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Abstract: We present a new control law for the problem of docking a wheeled robot
at a certain location with a desired heading. Recent research into insect navigation
has inspired a solution which uses just one environment sensor: a video camera.
The control law is of the “behavioral” or “reactive” type, in that no attempt is
made to observe the relative pose of robot and target, all control actions are based
on immediate visual information. Knowledge of the distance to the target is not
required. Docking success under certain conditions is proved mathematically, and
simulation studies show the control law to be robust to camera calibration errors.
Copyright c©2005 IFAC
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1. INTRODUCTION

It is currently very popular among roboticists to
draw inspiration from the animal kingdom. In par-
ticular, from the ability of the simpler life-forms
to navigate successfully through complex environ-
ments with simple reactions to “sense data”, and
without a detailed environmental model (Arkin,
1998; Bar-Cohen and Breazeal, 2003; Franz and
Mallot, 2000).

The trend of mimicking this with robots is termed
“biomimetics”. Robot navigation strategies thus
derived, often categorized as “behavioral” or “re-
active”, are important when robots must operate
in a complex environment using simple sensors.
Frequently, a complete environment model would
be difficult or impossible to reconstruct with the
sensed information.
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In this paper we propose one such strategy for the
problem of positioning a wheeled robot at a cer-
tain location with a certain heading, i.e. docking,
using information provided by a video camera.
The kinematics of the robot are non-holonomic,
so standard techniques of visual servoing (see,
e.g., (Hutchinson et al., 1996)) cannot be directly
applied. We introduce a change of variables and
a camera-space regulation condition which allow
solution of the problem via a relatively simple
nonlinear control law. Our approach was directly
inspired by the work of Srinivasan and his col-
leagues, studying the optical navigation systems
of honeybees, see (Srinivasan et al., 2000) and
references therein.

This research has previously prompted work
on helicopter navigation (Barrows et al., 2003)
and missile-guidance systems (Manchester et al.,
2003). In that work we studied guidance with an
impact-angle constraint, using a combination of
geometrical considerations, and recent results in
robust control and filtering theory (Manchester



and Savkin, 2004; Manchester and Savkin, 2002;
Savkin et al., 2003; Petersen et al., 2000; Petersen
and Savkin, 1999).

We note a few some facts about honeybees which
are of particular interest to researchers in control
and robotics. A bee’s eyes are immobile and
fixed focus, and are not sufficiently separated
for stereopsis to be of any real use. With these
sensors, and such minute brains for processing,
it seems that accurate estimation of distances is
quite beyond them. However, they still manage to
make smooth landings on surfaces, and find their
way to and from the hive, for example. Recent
studies by Srinivasan and others have indicated
that reacting to optical flow in their visual field is
one of their most useful navigation tools.

Many studies have been done, but one particularly
striking example is the method a bee uses to land
on a flat surface. The bee looks down at the
ground, and measures its optical flow, or angle-
rate. It is straightforward to show that, if it keeps
this optical flow constant, and keeps its vertical
velocity a constant proportion of its horizontal
velocity, it will make a smooth landing on the
surface. We refer the reader to (Srinivasan et

al., 2000) for details.

Throughout nature, and even in human behavior,
we see many such simple “vision-space” strategies,
keeping certain angles and optical flows constant,
which lead to effective behaviour in physical space
(or configuration space). The docking strategy we
present is directly inspired by these.

Studies of the docking problem can be roughly
grouped into two approaches. One focuses on the
robot’s “configuration space”, i.e. the relative po-
sitions and angles of the robot and target, and
perhaps obstacles, in the plane. All these relations
are assumed to be available to the control law, and
from them it chooses some desirable path. Exam-
ples are found in (de Wit and Sørdalen, 1992; Lau-
mond, 1998; Souères and Laumond, 1996; Kelly
and B.Nagy, 2003) and references therein.

The method described in (de Wit and Sørdalen,
1992) is similar in its approach to the method
presented in this paper, in that the aim is to
follow to a circular path. The main differences are
that, firstly, they assume a slightly simpler kine-
matic model (often termed the unicycle model),
and secondly, they are able to prove exponential
stabilization to the desired final location, but at
the expense of a control law which is more com-
plicated and requires more information.

The other main approach focuses on “camera
space” or “visual space”. It is no longer assumed
that the robot has knowledge of the full con-
figuration, but only of the target’s image (and
obstacles) as the camera sees them. Typically it

also knows how they ought to look if the goal is
achieved. From this information a control law is
assigned which drives the appearance of the target
towards its goal. That is, dynamics are exam-
ined in camera space. Examples of this approach
are found in the papers (Santos-Victor and San-
dini, 1997; Hashimoto and Noritsugu, 1997; Lee
et al., 1999; Conticelli et al., 1999; Zhang and
Ostrowski, 2002; Cárdenas et al., 2003) and ref-
erences therein.

Our paper can be seen as a blend of the
two approaches. A simple camera-space condi-
tion is defined which, if kept, leads to desirable
configuration-space trajectories.

2. PROBLEM STATEMENT

Our aim is to design a control law by which
a car-like vehicle may dock to a target point.
The information available to the control law is
consistent with the use of a video camera as the
main sensor.

In this section we describe the kinematic model of
the robot and the measurements available to it,
and finally give a mathematically precise problem
statement.

The relative position of vehicle and target is given
in polar form (see Figure 1). The vehicle’s position
is an extension-less point in the plane, and is
identified in a physical system with the mid-point
of the rear axle. The scalar quantity r is the range
between the vehicle and the target, and the angle
ε is the angle between the desired heading, and the
line-of-sight from the car to the target. These two
quantities can be thought of as polar coordinates,
placing the vehicle with respect to the fixed target
frame.

Two more angles are required to completely char-
acterize the state of the system. These are the
heading of the vehicle, and the angle of its steer-
ing wheels. The angle λ is the angle between
the vehicles current heading and the line-of-sight.
The angle φ is the angle of the steering wheels,
with respect to the centerline of the car, and is
controlled with the input u. The forward speed is
controlled with the input v.

The reason for this unusual representation of the
state will become clear later in the paper, when
the CNG Principle is described, and the control
law derived.

The state-space of the car-target system is then
the manifold R × T

3 of states (r, λ, ε, φ), where T

is the circle group: R mod 2πZ.

We give the kinematic equations of motion on
this manifold with respect to distance travelled
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Fig. 1. System geometry

(ds), rather than time (dt), so as to make the
resulting control law independent of the forward
speed profile chosen. The change of variables ds =
v cosφdt allows us to pass from one representation
to another

Hereafter, x′ denotes derivative of a variable x
with respect to path length s. The dynamics of
the states in this form are given below:

λ′ =
sinλ

r
−

tan φ

l
, ε′ =

− sin λ

r
, (1)

r′ =− cos λ, φ′ =
u

v cos φ
. (2)

Where l is the distance between the front wheels
and rear wheels.

We use a measurement model consistent with a
single video camera mounted on the robot, and a
simple optical flow algorithm.

The main restriction felt with this model is that
the range to the the target, r, is not directly
measurable. Furthermore, in certain situations it
is unobservable, or weakly observable, from the
measurements we do have. For this reason we do
not use this quantity in our control law.

The angular position of the dock-target in the
field of view is the angle λ. The derivative of this
variable is the optical flow of the image. A simple
algorithm such as (Srinivasan, 1994), as was used
in (Manchester et al., 2003), can calculate this
value with very little computation.

The angle ε must be known, as it is not an
environmental variable, but part of the problem
statement. Two possibilities of how it might be
calculated are: (a) Visual analysis of the dock-
target image may allow us to judge the angle
between the line-of-sight and the target-heading.
Or (b) If the target-heading is defined as an
abstract bearing, the heading of the vehicle could
be dead-reckoned and from this and the angle λ,
ε could be calculated. Detailed considerations of
this issue are beyond the scope of this paper.

Further to the information from the video camera,
we need some knowledge of the internal state of
the vehicle. Specifically, we assume knowledge of
the forward speed v, the angle of the steering
wheels φ and the distance between the axles l.

2.1 Complete Problem Statement

Our complete problem statement is this. To find
a control law of the form

u = f(l, φ, v, ε, λ, λ̇) (3)

such that range and angle error at final time, i.e.
r(T ) and ε(T ), are minimized Corresponding to
this, we make the following definition:

Definition 1. A docking manoeuvre is considered
perfect if there exists some finite time T such that

r(T ) = 0,

lim
t→T

ε(t) = 0.

A limit is used in the above definition because if
r = 0 the angle ε is undefined.

3. CONTROL LAW

From the optical flow measurements, we can can-
cel the component due to the robot’s rotation
(= −v sin φ/l), and retain only the component due
to the relative motion of robot and dock-target.
We denote this remaining flow Of , so:

Of := λ̇ +
v sin φ

l
(4)

The control input u is then chosen as:

eh := λ − ε, ec :=
2Of

v cos φ
−

tan φ

l
, (5)

u := lv cos3 φ(aec + beh). (6)

Here we can think of eh as the heading error, and
ec as the curvature error, as the car describes a
path toward the target.

The gains a and b should both be positive, and
can be chosen with the following guidelines:

• The dynamics of the linear system e′′h +ae′h +
beh = 0 should represent suitable regulation
to the desired path,

• The range r0 := 2/a should be small enough
that divergence from the desired path within
this region of the target is acceptable.

A discussion of the reasoning behind this control
law, and the tuning guidelines, is presented over
the next two sections.
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4. CONTROL LAW DERIVATION

The method with which we arrived at the above
control law is slightly different than most previous
approaches. The control objective is to reach some
final state, but rather than trying to derive a
controller which provides some type of stability
to this state, our approach has two stages.

Firstly, simple geometry allows us to pass from
the terminal condition to a condition on the
instantaneous configuration of the vehicle, this is
what we call the CNG Principle. Secondly, from
this instantaneous condition we derive a feedback-
control law using methods similar to feedback
linearization.

The following theorem forms the basis of our
control law, and was proved in (Manchester and
Savkin, 2002). It is significant because it can guide
a robot to a target with a desired approach angle,
without any knowledge of the distance to the
target.

Theorem 1. (Circular-Navigation-Guidance Prin-
ciple) Introduce the circle uniquely defined by the
following properties: The initial and final positions
of the vehicle lies on the circle, and the desired
final-heading vector at the target’s position is a
tangent to the circle.

Suppose that a controller of the form (3) is de-
signed such that the angles λ and ε are kept
exactly equal over the full docking manoeuvre,
then the vehicle’s trajectory will be an arc on this
circle. Furthermore, this will result in a perfect
docking manoeuvre, as defined in Definition 1 2

¤

This is visualized in Figure 2, where the point A is
the dock target position, and B the vehicle’s initial
position. BA, then, is the line-of-sight, and let
AZ (equivalently BY) be the desired final-heading
vector.

2 In (Manchester and Savkin, 2002) the definition of

perfect intercept was slightly different. However, in the case

we consider here it is equivalent to Definition 1.

Note that in the case where λ = ε = π and φ = 0,
the car is heading away from the target, and will
continue to do so forever. In a sense, the car is
following a circle of infinite radius: a straight line.

It is only in this case, corresponding to just a one-
dimensional line in a four-dimensional manifold,
where a perfect docking manoeuvre will not occur.
Since this is a “thin” set, and would be simple
to overcome in practice, we do not consider it
further.

In order to regulate λ to be equal to ε, we consider
two errors: λ− ε and λ′ − ε′. The second of these
can be expanded as follows, from Equations (1,2,
4):

λ′ − ε′ =
2 sin λ

r
−

tan φ

l
, (7)

=
2Of

v cos φ
−

tan φ

l
, (8)

giving us Equation (5).

This can also be interpreted in the following way:
Given any position of the car in the plane, relative
to the dock target, there exists a unique circle
it should follow. To follow this circle, it must
have a certain instantaneous heading and curva-
ture. There are then two errors worth considering:
heading error and curvature error. eh is obviously
the heading error, and ec is the curvature error.

This follows, since the curvature of the circle
defined in Theorem 1 is given by the function
2 sin λ/r, and the instantaneous curvature of the
vehicle is given by the function tan φ/l.

If both of these errors are zero, then the vehicle
will follow a circular path to the dock target. We
can think of these error functions as describing a
two-dimensional target sub-manifold of the four-
dimensional state-space:

M := {(r, λ, ε, φ) : eh = 0 and ec = 0)}.

Viewed like this, our objective is similar to that
of sliding-mode control: to regulate the system to
a particular sub-manifold on which it is known to
behave well.

So we have transformed the terminal-state con-
trol problem into an instantaneous-state control
problem, i.e. the regulation of eh and ec. This
is reminiscent of the way a honeybee can land
on a surface by regulating certain visual cues.
We now tackle this regulation problem in a way
similar to input-output linearization (see, e.g.,
(Khalil, 1993), Chapter 13), and analyze the re-
sulting control law using Lyapunov theory.

Let us choose the heading error, eh = λ− ε, as an
output function, and attempt to regulate it using
input-output linearization.



Differentiating eh with respect to path-length, we
obtain:

e′h =
2 sin λ

r
−

tan φ

l
= ec,

We differentiate this again, obtaining

e′′h =
2 cos λ

r
ec −

sec3 φ

lv
u. (9)

In this equation we note that the control appears
explicitly, so a natural approach would be intro-
duce a fictional control input ū and set

u = lv cos3 φ

(

−ū +
2 cos λ

r
ec

)

(10)

rendering the dynamics from ū to eh linear, in fact
just a double integrator. However, since the range
r is unknown to the controller, we cannot do this.

We then “almost feedback linearize” the system,
and treat the first term in (9) like an uncertainty.
The second term is canceled with the nonlinear
control law:

u = lv cos3 φ(aec + beh)

as given in Section 3, then we have

e′′h +

(

a −
2 cos λ

r

)

e′h + beh = 0. (11)

If r is large, this is “almost” like the linear system

e′′h + ae′h + beh = 0,

and it is clear that, by choosing a and b, both the
errors eh and ec = e′hcan be made to converge in
any desired fashion.

5. CONTROL LAW ANALYSIS

Since our control law only “almost” linearized
the system, we need some further analysis to
understand how the system will behave.

The following simple theorem says this: if we start
with zero errors, we will continue to have zero
errors and achieve a perfect docking manoeuvre.
Another way to put this is that if, at any time,
the state (r, λ, ε, φ) ∈ M then it will stay in M .

Theorem 2. Suppose the vehicle system (1, 2) has
the desired heading and curvature, i.e. eh(0) = 0
and ec(0) = 0, then the vehicle will perform a
perfect docking manoeuvre, as per Definition 1.
¤

The proof is straightforward from Equation (11)
and Theorem 1.

Now suppose the state starts outside M , that
is, with incorrect heading and curvature. Now

we’d like to know something about convergence
to the target sub-manifold. The dynamics of (11)
are those of a linear system with time-varying
coefficients, and can be analysed with Lyapunov
theory.

Theorem 3. Consider the function

V (eh, ec) := be2

h + e2

c . (12)

This is a positive-definite quadratic form in the
heading and curvature errors, and may be consid-
ered as the distance to the target sub-manifold.

Let [s1, s2], s2 > s1 be any path interval over
which V (eh, ec, s) 6= 0 and the following inequality
holds:

a − 2 cos λ/r > 0. (13)

Then V (eh(s2), ec(s2)) < V (eh(s1), ec(s1)). That
is, over any interval of non-zero length, the norm
of the errors strictly decreases. ¤

The proof is omitted due to space restrictions.

This theorem reflects the following physically
meaningful problem: When the vehicle is very
close to the desired target location, large gains
are required to make it swing around and track
the correct path.

6. ROBUSTNESS

It has been mentioned in the literature that a
particularly important test of a docking algorithm
is the robustness of its terminal positioning pre-
cision to imperfect modeling of the kinematics
and camera calibration (Cárdenas et al., 2003),
(Laumond, 1998).

The parameters chosen for the simulation were:
l = 1m, v = 1m/s, a = 4, b = 4.04. The initial
conditions were r(0) = 7m, λ(0) = π/4 rad,
ε = π/4 rad, φ = π/8 rad.

We simulate the effect of incorrect camera cali-
bration. We skew the measurement of λ and the
optical flow in a way consistent with an incorrect
assumption on the focal length of the camera. We
introduce the ratio kf as the true focal length
divided by the assumed focal length.

This parameter was varied from 0.6 to 1.8. In
Figure 3 we see graphical plots of trajectories, and
numerical data for the final range and final-angle
error. It is clear that, although the trajectories
throughout the middle stage of the docking ma-
noeuvre vary widely, in all cases the robot docked
with less than 1cm positioning error, and less than
10◦ angle error.
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