer, thus, a typical
β = 3 × 108.

3.3 Experimental Results

The NPID controller was implemented on the ac-
tual VCM actuator and compared with the LPID
controller by setting α = 0. Fig. 3 and 4 show
the experimental results for repeatable runouts
(RROs) compensation. The RROs correspond to
the harmonic disturbances generated by a 7200
RPM spindle. The results show that NPID control
obtains higher attenuation for midrange frequency
RROs but little for high frequency RROs. Fig.
5 shows the result of the compensation for non-
repeatable runout (NRRO) dominated by disk
flutter modes. The PES spectrum indicates a 9%
reduction of PES 3σ under NPID control. Fig.
6 shows the transient response to step output
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Fig. 3. Compensation for RRO with magnitude =
1 µm and frequency = 720 Hz.
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Fig. 6. Step (0.4 µm) output disturbance response:
20% reduction of settling time under NPID
control compared with LPID control.
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Fig. 7. Simulated impulse input disturbance re-
sponse with actuator resonance frequency wn

variations (±5%) under NPID control.

disturbance. The result shows that NPID control
reduces the overshoot and consequently decreases
settling time from 0.5 ms to 0.4 ms, which is a
20% reduction ratio.

Finally, the stability robustness is evaluated under
NPID control. Fig. 7 shows that PESs still decay
to zero even with actuator resonance frequency
variation of ±5%.

4. CONCLUSION

A NPID controller has been presented to improve
disturbance rejection. The selection of the con-
troller parameter is formulated as an optimization
problem with constraints written as LMIs, which
can be solved efficiently by the convex program-
ming techniques. The HDD control application
shows that NPID control outperforms LPID con-
trol by 9% in disturbance rejection along with
a consequent reduction by 20% in settling time
while maintaining stability robustness. Future re-
search will explore control design methods that
ensure the performance goals directly.
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