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Abstract: This paper considers a control synthesis problem for linear systems to meet design
specifications given in terms of multiple frequency domain inequalities in (semi)finite ranges.
Dynamic output feedback controllers of order equal to the plant are considered. A new multiplier
expansion is proposed to convert the synthesis condition to a linear matrix inequality (LMI) condition
through the linearizing change of variables by Scherer, Masubuchi, de Oliveira et al. In the single
objective setting, the LMI condition may or may not be conservative, depending upon the choice
of the basis for the multiplier expansion. We provide a qualification for the basis matrix to yield
nonconservative LMI conditions. It turns out to be difficult to determine the basis matrix meeting
such qualification in general. However, it is shown that qualified bases can be found for some cases,
and that the qualification can be used to find reasonable choices of the basis for other cases. Finally,
the synthesis method is applied to a multiple objective control problem for an active magnetic bearing
to demonstrate its utility. Copyright c©2005 IFAC
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1. INTRODUCTION

Frequency domain inequalities (FDIs) have played
a crucial role in describing design specifications for
feedback control designs. Due to the infinite dimen-
sionality, however, FDIs are not directly useful for
rigorous assessment/design of control systems. The
Kalman-Yakubovich-Popov (KYP) lemma (Rantzer
(1996)) has been proven to be a powerful tool to
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convert an FDI to a linear matrix inequality (LMI)
which is numerically tractable. Many of the state space
theories have been developed with the aid of the KYP
lemma in one way or another. On the other hand, a
drawback of the standard KYP lemma is that it does
not exactly encompass the practical situation. Namely,
it characterizes FDIs in the entire frequency range,
while practical requirements are usually described by
multiple FDIs in (semi)finite ranges; e.g., small sen-
sitivity in a low frequency range and control roll-off
in a high frequency range. The prevailing method for
adjusting the discrepancy is the so-called weighting
functions. However, the design iterations to search for



good weighting functions can be time consuming, and
the controller complexity tends to increase with the
complexity of the weighting functions.

The objective of this paper is to develop a design
method capable of directly treating multiple FDI spec-
ifications in various frequency ranges without intro-
ducing weighting functions. To our knowledge, this
problem has not been addressed in the literature.
Our approach is based on the generalized Kalman-
Yakubovich-Popov(GKYP) lemma (Iwasaki and Hara
(2005)), recently developed by the authors, that pro-
vides an LMI characterization of FDIs in (semi)finite
frequency ranges. We shall extend our previous result
for the static gain feedback synthesis (Iwasaki and
Hara (2004)) to the dynamic output feedback case.
A multiplier method will be developed to render the
synthesis conditions convex through a standard lin-
earizing change of variables (de Oliveira et al. (2002);
Masubuchi et al. (1998); Scherer et al. (1997)). In
the single objective setting, a condition is provided
for the multiplier basis to yield nonconservative de-
sign equations, and discuss how to choose the basis
to satisfy the condition exactly for some cases and
approximately for other cases. The synthesis method
can be extended, with some conservatism, for the case
of multi-objective specifications as has been done in
Iwasaki and Hara (2004). Our method does not require
weighting functions and the resulting controller order
is equal to the original plant order, as illustrated by a
design example.

Notation. For a matrix M , its transpose, and complex
conjugate transpose are denoted by M T and M∗ re-
spectively. The Hermitian part of a square matrix M
is denoted by He(M) := M + M∗. The symbol Hn

stands for the set of n × n Hermitian matrices. For
matrices Φ and P , Φ⊗P means their Kronecker prod-
uct. For matrices G and Π, the function σ : CI n×m ×
Hn+m → Hm is defined by

σ(G, Π) :=

[

G
Im

]

∗

Π

[

G
Im

]

.

2. PROBLEM STATEMENT/FORMULATION

2.1 Problem statement

Consider the plant G(λ) described by




λx
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 0









x
w
u



 (1)

and a feedback controller K(λ) given by
[

λxc

u

]

=

[

Ac Bc

Cc Dc

] [

xc

y

]

(2)

where λ is the frequency variable (s for continuous-
time and z for discrete-time cases), and x(t) ∈ IRnp ,
xc(t) ∈ IRnc , w(t) ∈ IRnw , u(t) ∈ IRnu , z(t) ∈
IRnz , and y(t) ∈ IRny . Denote by H(λ) the closed-
loop transfer function from w to z. A state space
realization (A, B, C, D) of H(λ) is given by





A + B2DcC2 B2Cc B1 + B2DcD21

BcC2 Ac BcD21

C1 + D12DcC2 D12Cc D11 + D12DcD21



(3)

where the state dimension is n := np + nc.

The control synthesis problem of our interest is, given
Π ∈ Hnw+nz

and Φ, Ψ ∈ H2, find a full order
(nc = np) controller K(λ) such that

det(λI − A) 6= 0, σ(H(λ)∗, Π) < 0 (4)

for all λ ∈ Λ̄(Φ, Ψ) where

Λ(Φ, Ψ) := { λ ∈ CI | σ(λ, Φ) = 0, σ(λ, Ψ) ≥ 0 }(5)

and Λ̄ := Λ if Λ is bounded and Λ̄ := Λ ∪
{∞} if unbounded. For clarity of exposition, we shall
restrict our attention to this single-objective nominal
control problem in the main body of our theoretical
developments. Extensions can be made as in Iwasaki
and Hara (2004) to a more general problem where
there are pole constraints and multiple FDI constraints
of the above form.

Throughout the paper, we shall impose the following
for tractability and practicality:

Assumption 1.

(a) The upper left nw × nw block matrix of Π is
positive semidefinite (Π11 ≥ 0).

(b) The pair (Φ, Ψ) is chosen so that the set Λ(Φ, Ψ)
is not empty, nor a single point, nor the entire
complex plane.

Item (a) ensures that the feasible set for the closed-
loop transfer function H(λ) is convex, and does not
exclude such important specifications as the small
gain and passivity. Item (b) excludes the trivial cases
and ensures that Λ(Φ, Ψ) is one of the following:
(i) straight line or circle, (ii) half plane, or inside or
outside of a circle, (iii) intersection of (i) and (ii). See
Iwasaki and Hara (2005) for the details and a precise
characterization of (Φ, Ψ) satisfying (b). Below, we
will discuss some important cases.

For the continuous-time case, we have

Λ(Ωc, Ψc) = { jω : τ(ω − $1)(ω − $2) ≤ 0 }

where

Ωc =

[

0 1
1 0

]

, Ψc = τ

[

−1 j$c

−j$c −$1$2

]

,

τ = ±1, $1, $2 ∈ IR, $1 < $2,

$c := ($2 + $1)/2.

For the discrete-time case, we have

Λ(Ωd, Ψd) = { ejθ : (θ − ϑ1)(θ − ϑ2) ≤ 0 }

where

Ωd =

[

1 0
0 −1

]

, Ψd =

[

0 ejϑc

e−jϑc −2 cosϑo

]

ϑ1, ϑ2 ∈ IR, 0 < ϑ2 − ϑ1 ≤ 2π,

ϑc := (ϑ2 + ϑ1)/2, ϑo := (ϑ2 − ϑ1)/2.



2.2 Problem formulation via a dual GKYP lemma

Consider the transfer function H(λ) specified by (3).
The GKYP lemma in Iwasaki and Hara (2005) pro-
vides a characterization of the FDI: σ(H(λ), Π) < 0
for all λ ∈ Λ̄(Φ, Ψ). The following result provides a
dual version of the GKYP lemma.

Theorem 1. Let Φ, Ψ ∈ H, Π ∈ Hnw+nz
, and

H(λ) in (3) be given and consider Λ(Φ, Ψ) defined
by (5). Suppose Assumption 1 holds. The following
statements are equivalent.

(i) det(λI −A) 6= 0 and σ(H(λ)∗, Π) < 0 hold for
all λ ∈ Λ̄(Φ, Ψ).

(ii) There exist P = P ∗ and Q = Q∗ > 0 such that
[

A I
C 0

]

(ΦT ⊗ P + ΨT ⊗ Q)

[

A I
C 0

]

∗

+

[

B 0
D I

]

Π

[

B 0
D I

]

∗

< 0. (6)

Proof. The result basically follows by dualizing The-
orem 3 of Iwasaki and Hara (2005).

With the result of Theorem 1, the synthesis problem
can be formulated as the search for the parameters
Q > 0, P , and K(s) satisfying (6) where the state
space matrices are defined by (3). The resulting con-
dition is not convex due to the product terms between
P , Q, and the controller parameters. We shall develop
a multiplier method to re-parametrize the condition so
that the problem becomes convex.

3. SYNTHESIS

3.1 Multiplier expansion

The following result provides an alternative condi-
tion to (6) by introducing a multiplier through the
projection lemma. To state the result, let us define
J ∈ IR(2n+nz)×2n, H ∈ CI (2n+nz)×(nw+nz), and
L ∈ CI (2n+nz)×n by

J :=

[

I
0

]

, H :=





0 0
B 0
D I



 , L :=





−I
A
C



 .

Lemma 1. Let P, Q ∈ Hn, R ∈ CI n×(2n+nz), Φ, Ψ ∈
H2, Π ∈ Hnw+nz

, and H(λ) in (3) be given. Let N
be the null space of R. The following statements are
equivalent.

(i) The condition in (6) holds and
N∗

(

J(ΦT ⊗ P + ΨT ⊗ Q)J∗ + H ΠH∗
)

N < 0.(7)
(ii) There exists W ∈ CI n×n such that
J(ΦT ⊗P + ΨT ⊗Q)J∗ + H ΠH∗ < He(LWR).(8)

Proof. The result follows from the projection lemma
(Iwasaki and Skelton (1994)) once we notice that L is

the null space of
[

A In 0
C 0 Inz

]

.

Similar multiplier expansion techniques have been
used in the literature; de Oliveira et al. (1999); Henrion
et al. (2003); Peaucelle and Arzelier (2001); Peaucelle
et al. (2000). The expanded equation (8) will be used
as a basis for our synthesis. In particular, the equation
will be equivalently converted to an LMI synthesis
condition in the next section. Hence, conservatism
associated with (8) needs to be carefully analyzed. For
an arbitrary R, (8) gives a sufficient condition for (6).
On the other hand, (6) and (8) become equivalent if R
is chosen to satisfy (7). Thus, condition (7) precisely
captures the gap (conservatism) between the synthesis
condition (8) and the original design objective.

For synthesis, it is desired that matrix R be chosen
to satisfy (7). Note that condition (7) involves the
yet unknown controller parameters and hence has to
be properly interpreted to give a condition useful for
synthesis:

Condition 1. Condition (7) holds for some matrices
(P, Q, Ac, Bc, Cc, Dc) satisfying P, Q ∈ Hn, Q > 0,
and (6), where (A, B, C, D) are defined by (3).

This condition is independent of the unknown param-
eters P, Q and (Ac, Bc, Cc, Dc), and thus can be used
to fix R before the control design. With R satisfying
Condition 1, there exists a controller that meets the
specification (4) if and only if there exist matrices
P, Q ∈ Hn, W ∈ CI n×n, and (Ac, Bc, Cc, Dc) such
that Q > 0 and (8) hold. We will show how to solve
the synthesis problem (8) in the next section. How
to choose an appropriate R will be addressed in the
section that follows.

Finally, we give a remark on the relation between
the multiplier expansion described in this section and
the one used in our prior work on the static gain
synthesis (Iwasaki and Hara (2004)). In particular, the
former can be considered as a partial expansion, and
a further expansion of the quadratic term in H in (8)
would yield the full multiplier expansion in Iwasaki
and Hara (2004) that avoids direct product of H and Π.
The advantage here is that the additional information
Π11 ≥ 0 can be exploited to convexify the problem
and that the number of multiplier parameters is smaller
for better computational efficiency.

3.2 Reduction to LMIs

The synthesis problem described by (8) is nonconvex
due to the product term between the multiplier W and
the controller parameters. Below, we show that the
change of variable introduced by de Oliveira et al.
(de Oliveira et al. (2002)) works perfectly to convert
the problem to an LMI problem, provided R satisfies
an additional structural constraint.

Let X, Y, U and V be defined by

W =

[

X ∗
U ∗

]

, W−1 =

[

Y V
∗ ∗

]

∗

.

Note that, given any X, Y, U, V ∈ CI np×np with U
and V invertible, the blanks “∗” can be filled to satisfy



the above two equalities for some W . In particular, we
have

[

X (I − XY ∗)V −∗

U −UY ∗V −∗

][

Y ∗ (I − Y ∗X)U−1

V ∗ −V ∗XU−1

]

= I.

Defining the new variables
[

M G
H L

]

:=

[

Y AX 0
0 0

]

+

[

V Y B2

0 I

][

Ac Bc

Cc Dc

] [

U 0
C2X I

]

, (9)

we have
[

A B
C D

]

:=

[

FAWF ∗ FB
CWF ∗ D

]

(10)

=





AX + B2H A + B2LC2 B1 + B2LD21

M Y A + GC2 Y B1 + GD21

C1X + D12H C1 + D12LC2 D11 + D12LD21





W := FWF ∗ =

[

X I
Z Y

]

(11)

F :=

[

I 0
Y V

]

, Z := Y X + V U. (12)

Now, suppose R in (8) has been chosen to satisfy the
following:

Condition 2. There exists a fixed matrixR ∈ CI n×(2n+nz)

satisfying

RF∗ = F ∗R,
F := diag(F, F, Inz

),
F :=

[

I 0
Y V

]

(13)

for all matrices Y, V ∈ CI np×np .

We will discuss how to choose such R later. Then,
through the congruence transformation of (8) by F ,
we obtain

J(ΦT⊗P+ΨT⊗Q)J∗+HΠH∗ < He(LR)(14)

where

P := FPF ∗, Q := FQF ∗, (15)

H :=





0 0
B 0
D I



 , L :=





−W
A
C



 . (16)

Summarizing the above, we have the following.

Lemma 2. Consider the plant G(λ) in (1) and the
controller K(λ) in (2) with nc = np, and let P, Q ∈

Hn, R ∈ CI n×(2n+nz), Φ, Ψ ∈ H2, and Π ∈
Hnw+nz

be given where n := 2np. Suppose R
satisfies Condition 2. Then the following statements
are equivalent.

(i) There exist matrices P, Q ∈ Hn, a multiplier
W ∈ CI n×n and a controller (Ac, Bc, Cc, Dc)
such that (8) is satisfied, where (A, B, C, D) are
defined in (3).

(ii) There exist matrices X, Y, Z, M, G, H, L, and
P ,Q ∈ Hn satisfying (14) where (A,B, C,D)
and W are defined by (10) and (11), respectively.

Moreover, the parameters (P, Q, Ac, Bc, Cc, Dc, W )
and (P ,Q, M, G, H, L, X, Y, Z) are related through
the bijective mapping defined by (9), (11), (12), and
(15).

As a direct consequence of Theorem 1 and Lemmas 1
and 2, we have the following result.

Theorem 2. Consider the plant G(λ) of order np in
(1). Let R ∈ CI n×(2n+nz), Φ, Ψ ∈ H2, and Π ∈
Hnw+nz

be given where n := 2np. Suppose Assump-
tion 1 holds and R satisfies Conditions 1 and 2. Then
the following statements are equivalent.

(i) There exists a dynamic output feedback con-
troller K(λ) in (2) with nc = np satisfying the
specification in (4).

(ii) There exist matrices X, Y, Z, M, G, H, L, and
P ,Q ∈ Hn satisfying Q > 0 and (14) where
(A,B, C,D) and W are defined by (10) and (11),
respectively.

Moreover, (ii) implies (i) for any choice of R. If
statement (ii) is true, the parameters (Ac, Bc, Cc, Dc)
of controller K(λ) in statement (i) can be calculated
by solving (9) and (12).
Since Π11 ≥ 0, the condition in (14) can be made
linear in B and D via the Schur complement. The
resulting equation is an LMI in terms of variables
X, Y, Z, M, G, H, L,P , and Q. Once we solve the
LMI with the additional condition Q > 0, the con-
troller parameters can be recovered as follows. First let
U and V be any factor such that V U = Z−Y X where
nonsingularity of Z − Y X can be assumed without
loss of generality due to the strictness of the LMIs. The
controller parameters can then be obtained by solving
(9) for (Ac, Bc, Cc, Dc).

4. NONCONSERVATIVE/REASONABLE
CHOICES OF R

In this section, we would like to choose R such that
feasibility of (14) and Q > 0 is necessary and suffi-
cient for the existence of a controller (2) that meets the
specification (4). In view of Theorem 2, such R can be
characterized by Conditions 1 and 2. It can readily be
verified that R satisfies Condition 2 if and only if it
has the following structure:

R =

[

aI 0 bI 0 Γ
0 aI 0 bI 0

]

∈ CI 2np×(4np+nz) (17)

where a, b ∈ CI and Γ ∈ CI np×nz . In this case,
we have R = R. On the other hand, the set of
R satisfying Condition 1 does not seem to have a
simple parametrization, and it turns out to be difficult
in general to find R satisfying both conditions exactly.

However, one can find such R for some special cases,
and the conditions can be used to find reasonable
(but potentially conservative) choices of R for other
cases. We will show in the next subsection how to



choose R satisfying Conditions 1 and 2 for the case
where the frequency range is not restricted and closed-
loop stability is required, i.e., Λ(Φ, Ψ) is either the
closed right half plane or outside of the unit circle.
The subsection that follows will suggest reasonable
choices of R for the general restricted frequency case.

4.1 Case 1: The entire frequency range

We consider the case Φ = 0 and Ψ = Ωc or Ωd so
that Λ(Φ, Ψ) is the instability region on the complex
plane for the continuous-time or discrete-time setting.
In this case, the specification in (4) requires the closed-
loop stability in addition to the frequency domain
inequality on the entire frequency range. The variable
P then disappears from equations (6) and (7), and
the former becomes a standard LMI that arises in the
classical KYP lemma.

It can be verified that each choice of R in Table 1
satisfies Condition 1, where ε > 0 is a sufficiently
small number. The proof is omitted due to the space
limitation.

Table 1. Nonconservative choices of R
(entire frequency range)

Λ(Φ, Ψ) R

{ s ∈ CI | s + s∗ ≥ 0 } [ εI I 0 ]

{ z ∈ CI | |z| ≥ 1 } [ I 0 0 ]

4.2 Case 2: The restricted frequency range

For this case, it seems difficult to choose R so that
Conditions 1 and 2 are satisfied, and hence we shall
look for “reasonable” choices of R.

We propose a heuristic choice of R given by (17) with
a = cη2, b = −cη1, and Γ = 0 where c ∈ CI is an
arbitrary scalar and η :=

[

η1

η2

]

is an arbitrary vector

satisfying η∗ΦTη = 0 and η∗ΨTη < 0. The existence
of such vector η is guaranteed by the assumption
that Λ(Φ, Ψ) represents curve(s). This choice of R is
reasonable in the sense that the terms in (7) associated
with P and Q are negative semidefinite for any P, Q ∈
Hn such that Q > 0.

The general choice suggested above can be special-
ized to find appropriate R for restricted frequency
range cases in the continuous- and discrete-time set-
tings. Table 2 summarizes these cases where ($1, $2)
and (ϑ1, ϑ2) are real scalars specifying the frequency
ranges and satisfy $1 < $2 and 0 < ϑ2 − ϑ1 < 2π,
respectively, and $c := ($1 + $2)/2 and and ϑc :=
(ϑ1 + ϑ2)/2.

Table 2. Reasonable choices of R
(restricted frequency range)

Λ(Φ,Ψ) R

{ jω | $1 ≤ ω ≤ $2 } [ 0 I 0 ]

{ jω | ω ≤ $1 or $2 ≤ ω } [ I jωcI 0 ]

{ ejθ | ϑ1 ≤ θ ≤ ϑ2 } [ I e−jθc I 0 ]

As a byproduct of the above development, we have the
following (the proof is omitted again due to the space
limitation).

Proposition 1. Suppose Φ11 = 0 and Ψ11 < 0 hold
and let R := [ 0 I 0 ]. If the condition in (14) is
infeasible, then there is no controller (2) that meets
the specification (4) with Dc satisfying σ(D∗, Π) < 0.

The proposition captures the continuous-time, convex
bounded frequency interval case. Suppose Dc has
been fixed so that σ(D∗, Π) < 0 holds. A typical
situation would be the case where a strictly proper
controller is to be designed to meet a small gain
requirement for a system with D11 = 0. Then, (14)
with R := [ 0 I 0 ] provides a necessary and sufficient
condition for the existence of such controller.

5. EXAMPLE

The main objective of this section is to illustrate the
proposed design procedure. In particular, we will de-
sign a controller using statement (ii) of Theorem 2
with the heuristic choices of R described in Table 2.
The design method is potentially conservative and an-
other aim of this example is to show that the degree of
conservatism can be small enough for some applica-
tions to allow for direct design of controllers to meet
multiple specifications in different frequency ranges.

We consider the control of an active magnetic bear-
ing (AMB). With a constant biasing, the normalized
dynamics of an AMB, from the voltage input to the
displacement output, can be described by

P (s) =
1

s3 + σs2 − σ

where σ ranges between about 0.3 and 3 for physi-
cally reasonable AMB designs (Maslen et al. (2005)).
Below, we take σ = 0.5.

The problem is to design a stabilizing controller K(s)
to meet the following specifications:

|P (jω)S(jω)| < γo ∀ |ω| ≤ $o

|K(jω)S(jω)| < γ1 ∀ |ω| ≥ $1 (18)
|K(jω)P (jω)S(jω)| < γ2 ∀ |ω| ≥ $2

where S := 1/(1 − PK) is the sensitivity function.
These three specifications address position regulation
against input-port disturbance, sensitivity of the con-
trol input to the sensor noise, and robustness against
the multiplicative plant uncertainty.

We set the parameter values

$o = 0.5, $1 = 3, $2 = 0.8, γ1 = 4, γ2 = 10

and minimize γo subject to the above constraints over
a set of stabilizing full order controllers using Theo-
rem 2 and Corollary 4 of Iwasaki and Hara (2004).
The optimal value is found to be γo = 4.45 and the
controller is

K(s) = −
2.2207(s + 5.975)(s2 + 1.234s + 0.9334)

(s + 3.369)(s2 + 2.235s + 4.492)
.

The resulting close-loop frequency responses are plot-
ted in Fig. 1, where the specification bound for the
solid curve is indicated by the shaded region with a



solid boundary, and similarly for the dashed and dash-
dotted curves. We see that the bounds on |PS| and
|KS| are fairly tight, suggesting effectiveness of the
design method.

On the other hand, the bound on |KPS| is not very
tight, indicating a possible drawback (conservatism).
The design would be difficult if the resulting fre-
quency response is insensitive to the change in the
bound specification when the bound is active. If the
result is sensitive, however, frequency shaping can still
be done even when the bound is conservative, by iter-
atively revising the design specification. To illustrate
this point, let us consider the case where the specifica-
tion on |KPS| is relaxed to $2 = 1. In this case, the
optimal value of γo = 2.97 is achieved by

K(s) = −
2.6793(s + 2.911)(s2 + 1.122s + 0.9738)

(s + 1.705)(s2 + 2.104s + 4.242)
.

The resulting frequency responses are plotted in
Fig. 2. We see that the slight change introduced to
the specification yielded a significant change in the
closed-loop responses. Due to this high sensitivity, we
can tune the specification to meet the original goal. For
example, if we want to minimize γo subject to (18), we
may adjust $2 between 0.8 and 1 so that the constraint
on |KPS| in (18) becomes tight. In fact, choosing
$2 = 0.913 gives the peak value ‖KPS‖∞ = 9.97
at ω = 0.825, while achieving γo = 3.56.

6. CONCLUSION

We have developed a method for synthesizing dy-
namic output feedback controllers to achieve multiple
FDI specifications in (semi)finite frequency ranges.
A sufficient condition for existence of feasible con-
trollers are given in terms of LMIs, and some special
cases, where the condition becomes also necessary, are
discussed. An example of the active magnetic bearing
illustrated the proposed design method and demon-
strated its effectiveness.
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