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Abstract: Most academic control schemes for MIMO systems assume all the control
variables are updated simultaneously. MPC outperforms other control strategies
through its ability to deal with constraints. This requires on-line optimization,
hence computational complexity can become an issue when applying MPC to
complex systems with fast response times. The multiplexed MPC scheme described
in this paper solves the MPC problem for each subsystem sequentially, and updates
subsystem controls as soon as the solution is available, thus distributing the control
moves over a complete update cycle. The resulting computational speed-up allows
faster response to disturbances, and hence improved performance, despite finding
sub-optimal solutions to the original problem. The multiplexed MPC scheme is also
closer to industrial practice in many cases. This paper presents initial stability
results for two variants of multiplexed MPC, and illustrates the performance
benefit by an example. Copyright c©2005 IFAC
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1. INTRODUCTION

Model Predictive Control (MPC) has become an
established control technology in the petrochem-
ical industry, and its use is currently being pi-
oneered in an increasingly wide range of pro-
cess industries. It is also being proposed for a
range of higher bandwidth applications, such as
ships (Perez et al., 2000), aerospace (Murray et
al., 2003) (Richards and How., 2003), and road
vehicles (Morari et al., 2003).

This paper is concerned with facilitating applica-
tions of MPC in which computational complexity
is likely to be an issue. One can foresee that
applications to embedded systems, with the MPC
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algorithm implemented in a chip or an FPGA, are
likely to have this characteristic.

MPC operates by solving an optimisation problem
on-line, in real time, in order to decide how to
update the control inputs (manipulated variables)
at the next update instant. All MPC theory to
date, and as far as we know all implementations,
assume that all the control inputs are updated
at the same instant (Maciejowski, 2002). Suppose
that a given MPC control problem can be solved
in not less than T seconds, so that the smallest
possible update interval is T . The computational
complexity of typical MPC problems, including
time requirements, tend to vary as O(m3), where
m is the number of control inputs. We propose
to use MPC to update only one control variable
at a time, but to exploit the reduced complexity
to update successive inputs at intervals smaller



than T , typically T/m. After m updates a fresh
cycle of updates begins, so that each whole cycle
of updates repeats with cycle time T . We call this
scheme multiplexed MPC. We assume that fresh
measurements of the plant state are available at
these reduced update intervals T/m. The main
motivation for this scheme is the belief that in
many cases the approximation involved in updat-
ing only one input at a time will be outweighed
— as regards performance benefits — by the more
rapid response to disturbances, which this scheme
makes possible. It is often the case that “do some-
thing sooner” leads to better control than “do the
optimal thing later”. Figure 1 shows the pattern of
input moves in the multiplexed MPC scheme with
m = 2, compared with the conventional scheme in
which the two input moves are synchronised. The
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Fig. 1. Patterns of input moves for conventional
‘synchronised’ MPC, and for the Multiplexed
MPC introduced in this paper.

scheme which we investigate here is close to com-
mon industrial practice in complex plants, where
it is often impossible to update all the control
inputs simultaneously, because of their sheer num-
ber, and the limitations of the communications
channels between the controller and the actuators.

Various generalizations of our scheme are possible.
For example, subsets of control inputs might be
updated simultaneously, perhaps all the inputs in
each subset being associated with one subunit.
Alternatively, sensor outputs might become avail-
able one at a time (or one subset at a time), as in
the common practice of “polling” sensors. A fur-
ther generalization would be not to update each
control input in a fixed sequence, but to decide
in real time which input (if any) needs updating
most urgently — one could call this just-in-time
MPC ; note that this would then resemble statisti-
cal process control (SPC), which is used widely in
manufacturing processes (Box and Luceno, 1997).

Several works have been published which propose
‘decentralized MPC’ in the sense that subsets of
control inputs are updated by means of an MPC
algorithm. But these usually assume that several
sets of such computations are performed in paral-

lel, on the basis of local sensor outputs only, and
that all the control inputs are then updated simul-
taneously. In some applications, such as formation
flying of unmanned vehicles, it is assumed that the
state vectors of subunits (vehicles) are distinct,
and that coupling between subunits occurs only
through constraints and performance measures.
In (Venkat et al., 2004) five different MPC-based
schemes are proposed, of which four are decentral-
ized MPC schemes of some kind. Their schemes 4
and 5 are the closest to our multiplexed scheme.
In these schemes an MPC solution is solved iter-
atively for each control input, but it is assumed
that no new sensor information arrives during
the iteration, and that all the control inputs are
updated simultaneously when the iterations have
been completed.

As far as we are aware, the original feature of
the scheme proposed in this paper is that the
inputs are updated sequentially, and that each
control update takes account of all the informa-
tion available at that time, namely knowledge of
all updates already performed, and of the latest
sensor outputs.

The distinction between previous proposals for de-
centralised MPC and our proposal for multiplexed
MPC is completely analogous to the distinction
between the Jacobi and the Gauss-Seidel itera-
tive algorithms for inverting a matrix (Barrett et
al., 1994).

An alternative strategy for speeding up the com-
putations involved in MPC is off-line precompu-
tation of the ‘pieces’ of the piecewise-affine con-
troller which is the optimal solution (Morari et
al., 2003). But that is not feasible if the number
of ‘pieces’ required is excessively large, or if the
constraints or the plant model change relatively
frequently.

The rest of this paper is organized as follows. In
Section 2, two possible schemes for Multiplexed
MPC are formulated. Sections 3 and 4 establish
the stability of Schemes 1 and 2, respectively.
Section 5 presents a simulation example to demon-
strate the performance benefits of the proposed
scheme. Finally, concluding remarks are given in
Section 6.

2. PROBLEM FORMULATION

Consider the following discrete-time linear plant
model in state-space form, with state vector xk ∈
Rn and m (scalar) inputs u1,k, . . . , um,k:

xk+1 = Axk +
m∑

j=1

Bj∆uj,k (1)

where each Bj is a column vector and ∆uj,k =
uj,k−uj,k−1. (This could be generalised to the case



where Bj ∈ Rn×pj and ∆uj,k ∈ Rpj , with
∑

j pj

inputs.) We wish to devise a control strategy
based on MPC which, at discrete-time index k,
changes only plant input (k mod m) + 1. We
consider two alternative schemes for determining
the appropriate plant inputs. In both schemes, an
increase of k by 1 corresponds to a time duration
of T/m, where T is the complete update cycle
duration — see section 1.

In both schemes an infinite prediction horizon has
been chosen, because that is one way of ensur-
ing closed-loop stability with MPC (Maciejowski,
2002). Alternative ways of obtaining stability ex-
ist, such as combining a finite horizon with a
terminal constraint or a suitable terminal weight
in the cost function — see (Mayne et al., 2000)
for a comprehensive survey.

We assume in both schemes that at time step k the
complete state vector xk is known exactly from
measurements. We will consider only the regu-
lation problem in detail, but tracking problems,
especially those with non-zero constant references,
can be easily transformed into equivalent regula-
tion problems.

2.1 Scheme 1

In our first scheme, the input move ∆u(k mod m)+1,k

is to be determined by finding the sequence of
predicted input moves {∆uk+i : i = 0, 1, . . .}
which minimises

Jk =
∞∑

i=0

(
‖xk+i+1‖2q + ‖∆uk+i‖2r

)
(2)

subject to the constraint

∆uj,k+i = 0 if j 6= ([k + i] mod m) + 1 (3)

(and possibly other constraints) and applying the
first element of the optimal sequence, namely
∆uk, to the plant.

Here we have used the notational conventions that
xk+i denotes a prediction of the state at time step
k + i, based on information available at time k,
and that ∆uk+i denotes the predicted vector of
control moves at time step k+i, whose jth element
is ∆uj,k+i. q ≥ 0 and r > 0 are matrices; only
diagonal matrices r are needed.

An alternative representation of the problem we
pose is as a periodic linear system with one input:

xk+1 = Axk + B(k mod m)+1∆ũk (4)

where ∆ũk = ∆u(k mod m)+1,k, if ‖∆uk+i‖2r is
replaced by |∆ũk+i|2r([k+i] mod m)+1 in Jk.

Scheme 1, if applied over a finite horizon, has
a lower computational complexity than conven-
tional multivariable MPC, providing that the

number of steps in the horizon remains the same
— which means, since the step duration has been
reduced to T/m, that a shorter horizon is used.

2.2 Scheme 2

In our second scheme the plant model assumed
by the controller remains the same as (1), and
constraint (3) still holds. But now the future
trajectory of only one input is optimised, and
we make further assumptions about the future
behaviour of the other inputs, in order to further
reduce computational complexity — the other
inputs are treated like measured disturbances,
in effect. The simplest possibility would be for
controller j to assume that

∆u`,k+i = 0 for all i ≥ 0 if ` 6= j (5)

but we will make other assumptions in section
4. In Scheme 2 there are essentially m MPC
controllers. They share information, however, in
the sense that the complete plant state is available
to each controller — although not at the same
times, and the currently planned future moves of
each controller are also available to all the others.
If the length of the planning horizon (N in the
sequel) is the shortest possible, namely N = 1,
then Schemes 1 and 2 are equivalent.

Scheme 2 has a lower computational complexity
than conventional multivariable MPC, even if the
same horizon length is retained, that is even if the
number of steps is increased by a factor m, since
the complexity per step is reduced by O(m3).

3. STABILITY OF SCHEME 1

The solution of the MPC problem posed in sec-
tion 2.1 when there are no constraints is straight-
forward. It is essentially an infinite-time linear
quadratic regulator problem, for a single-input,
periodically time-varying plant. From (4) it can
be seen that the solution will be a time-varying —
in fact periodic — state feedback gain, which can
be obtained from the solution of a Riccati differ-
ence equation (Anderson and Moore, 1990; Kwak-
ernaak and Sivan, 1972). If we assume that N
is a multiple of m then the indexing is slightly
simplified, and Pk should be a solution of

Pk = AT Pk+1A−AT Pk+1B`(BT
` Pk+1B` +r)−1

BT
` Pk+1A + q (6)

where ` = (k modm) + 1. It follows by duality
from (Bittanti et al., 1988) that if a symmetric
periodic semidefinite solution of (6) exists, then
the periodic state-feedback gain

Kk = −(BT
` Pk+1B` + r)−1BT

` Pk+1A (7)



asymptotically stabilises the plant. (Bittanti et
al., 1988) discuss (mild) conditions for the exis-
tence and uniqueness of such a solution of (6),
and provide algorithms for finding it; note that
this solution can be pre-computed off-line.

The unique advantage of MPC, compared with
other control strategies, is its capacity to take
account of constraints in a systematic manner. As
usual in MPC, we will suppose that constraints
may exist on the input amplitudes, ‖uk‖∞ ≤ U ,
on the input moves, ‖∆uk‖∞ ≤ D, and on states,
Mxk ≤ v. (These can all be generalised sub-
stantially, so long as linear inequalities are re-
tained.) Following (Rawlings and Muske, 1993),
a finite-dimensional optimisation problem can be
obtained by assuming that none of the constraints
are active beyond the end of a prediction horizon
of length N , for some sufficiently large N . The
minimisation of (2) is replaced by the minimisa-
tion of

JN
k =

N−1∑
i=0

(
‖xk+i+1‖2q + ‖∆uk+i‖2r

)
+ xT

k+N+1Pk+N+1xk+N+1 (8)

where Pk+N+1 = PT
k+N+1 > 0 is a suitably chosen

terminal cost coefficient.

For time-invariant systems Pk+N+1 can be cho-
sen to be the positive semidefinite solution P
of an algebraic Riccati equation, as proposed
in (Chmielewski and Manousiouthakis, 1996),
which will result in the optimal LQ state feedback
law being assumed after the end of the finite
horizon (ie beyond N steps into the future), and
will recover the LQ solution exactly if none of
the constraints are active. With this choice of
terminal cost, (8) is the infinite-horizon cost-to-go
of the LQ optimal control; hence it is a Lyapunov
function for the closed-loop system, and stability
follows providing that the minimisation of (8),
subject to constraints, is feasible.

We apply the same idea, but we choose the se-
quence Pk to be the positive semidefinite solution
of (6), as in the unconstrained case. Closed-loop
stability then follows in the same way, subject as
usual to feasibility of the minimisation at each
step.

4. STABILITY OF SCHEME 2

The stability of Scheme 2 cannot be proved in
exactly the same way, since the computation of a
future input trajectory is done for only one input
at a time. We retain the idea from the previous
section, that each controller makes N decisions,
but each decision now relates only to one input.
Each input remains unchanged for m steps, so
that controller 1 plans to change input 1 at steps

k, k + m, . . . , k + m(N − 1), if (k modm) + 1 = 1.
Controller 2 plans to change input 2 at steps k +
1, k + m + 1, . . . , k + m(N − 1) + 1, and so on.

We assume that, after the end of the prediction
horizon, stabilising periodic state feedback gain
will be applied, so that

∆u`,k+i = K`xk+i (9)

for i > mN − ` + 1, where ` = (k modm) + 1,
and the gains {Kj : j = 1, . . . ,m} are chosen such
that the monodromy matrix

Ψ1 = ΦmΦm−1 . . .Φ2Φ1 (10)

has all its eigenvalues inside the unit circle, where

Φj = A + BjKj (11)

It is a standard fact that this is a necessary and
sufficient condition for closed-loop stability of a
linear periodic system, and that it is invariant
under cyclic permutations of the Φj matrices. We
shall later need the monodromy matrices obtained
by such cyclic permutations:

Ψ2 = Φ1Φm . . .Φ3Φ2 (12)
...

Ψm = Φm−1Φm−2 . . .Φ1Φm (13)

So for example, in the case m = 2, at time
indices k and k + 1 the assumed future control
vectors ∆Uk and ∆Uk+1 have the form (assuming
(k modm) + 1 = 1):

∆Uk =



∆u1,k

∆u2,k+1

∆u1,k+2

...
∆u1,k+2N−4

∆u2,k+2N−3

∆u1,k+2(N−1)

K2xk+2N−1

K1xk+2N

K2xk+2N+1

K1xk+2N+2

...


, ∆Uk+1 =



∆u2,k+1

∆u1,k+2

∆u2,k+3

...

∆u2,k+2N−3

∆u1,k+2(N−1)

∆u2,k+2N−1

K1xk+2N

K2xk+2N+1

K1xk+2N+2

...


The elements which are in boldface are those
which are optimised in each case. The elements
xk+i in ∆Uk are predictions conditional on in-
formation available up to time k, while those in
∆Uk+1 are conditional on information available
at time k + 1.

Some assumptions must be made by controller
j about those inputs which have already been
planned by the other controllers, but which have
not yet been executed. We will assume that all
such planned decisions are known to the con-
troller, and that it assumes that they will be ex-
ecuted as planned. (This assumption will usually
be false, because new decisions will be made in the
light of new measurements.) Thus, in the example



above, all those ‘∆u’ elements which are not in
boldface are assumed to be imported from the
corresponding controller.

Each controller optimises the same cost function,
namely (2). However, each one evaluates it slightly
differently. Since we will need to consider values
`, ` + 1, . . . , ` + m, but modulo m, it will be
convenient to introduce the indexing function

σ(k) = (k modm) + 1 (14)

Then at time k controller σ(k) evaluates the cost
function as

Jk =
m(N−1)∑

i=0

(
‖xk+i+1‖2q + ‖∆uk+i‖2r

)
+

xT
k+m(N−1)+1Pσ(k)xk+m(N−1)+1 (15)

where Pσ(k) can be obtained as follows. The sec-
ond term in (15) should be the same as

Jk+m(N−1)+1 =

∞∑
i=m(N−1)+1

(
‖xk+i+1‖2

q + ‖∆uk+i‖2
r

)
=

∞∑
i=N−1

(
‖Xk+mi+2‖2

Q + ‖∆Uk+mi+1‖2
R

)
(16)

where

Xk =


xk

xk+1

...
xk+m−1

 , ∆Uk =


∆uσ(k),k

∆uσ(k+1),k+1

..

.
∆uσ(k+m−1),k+m−1


(17)

and Q = diag[q, . . . , q], R = diag[r, . . . , r].

The state transition equation relating successive
X terms which occur in (16) is simply:

Xk+i+m =


Ψσ(k+i) 0 · · · 0

0 Ψσ(k+i+1) · · · 0

.

..
.
..

. . .
.
..

0 0 · · · Ψσ(k+i+m)

Xk+i

(18)

if i > m(N − 1) — that is, for predictions beyond
the horizon.

Now it is a standard result (Anderson and Moore,
1990; Kwakernaak and Sivan, 1972) that if xk+1 =
Φxk and ∆uk = Kxk, then Jk = xT

k Pxk, where
P is the solution of the Lyapunov equation P =
ΦT PΦ + ΦT qΦ + KT rK, and Jk is defined in (2).
Applying this result to (18) gives

Jk+m(N−1)+1 = X T
k+m(N−1)+1×

diag[Πσ(k+1), . . . ,Πσ(k+m)]
×Xk+m(N−1)+1 (19)

where

Π` = ΨT
` Π`Ψ` + ΨT

` qΨ` + KT
` rK`

for ` = 1, 2, . . . ,m (20)

(The Lyapunov equation arising from (18) con-
tains block-diagonal matrices only, which allows

its expression in terms of m separate — though
related — Lyapunov equations in (20).)

But

xk+m(N−1)+2 = Φσ(k+1)xk+m(N−1)+1 (21)

xk+m(N−1)+3 = Φσ(k+2)Φσ(k+1)xk+m(N−1)+1 (22)

etc

so by substituting these in (19) we obtain

Jk+m(N−1)+1 = xT
k+m(N−1)+1Pσ(k)xk+m(N−1)+1

(23)
where

Pσ(k) = Πσ(k+1) + ΦT
σ(k+1)Πσ(k+2)Φσ(k+1) + · · ·

+[ΦT
σ(k+1) . . . ΦT

σ(k+m−1)Πσ(k+m)Φσ(k+m−1) . . . Φσ(k+1)]

(24)

Let Jo
k be the optimal value of Jk achieved by

controller σ(k). Stability follows from the fact that
Jo

k+1 ≤ Jo
k , with equality holding only if xk = 0.

This monotonic decreasing property of Jo
k can be

established by a standard argument: suppose that
at step k + 1 controller σ(k + 1) leaves the moves
∆uσ(k+1),k+1, . . . ,∆uσ(k+1),k+m(N−1)+1 unchanged
from the values which were assumed by controller
σ(k) at step k, and that this achieves the value
Jk+1. Then

Jk+1 = Jo
k − ‖xk+1‖2q − ‖∆uk‖2r (25)

But Jo
k+1 ≤ Jk+1, from which the conclusion

follows. Consequently Jo
k is a Lyapunov function

for the overall controller of Scheme 2, and stability
is established.

Remark: The trajectory obtained by the Scheme 2
controller will usually be different from that found
by the Scheme 1 controller. It will be ‘less optimal’
in the sense that it will usually result in larger
values of the cost (although each constituent con-
troller will be optimising the same cost function
with respect to the degrees of freedom available
to it).

5. EXAMPLE

Here an example will be presented to compare
the disturbance rejection performance of conven-
tional ‘synchronised’ MPC control and our new
Multiplexed MPC with m = 2 and N = 1. For
the simulation, we have tuned both controllers to
give comparable step responses, so that the com-
parison of the disturbance rejection performance
is meaningful.

The plant has a continuous-time model[
y1(s)
y2(s)

]
=

 1
7s + 1

1
3s + 1

2
8s + 1

1
4s + 1

[
u1(s)
u2(s)

]
(26)
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Fig. 2. Performance comparison of the two
schemes.

We have chosen 0.5s and 1s sampling/update
times for the multiplexed and synchronized schemes,
respectively, so that the complete update cycle
lasts 1s in both cases. There are no constraints.
The simulation was carried with continuous-time
plant model and discrete-time controller, with dis-
turbances acting on the continuous-time model.

The setpoints for both outputs change from 0 to
1 at t = 10s. In addition, y1 and y2 are subjected
to an output step disturbance with magnitude of
0.5 at t = 70.1s and t = 140.1s, respectively.
The disturbances occur just after input 1 is op-
timised. Fig.2 shows the simulation results. It can
be seen that there is indeed a performance benefit
from using multiplexed MPC. The response under
multiplexed MPC scheme is better than under
conventional MPC; smaller excursions of the out-
puts and faster settling responses are achieved in
response to disturbances.

6. CONCLUSION

In this work, two versions of a novel control
scheme known as Multiplexed MPC were pro-
posed, and expected to be of benefit in those
MPC applications for which computational com-
plexity is a limiting factor. Both of our proposed
multiplexed MPC schemes are nominally stable.
Some performance benefit over conventional MPC
can be obtained as a result of faster reactions to
disturbances, despite suboptimal solutions being
obtained. This has been demonstrated by an ex-
ample.

It is interesting, and potentially important, to
observe that the assumption of equal intervals be-
tween the updates of plant inputs is not essential
to our proposal. Any pattern of update intervals
can be supported, providing that it repeats in
subsequent update cycles.
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