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Abstract: This paper presents an H  controller synthesis method for discrete time fuzzy 
dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the 
approach is to design a piecewise linear state feedback control law and use a piecewise 
smooth Lyapunov function to establish the global stability with H  performance of the 
resulting closed loop fuzzy control systems. It is shown that the control laws can be 
obtained by solving a set of Linear Matrix Inequalities (LMI). Application to control 
chaotic systems is given to illustrate the performance and advantages of the proposed 
method. Copyright © 2005 IFAC  
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1. INTRODUCTION 
 

Fuzzy logical control (FLC) has recently proved to 
be a successful control approach for certain complex 
nonlinear systems, see Zadeh (1973), Mamdani and 
Assilian (1974), Sugeno (1985), and Takagi and 
Sugeno (1985) for example. The conventional FLC 
techniques usually decompose the complex system 
into several subsystems according to the human 
expert’s understanding of the system and use a 
simple control law to emulate the human control 
strategy in each local operating region. The global 
control law is then constructed by combining all 
local control actions through fuzzy membership 
functions. Though the method has been practically 
successful it has proved difficult to develop a general 

analysis and design theory for conventional fuzzy 
control systems. 
 
Recently, there have appeared a number of stability 
analysis and controller design results in fuzzy control 
literature (e.g. Tanaka and Sugeno, 1992; Tseng et al., 
2001; Lian et al., 2001), where the Takagi-Sugeno's 
fuzzy models are used. The stability and stabilization 
of the overall fuzzy system is determined by solving 
a set of Linear Matrix Inequalities (LMI). It is 
required that a common positive definite matrix P 
can be found to satisfy the LMIs for all the local 
models. However this is a difficult problem to solve 
since such a matrix might not exist in many cases, 
especially for highly nonlinear complex systems. 
Most recently, a stability result of fuzzy systems 
using a piecewise quadratic Lyapunov function has 
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been reported (Johansson et al. 1999). It is also 
demonstrated in the paper that the piecewise 
Lyapunov function is a much richer class of 
Lyapunov function candidates than the common 
Lyapunov function candidates and thus it is able to 
deal with a larger class of fuzzy dynamic systems. In 
fact, the common Lyapunov function is a special case 
of the more general piecewise Lyapunov function. 

where lR  denotes the l-th fuzzy inference rule, m the 
number of inference rules,  (j=1,2,...,n) the fuzzy 

sets, x(t)  the state, u(t)  the control, 
the controlled output, v  the 

disturbance which belongs to l , and 
  the l-th local model  of the 

fuzzy system (1). 
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During the last few years, we have proposed a 
number of new methods for the systematic analysis 
and design of fuzzy logic controllers based on the 
Takagi-Sugeno’s model (Cao et al., 1996, 1997a 
1997b, 1999). These methods include designs based 
on a nominal model, a common Lyapunov function 
and a piecewise continuous Lyapunov function. 
However, for the methods based on the piecewise 
Lyapunov function, certain restrictive boundary 
conditions have to be imposed.  
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By using a centre-average defuzzifier, product 
inference and singleton fuzzifier, the dynamic fuzzy 
model (1) can be expressed by the following global 
model   

)(tv)D(+)u(t)B()x(t)A(1)x(t µµµ +=+   (3) Motivated from the results of piecewise continuous 
Lyapunov functions in Johansson et al. (1999), we 
developed a stability theorem for discrete time fuzzy 
dynamic systems based on a novel piecewise 
Lyapunov function in Feng (2004). In this paper, we 
propose a new constructive H  controller synthesis 
method for the discrete time fuzzy dynamic systems 
based on the piecewise Lyapunov function. It should 
be noted that with this kind of piecewise Lyapunov 
function, the restrictive boundary condition existing 
in our previous controller design can be removed and 
global stability of the resulting closed loop system 
can be established. Moreover, the design procedure 
is to solve a set of LMIs that is numerically feasible 
with commercially available software. 
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Define   subspaces in the state space as follows,  m
  lll SSS ∂∪= ,    (4) ml ,...,2,1=

where 
 { }limixxxS ill ≠=>= ,,...,2,1),()(| µµ    (5) 

and its boundary 
{ }limixxxS ill ≠=== ,,...,2,1,)()(| µµ∂ . (6) 

Then the global model of the fuzzy dynamic system 
can also be expressed in each subspace by  

The rest of the paper is organised as follows. Section 
2 introduces the discrete time fuzzy dynamic model 
and an alternative piecewise quadratic stability 
theorem. Section 3 presents a piecewise 

controller synthesis method. Application to 
control of chaotic systems is shown in section 4. 
Finally, conclusions are given in section 5. 
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2. FUZZY DYNAMIC MODEL AND PIECEWISE 
QUADRATIC STABILITY 
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The following fuzzy dynamic model or the so-called 
T-S fuzzy model (Tseng et al., 2001; Cao et al., 1996, 
1997b, 1999) can be used to represent a complex 
discrete-time system with both fuzzy inference rules 
and local analytic linear models as follows. 

lili AAA −=∆ , lili BBB −=∆ ,  lili DDD −=∆

lili HHH −=∆ , ∆ . lili GGG −=
It should be noted that many membership functions 
could be equal to zero, that is, many fuzzy rules 
could be inactive when the l-th subsystem plays a 
dominant role. :Rl    IF    is  AND  ...   is  x1

l
1F xn

l
nF

 THEN   )(tvDu(t)Bx(t)A1)x(t lll ++=+
For purpose of stability analysis and subsequent use, 
we introduce the following upper bounds for the 
uncertainty term of the fuzzy system (7), 
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It is noted that there are many ways to obtain these 
bounds, the interested readers can refer to Cao et al. 
(1996, 1997b, 1999) for details. 
 
In this paper, we introduce a novel piecewise 
Lyapunov function. This function is guaranteed to be 
decreasing when the state of the system jumps from 
one region to another. 
 
Theorem 2.1: Consider the free fuzzy dynamic 
system (1) with u . If there exist a set of 
constants 

0≡≡ v
mL,2,1ll , =ε , a set of positive definite 

matrices  such that the following LMIs are 
satisfied, 
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where the set Ω  represents all possible transitions 
from one region to another, that is, 

},)1(,)(|,{: ljStxStxjl jl ≠∈+∈=Ω , 
then the fuzzy dynamic system is globally 
exponentially stable, that is, x(t) tends to zero 
exponentially for every continuous piecewise 
trajectory in the state space. 
 
Proof: Choose a Lyapunov candidate 
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Then the proof is straightforward and thus omitted.  
 
Remark 2.1: It can be observed that if  is replaced 
by 

lP

llP ε/  and let lε ’s be the same for all l, then the 
parameter ε  can be removed from the matrix 
inequality, and thus LMIs (9) and (10) can be 
simplified correspondingly. 
 
 

3. CONTROLLER SYNTHESIS WITH  
PERFORMANCE 
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In this section, we will address the H  controller 
synthesis problem for the discrete time fuzzy 
dynamic systems introduced in the section 2. The 
objective of the controller synthesis is to design a 
suitable controller for the system (3) to be stable with 
a guaranteed performance in the H sense, that is, 

given a prescribed level of disturbance attenuation 
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∞

0>γ , find a controller such that the system is 
globally stable and the induced l -norm of the 
operator from v(t) to the controlled output z(t) is less 
than 

2

γ  under zero initial conditions, 
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for all nonzero v 2)( lt ∈ . In this case, the closed loop 
control system is said to be globally stable with 
disturbance attenuation γ . 
 
Consider the fuzzy system in each subspace 
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for lS∈ . 
With the following piecewise controller, 
 Ll,x(t)txK)x(t)xK( l ∈∈== )( , (13) 
the global closed loop system can be described by the 
following equation,      
 ()()()()1 tvDtxA cc µµ +=+     (14) 
  z )()() txHc µ=   
where  
 )()()() xKBA µµµ += , )D(=Dc µ ,  
 )()()()( xKGH µµµ += . 
The Eqn.(14) can also be expressed in each local 
subspace as, 
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Then we are ready to present the following lemma. 
 
Lemma 3.1: Given a constant 0>γ , the fuzzy 
system (14) is globally stable with disturbance 
attenuation γ , if there exist a set of positive definite 
matrices LP ll ∈,  such that the following matrix 
inequalities are satisfied, 
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Proof:  It is straightforward and thus omitted. 
 
Then via the lemma 3.1, we have the following 
result. 

 



 It then follows that the following inequality implies 
the inequality (17), that is  Theorem 3.1: Given a constant 0>γ , the system 

(14) is globally stable with disturbance attenuation 
γ , if there exist a set of constants mL,2,1=ll ,ε , a 
set of positive definite matrices  and a set of 
matrices  such that the LMIs (20)-(21) 
described at the end of the paper are satisfied, where   
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Moreover, the controller gain for each local 
subsystem is given by 

Let lll PKQ = , using the Schur complement formula 
a few times, we can easily show that the inequality 
(23) is equivalent to the LMI (20). Thus we have 
shown that the inequality (20) implies the inequality 
(17). Following the similar procedure, we can also 
show that the inequalities (21) imply the inequalities 
(18)-(19) respectively. Therefore, it can be concluded 
from Lemma 3.1 that the closed loop control system 
is globally stable with disturbance attenuation γ  and 
thus the proof is completed. 
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Proof: According to Lemma 3.1, we know that the 
system (14) is globally stable with disturbance 
attenuation γ , if the conditions (16)-(19) are 
satisfied. It follows from eqn. (15) that Π . We 
will first show that the inequality Π  implies 
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which is equivalent to the following LMI 
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It is noted that the similar property as in the Remark 
2.1 does not hold in this case. Thus based on the 
above theorem, the following algorithm can be 
developed. 

by Schur complement lemma. And by using the 
Schur complement lemma again with respect to the 
other term we can conclude that . 012 >− −

cll
T
cl DPDIγ

 
We then show that the inequality (20) implies the 
inequality (17). It is noted that via the matrix 
inversion lemma the right hand side of the inequality 
(17) can be expressed as, 

Algorithm 1: 
Step 1.  Set mll ...,,2,1, =ε , to some positive 
constants. 
Step 2.  Solve the matrix inequalities (20)-(21) for a 
set of positive definite matrices P , and 
matrices Q

Lll ∈,
Lll ∈, . This can be facilitated by using 

the Matlab LMI toolbox (Gahinet et al., 1995).  
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Step 3.  If the solutions are found, the controller 
parameters can be obtained by K , 
and stop. Otherwise, set 
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inequalities (20) or (21) having no solution, and 
check whether )m,,2,1(ll L=ε  are greater than some 
given threshold. If it is the case, then go back to step 
2. Otherwise, claim the present controller design 
fails. 
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4. APPLICATION TO CONTROL OF CHAOTIC 
SYSTEMS 

 
In this section, we will apply the proposed controller 
synthesis approach into a chaotic system to 
demonstrate the effectiveness and advantage in 
contrast to the common Lyapunov function based 
approach.  
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Consider a chaotic map T  whose representation of 
error system to the fixed point 
( )0697.1,6010.0,6274.9  is of the form  
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Fig. 1 The chaotic behaviour of the unforced map T  
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The uncertainties for each subsystem can be also 
obtained as 

 
Fig. 2 The control results of the  map T  
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 The unforced T-S system map T  takes on chaotic 
behaviour shown in Fig. 1 with initial condition 

and simulation time of 
seconds. 
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5. CONCLUSIONS ]  

In this paper, a new method has been developed to 
design robust  controllers for discrete time fuzzy 
dynamic systems based on a piecewise Lyapunov 
function. The solutions can be obtained by LMI 
techniques. Application to control of chaotic systems 
is presented to demonstrate the design procedure and 
the advantages of the proposed controller design 
method. 
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It is noted that there is no solution to the common 
quadratic Lyapunov function based approach for this 
system. However, if using the piecewise Lyapunov 
function based approach in this paper, then the 
following solution has been found for (20)-(21) with 
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