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Abstract: This paper deals with quadratic stabilization of linear systems via a
static quantized state or output feedback. The measure of quantization density
introduced by Elia and Mitter (2001) is considered and used to derive the coarsest
state quantizer of a specific form that is able to quadratically stabilize the given
system with respect to a given control Lyapunov function. This result is then
employed to find the coarsest output quantizer that may be utilized to obtain a
stabilizing static output feedback. By optimizing quantization density with respect
to a parameter in the specific form of quantizers considered, Theorem 2.1 of Elia
and Mitter (2001) is recovered by alternative means. Copyright c©2005 IFAC.
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1. INTRODUCTION

Systems involving quantization arise naturally
in many areas of engineering, especially when
digital implementations are involved. In recent
years, especially motivated by control of systems
over communication networks, different control
schemes have been developed where a limited
information constraint is imposed (Wong and
Brockett, 1999; Brockett and Liberzon, 2000; Nair
and Evans, 2000; Elia and Mitter, 2001). Elia
and Mitter (2001) utilize a quadratic stabilization
approach to design quantizers having minimum
quantization density. The results of Elia and Mit-
ter are also obtained in Fu and Xie (2003), via a
sector bound approach.

The work in this paper is directly related with
that of Elia and Mitter (2001) and Fu and Xie
(2003). State quantizers of “parallel-hyperplane”
(PH) form are considered. Such a quantizer is
shown in Figure 1, where x ∈ R

n denotes the
system state, u ∈ R is the control, d ∈ R

n is

a direction vector and q̊ is a scalar quantizer.
First, the coarsest PH quantizer that, for a given

direction d and candidate quadratic Lyapunov
function is able to stabilize the given system is
derived. This result is then employed to find the
coarsest output quantizer that may be utilized, for
a given candidate quadratic Lyapunov function,
to obtain a stabilizing static output feedback. By
contrast, the output feedback strategies in Elia
and Mitter (2001), and Fu and Xie (2003), are
dynamic. Finally, we find the direction d with
respect to which a state quantizer with minimum
(more precisely, infimum) quantization density is
achieved. This result recovers that in Elia and
Mitter (2001, Theorem 2.1) by alternative means
and thus may provide new insights into the gen-
eralization to multiple-input systems (Kao and
Venkatesh, 2002; Elia and Frazzoli, 2002). The
results in the current paper are of a theoretical
nature and build upon the geometric approach to
quadratic stabilization with quantizers, which was
developed in Haimovich and Serón (2004).
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Fig. 1. PH state quantizer.

The remainder of the paper is organized as follows.
Section 2 defines the different concepts employed
and specifies the adopted approach. Section 3 con-
tains a set of preliminary results that are needed in
the subsequent sections. In Section 4, the coarsest
PH quantizer that, for a given direction and candi-
date quadratic Lyapunov function is able to stabi-
lize the given system is derived. Section 5 utilizes
the result of Section 4 to obtain a stabilizing static
output feedback that involves a quantizer which is
coarsest for a given candidate quadratic Lyapunov
function. Section 6 recovers the result in Elia and
Mitter (2001, Theorem 2.1) and conclusions are
drawn in Section 7.

2. PROBLEM STATEMENT

Consider a single-input discrete-time linear time-
invariant system, defined by

x+ = Ax + Bu, (1)

where A ∈ R
n×n, B ∈ R

n×1 and x+ denotes the
successor state. The following is assumed:

A1) The matrix A has at least one eigenvalue
outside or on the unit circle.

A2) The pair (A,B) is stabilizable.

Two different scenarios are considered. First,
quadratic stabilization of system (1) is analyzed,
where the control u is based only on a quantized
measurement of the state, that is, u = q(x). Sec-
ond, asymptotic stabilization of system (1) with a
single output

y = Cx, (2)

where C ∈ R
1×n, is analyzed. In this latter case,

the control u can only be based on a quantized
measurement of the output, that is, u = q̊(y). The
following definition is used throughout the paper.

Definition 1. (Quantizer). A quantizer q is a func-
tion q : R

p → R of the form

q(z) = ui if z ∈ Ri, for i ∈ Z. (3)

The sets Ri are called the quantization regions of q
and ui is called the value of q corresponding to Ri.
The sets Ri satisfy

⋃

i∈Z
Ri = R

p and Ri∩Rj = ∅
whenever i 6= j.

The term state quantizer is used to refer to a
quantizer q : R

n → R, that is, a quantizer that
maps the state-space into R. Similarly, the term
output quantizer is used to refer to quantizers

q̊ : R → R. As in Elia and Mitter (2001), and
without loss of generality, only quantizers that
satisfy

q(z) = −q(−z), for all z ∈ R
p (4)

are considered. If q is a quantizer, let #q[ε] denote
the number of values that q has in the interval
[ε, 1/ε], where 0 < ε < 1. The density of q is
defined as

η(q) = lim sup
ε→0

#q[ε]

− ln ε
. (5)

Under this definition, a quantizer with a finite
number of levels has zero density, a linear quan-
tizer has infinite density and a logarithmic quan-
tizer has a finite nonzero density.

2.1 State Quantizers

In the first scenario, the aim is to obtain a quan-
tizer having minimum density by searching over
all state quantizers q that make a quadratic func-
tion of the form

V (x) , xT Px, where P = P T > 0, (6)

a Lyapunov function for the closed-loop system
x+ = Ax+Bq(x). That is, the search is performed
over state quantizers q that satisfy

V (Ax + Bq(x)) − V (x) < 0,∀x ∈ R
n \ {0}, (7)

V (Ax + Bq(x)) − V (x) = 0, if x = 0. (8)

Note that the symmetry condition (4) implies
that q(0) = 0 and hence (8) is always satisfied.
The following definitions are used throughout the
paper.

Definition 2. (QAS State Quantizer). A (state)
quantizer q : R

n → R that satisfies (7) and
such that q(0) = 0, with V as in (6), will
be called quadratically asymptotically stabilizing

(QAS) with respect to P. Throughout this paper,
P is fixed. Thus, the phrase ‘with respect to P ’
will be omitted.

Definition 3. (QAS Pair). Let R ⊂ R
n, let u ∈ R

and consider V as in (6). The pair (u,R) is said
to be QAS (with respect to P ) if and only if

V (Ax + Bu) − V (x) < 0,∀x ∈ R \ {0}, (9)

u = 0 if 0 ∈ R. (10)

The following lemma, whose proof is straightfor-
ward and can be consulted in Haimovich and
Serón (2004), stresses the importance of Defini-
tion 3.

Lemma 4. Let q : R
n → R be a state quantizer,

let Ri, i ∈ Z, be its quantization regions and let
ui be the value of q corresponding to Ri, for all
i ∈ Z. Then, q is QAS if and only if (ui,Ri) is
QAS, for all i ∈ Z.



Since system (1) is linear, there exist quadratic
Lyapunov functions for the closed-loop system
resulting from u = Kx, that is, x+ = (A+BK)x,
provided that A + BK have all its eigenvalues
inside the unit circle. By assumption A2), such
a K exists and thus the following assumption is
made:

A3) The matrix P = P T ∈ R
n×n in (6) is such

that there exists K ∈ R
1×n satisfying

(A + BK)T P (A + BK) − P < 0. (11)

As mentioned in Section 1, quantizers of the
form shown in Figure 1, that is, PH quantizers,
are considered. These quantizers are next defined
without resorting to scalar quantizers.

Definition 5. (PH Region). Let d ∈ R
n, d 6= 0. A

parallel-hyperplane (PH) region R with direction
d is a set defined in any of the following alternative
ways:

R = {x ∈ R
n : a aa dT x ab b}, (12)

where ‘aa’ and ‘ab’ represent either ‘<’ or ‘≤’, and
a ∈ R or a = −∞, and b ∈ R or b = ∞.

Remark 6. Given a PH region R, the quantities
a, b and d that define it are not unique. It is
straightforward to check that if R has direction
d, then it also has direction αd, where α ∈ R,
α 6= 0.

Definition 7. (PH Quantizer). Fix d ∈ R
n, d 6= 0.

A PH quantizer q with direction d is a quantizer
whose quantization regions, Ri, for all i ∈ Z, are
PH regions with (the same) direction d.

2.2 Output Quantizers

In the second scenario, the search for an infimum
density quantizer is performed over output quan-
tizers q̊ that make the function V defined in (6)
a Lyapunov function for the closed loop system
x+ = Ax + Bq̊(Cx).

Definition 8. (QAS Output Quantizer). An (out-
put) quantizer q̊ : R → R that satisfies

V (Ax + Bq̊(Cx)) − V (x) < 0,

for all x ∈ R
n \ {0}, (13)

with V as defined in (6) and such that q̊(0) = 0,
will be called QAS (with respect to P ).

3. PRELIMINARY RESULTS

This section presents two technical results that are
needed in the sequel. The first result (Lemma 9)
is important in the characterization of the set of

all states for which the increment of the quadratic
function V in (6) is negative for a given control
u. The second result (Lemma 10) is related with
properties of a PH region R when the pair (u,R)
is QAS. Showing the full implications of these
results is beyond the scope of the paper. The in-
terested reader may consult Haimovich and Serón
(2004) for explanations and proofs.

Recall that assumptions A1) to A3) have been
made.

Lemma 9. Define

L , AT PA − P, M , AT PB, (14)

and suppose that L is invertible. Then, the real
number H defined by

H , BT PB − MT L−1M, (15)

satisfies H < 0.

Lemma 10. Suppose that L in (14) is invertible.
Let d ∈ R

n, d 6= 0, be such that dT L−1d ≥ 0 and
define

γ ,
√

−HdT L−1d, β , −dT L−1M, (16)

where H and M were defined in (15) and (14).
Then, |β| > γ.

4. COARSE PH STATE QUANTIZERS WITH
A GIVEN DIRECTION

The main aim of this section is to solve the prob-
lem of finding, by searching over all QAS PH
quantizers with a given direction d, one that has
infimum density. As is later shown, the solution to
this problem allows one to find conditions for solv-
ing the problem of static stabilizing output feed-
back using coarse output quantizers (Section 5),
and to recover the result in Elia and Mitter (2001,
Theorem 2.1) (Section 6).

Problem 11. Let d ∈ R
n, d 6= 0.

qd = arg inf η(q), subject to (17)

q is QAS PH with direction d, (18)

q(x) = −q(−x), for all x ∈ R
n, (19)

where η(q) is the density of q, defined in (5).

To solve Problem 11, conditions for a quantizer
to satisfy constraint (18) need to be obtained.
These conditions are derived by means of the
following lemma, whose proof can be consulted
in Haimovich and Serón (2004).

Lemma 12. (Characterization of QAS Pairs). Let
R , {x ∈ R

n : a aa dT x ab b} be nonempty and
let u ∈ R. Then, (u,R) is QAS if and only if one
of the following statements holds:



1) u = 0, dT L−1d > 0, and
R = {x ∈ R

n : dT x = 0},
2) u 6= 0, dT L−1d = 0, and

R = {x ∈ R
n : dT x = βu},

3) u 6= 0, dT L−1d > 0,
βu − γ|u| aT

a a and b aT
b βu + γ|u|,

where

‘aT ’ =

{

‘≤’ if ‘a’ = ‘<’,

‘<’ if ‘a’ = ‘≤’,
(20)

and L is defined in (14), and γ and β in (16).

From Lemma 12 and Lemma 4, there exists no
QAS PH quantizer having a direction d such that
dT L−1d < 0. If dT L−1d = 0, then γ = 0 [see (16)]
and from Lemma 10, it follows that β 6= 0. Then,
Lemma 12, item 2) and Lemma 4 imply that no
QAS PH quantizer can have such a direction,
since none of its quantization regions may contain
the origin. Hence, it is only meaningful to solve
Problem 11 when the given direction d satisfies
dT L−1d > 0. Then, since Lemma 9 insures that
H < 0, γ, defined in (16), is real and positive.
Also, it may be assumed, without loss of gener-
ality, that d satisfies −dT L−1M = β > 0 [see
(16)], since any PH quantizer with direction d
also has direction −d (see Remark 6). Therefore,
using Lemma 10, it follows that, without loss of
generality, it may be assumed that β > γ > 0 and
hence β ± γ > 0 and 0 < β−γ

β+γ
< 1. The following

result can now be obtained.

Theorem 13. Let d ∈ R
n satisfy dT L−1d > 0

and −dT L−1M = β > 0. Then, any quantizer
qd defined in the following way, where u+

0 > 0,
solves Problem 11:

qd(x) =







0 if x ∈ R0, (21a)

u+
i if x ∈ R+

i , (21b)

−u+
i if x ∈ −R+

i . (21c)

R0 = {x ∈ R
n : dT x = 0}, (22)

u+
i = ρ−iu+

0 , (23)

R+
0 = {x ∈ R

n : σ+
0 a+ dT x aT

+ ρ−1σ+
0 }, (24)

R+
i = ρ−iR+

0 , (25)

0 < ρ =
β − γ

β + γ
< 1, (26)

σ+
0 = (β − γ)u+

0 . (27)

PROOF. The proof consists in proving that the
density of qd in (21) to (27) coincides with the in-
fimum of Problem 11. Let R?

0,R
?
1 be two adjacent

PH regions with direction d, that is,

R?
0 = {x ∈ R

n : a0 aa0
dT x ab0 b0},

R?
1 = {x ∈ R

n : b0 aT
b0

dT x ab1 b1}.

Let u?
0, u

?
1 > 0 be such that (u?

0,R
?
0) and (u?

1,R
?
1)

are QAS. According to the definition of quanti-
zation density in (5), any quantizer that solves

Problem 11 has its values as far as possible from
each other, searching over all quantizers that sat-
isfy (18) and (19). We thus proceed to find the
maximum separation between the values u?

0 and
u?

1. Since (u?
0,R

?
0) is QAS, Lemma 12, item 3)

imposes the following conditions:

(β − γ)u?
0 aT

a0
a0, b0 aT

b0
(β + γ)u?

0. (28)

Likewise, since (u?
1,R

?
1) is QAS:

(β − γ)u?
1 ab0 b0, b1 aT

b1
(β + γ)u?

1. (29)

Combining the second condition in (28) with the
first one in (29):

u?
1 <

β + γ

β − γ
u?

0 = ρ−1u?
0, (30)

where (26) was used. Now, consider u?
0 to be fixed

and find the supremum of u?
1 subject to (30), to

obtain
sup

u?

1
<ρ−1u?

0

u?
1 = ρ−1u?

0.

Note that the development above is independent
of the value of u?

0. Hence, it is now proved that
the values of any quantizer that solves Problem 11
must satisfy (23), since in this case u+

i is as far as
possible from both u+

i−1 and u+
i+1, for all i ∈ Z.

According to Lemma 12, (u+
i ,R+

i ) as defined in
(23) to (27) are not QAS. However, the regions

R̊+
0 = {x ∈ R

n : σ+
0 < dT x < ρ−1σ+

0 },

R̊+
i = ρ−iR̊+

0 ,

which differ from R+
i only by replacing a nonstrict

inequality by a strict one, make (ui, R̊
+
i ) QAS, for

all i ∈ Z. Therefore, qd, as defined in (21) to (27)
solves Problem 11 and the proof is concluded. 2

Under the definition of quantization density given
by (5), it can be verified that η(qd) = −2/ ln ρ.
Note that qd is not a QAS quantizer. This is
because the constraint set given by (18) and (19)
is not closed, and hence the infimizer, that is, qd,
need not belong to the constraint set. However,
qd is in the boundary of the constraint set and,
loosely speaking, it is arbitrarily close to a quan-
tizer that satisfies constraints (18) and (19). It
can be shown that each quantization region of qd

contains at most one point for which (9) is not
satisfied and hence such a quantizer may be called
coarse-almost-QAS. Characterization and proper-
ties of coarse-almost-QAS quantizers can be found
in Haimovich and Serón (2004). For example, a
QAS quantizer having a density arbitrarily close
to that of qd (or any coarse-almost-QAS quan-
tizer) can always be constructed.

5. STATIC OUTPUT FEEDBACK VIA
COARSEST OUTPUT QUANTIZER

Consider the single-input system (1), having a
single output defined by (2). The aim is to find



an output quantizer q̊ : R → R that has minimum
density over all QAS output quantizers. Conse-
quently, the following problem is formulated.

Problem 14.

q̊? = arg inf η(q̊), subject to (31)

q̊ is QAS, (32)

q̊(y) = −q̊(−y), for all y ∈ R. (33)

Note that the composition of the output equation
(2) with the output quantizer q̊ is equivalent to a
PH state quantizer with given direction d = CT .
That is, q̊(Cx) = q(x), for all x ∈ R

n, where
q is PH with direction CT (See also Figure 1).
Hence, Problem 14 can equivalently be posed as
Problem 11, where d = CT . Then, q̊?(Cx) =
qd(x), for all x ∈ R

n, where qd solves Problem 11
with d = CT .

As explained in Section 4, in order that a quan-
tizer q satisfying constraint (18) exist, the direc-
tion d must satisfy dT L−1d > 0. Therefore, it fol-
lows that in order that q̊ satisfying (32) exist, then
C must satisfy CL−1CT > 0. If this is the case,
then Theorem 13 may be used to obtain q̊?. (If
d = CT does not satisfy −dT L−1M = β > 0, then
Theorem 13 must be applied with d = −CT and
q̊?(Cx) = −qd(x).) Thus, we have shown how to
obtain a quantizer that solves Problem 14 assum-
ing that a matrix P [see (6), (14)] has been given
such that C satisfies CL−1CT > 0. The following
theorem shows that if the system is stabilizable
via (linear) static output feedback, then a matrix
P such that CL−1CT > 0 can be found. The proof
of this theorem is a straightforward application of
Haimovich and Serón (2004, Lemma 4.5).

Theorem 15. Consider system (1) with the output
(2). Suppose that assumption A3) holds with K =
αC ∈ R

1×n, where α ∈ R, and that L in (14) is
invertible. Then, CL−1CT > 0.

Whenever a matrix P exists such that L is in-
vertible and CL−1C > 0, a coarsest static output
feedback quantizer may be found by means of
Theorem 13. To find the matrix P for which a
minimum density output quantizer may be used,
the sector bound approach in Fu and Xie (2003)
may be employed.

6. COARSEST PH QUANTIZER

The first scenario is now reconsidered in order
to find the coarsest PH (state) quantizer [with
respect to all possible directions but for a given
fixed matrix P in (6)]. This recovers the result
in Elia and Mitter (2001, Theorem 2.1) when
optimization is performed over PH quantizers.

Problem 16.

qd?
= arg inf η(q), subject to

q is QAS PH

q(x) = −q(−x), for all x ∈ R
n,

where η(q) is the density of q, defined in (5).

Note that qd?
satisfies

η(qd?
) = inf

d∈Rn, d6=0
η(qd),

where qd solves Problem 11. As explained in Sec-
tion 4, it is only meaningful to consider PH quan-
tizers with direction d that satisfies dT L−1d > 0,
and there is no loss of generality in only con-
sidering d such that β = −dT L−1M > 0 and
in assuming that ‖d‖ is some arbitrary positive
number (see Remark 6). Since the density of qd is
directly related to the quantity ρ in Theorem 13
[see (26)], the following related problem can be
formulated.

d? = arg inf
d∈Rn

β − γ

β + γ
, subject to (34)

dT L−1d > 0, (35)

dT d = MT M, (36)

−dT L−1M > 0, (37)

where L and M were defined in (14), and γ and
β in (16).

Theorem 17. The direction d? ∈ R
n in (34) is

given by d? = −M , where M was defined in (14).

PROOF. Since dT L−1d > 0, and, by Lemma 9,
H < 0 then γ, defined in (16), is real and positive.
Therefore,

β − γ

β + γ
=

β/γ − 1

β/γ + 1
. (38)

Using Lemma 10, and since β > 0 is an optimiza-
tion constraint [see (16) and (37)], then β/γ > 1.
The function g(β/γ) defined by the right-hand
side of (38) is strictly increasing and hence the
direction d? that minimizes (34) also minimizes
β/γ, subject to constraints (35) to (37). In turn,
d? also minimizes β2/γ2 subject to the same con-
straints. From (16), it follows that

β2

γ2
=

dT L−1MMT L−1d

−HdT L−1d
. (39)

From Lemma 10, we have |β| > γ, even in the case
when dT L−1d = 0. Hence,

lim
d→d̄, s.t. dT L−1d→0+

β > lim
dT L−1d→0+

γ = 0, (40)

and it follows that d? cannot satisfy dT
? L−1d? = 0

and therefore

dT
? L−1d? > 0. (41)



Note that d? minimizes (39) subject to (35)–(37)
if and only if v , L−1d? minimizes the function

f(w) ,
wT MMT w

wT Lw
, (42)

subject to wT Lw > 0, wT LLw = MT M, and
−wT M > 0, since H < 0 by Lemma 9. Then,
from (40) it follows that the minimizer of (39) can
only occur at a point d? = Lv where ∇f(v) = 0.
Thus,

∇f(v) = 2
(vT Lv)MMT v − (vT MMT v)Lv

(vT Lv)2
= 0.

From (41), vT Lv > 0 and it follows that

(vT Lv)MMT v − (vT MMT v)Lv =

[(vT Lv)MMT L−1−(vT MMT v)I]Lv=0. (43)

Since L is invertible, (43) implies that 1

det
[
(vT Lv)MMT L−1 − (vT MMT v)I

]
=

(−vT MMT v)n

+ (−vT MMT v)n−1(vT Lv)MT L−1M = 0. (44)

Note that, since v = L−1d?, then

vT MMT v = (dT
? L−1M)2 = β2 > 0.

Thus, dividing (44) by (−vT MMT v)n−1 6= 0
yields (vT Lv)(MT L−1M) = vT MMT v and sub-
stituting into (43), then

(vT Lv)
[
MMT L−1 − (MT L−1M)I

]
Lv = 0,

whence, since vT Lv > 0 and v = L−1d?,
[
MMT L−1 − (MT L−1M)I

]
d? = 0. (45)

Lemma 9 establishes that H < 0. Using (15),
and since BT PB > 0 because P > 0, it fol-
lows that MT L−1M > 0. Hence, if d? satis-
fies (45), then MMT L−1d? 6= 0. The matrix
MMT L−1 has rank one and thus MMT L−1d? =
(MT L−1d?)M = α̃M, where α̃ = MT L−1d? ∈
R. In order that d? satisfy (45), it is necessary
that α̃M = (MT L−1M)d?, with MT L−1M ∈ R,
MT L−1M > 0. Hence, d? = αM, for some α ∈ R.
Then, constraint (36) implies that α = ±1, and
since MT L−1M > 0, constraint (37) may be used
to obtain α = −1. Hence, d? = −M, concluding
the proof. 2

It is straightforward to check that qd?
, which

solves Problem 16, coincides with the quantizer in
Elia and Mitter (2001, Theorem 2.1). The result
in Elia and Mitter (2001) is more general than the
one derived here in the sense that Elia and Mitter
do not search only over PH quantizers. Then,
Elia and Mitter directly prove that qd?

achieves
infimum density over all QAS quantizers. Though
less general, imposing the PH quantizer constraint
has the advantage of making the formulation of

1 det(xyT + kI) = kn + kn−1yT x, x, y ∈ R
n×1, k ∈ R.

Problem 11 possible, where the direction d is
a given parameter. This, in turn, allowed the
derivation of the static output feedback strategy
that employs a coarsest quantizer.

7. CONCLUSIONS

The problem of finding a quantizer having min-
imum (infimum) density, by searching over all
PH quantizers (with a given direction) that are
able to quadratically stabilize a system, was ad-
dressed and solved. This result was used to find
the coarsest output quantizer that may be utilized
in a static output feedback scenario. Finally, the
result in Elia and Mitter (2001, Theorem 2.1) was
recovered by alternative means. The results in the
current paper were based on the geometric ap-
proach to quadratic stabilization with quantizers
developed in Haimovich and Serón (2004).
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