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Abstract: This paper discusses the passivity of a one degree-of-freedom rigid master

- çexible slave (RMFS) manipulator. First of all, nonlinear motion equations of

the RMFS system is derived as a distributed parameter system by using the

Hamilton's principle. Applied the symmetric bilateral control to the RMFS system,

the passivity of the system in the positioning operation is proved by using a

Lyapunov function related to the total energy. Moreover, the steady states in

pushing operation to an environment is discussed, then the passivity of the system

in the neighborhood of the desired state is proved. Copyright cç 2005 IFAC
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1. INTRODUCTION

From the early years of robotics, several con-

trol schemes of master-slave manipulators have

been investigated. In particular, the master-slave

manipulators have recently received a great deal

of attention as one of telerobotics technologies.

One of utilities of the master-slave manipulators

is operation in the extreme environment such as

nuclear power plants, outer space, disaster sites

and so on( Special issues of Theory of Tele-

robotics, 1993). In these cases slave manipula-

tors may consist of long and light-weight arms

to secure the large working space. Since these

manipulators have elastic deformations, they are

regarded as çexible arms. On the other hand, a

master arm is simple and rigid for the sake of hu-

man maneuverability. Such a master-slave system

is called a rigid master - çexible slave (RMFS)

system.

In general, it is diécult to strictly discuss the

stability of a master-slave system, because both

an operator and an environment are included in

a system. From this reason it is signiåcant to dis-

cuss the passivity of an input-output relation of a

master-slave system(Yokokohji, 1993). Yokokohji

and Yoshikawa represented the input-output rela-

tion of a master-slave system as the two-terminal-

port network model and proposed a controller

based on the passivity(Yokokohji and Yoshikawa,

1994). Moreover, from the viewpoint of passiv-

ity, Kosuge et al. proposed an alternative control

algorithm for a scaled tele-manipulation system

based on a task-oriented virtual tool(Kosuge et

al., 1995). The stability of the resultant system

was analyzed on the basis of the passivity of the

system and the total stability was guaranteed for

a human operator and a passive environment.



However, in case of a çexible master-slave system

in contrast to the case of a rigid master-slave sys-

tem, elastic vibration modes of çexible arms may

cause the instability of a total system. Moreover,

the mathematical model of çexible systems is very

complicated. These reasons make the passivity

issue in case of çexible systems diécult.

On the other hand, the the passivity based control

method of çexible manipulators has been recently

discussed(Morita et al., 2002; Matsuno and Endo,

2004). Osuka and Matsuno discussed on robust

passivity of multi-link-çexible manipulators(Osuka

and Matsuno, 1993). It was shown that when the

joint angular velocity and the joint torque are

regarded as the input variable and the output

variable, respectively, the control system from the

input to the output becomes robust stable by

using control law based on passivity. However

the passivity of master-slave manipulators with

çexible slave arms have not been investigated.

In this paper we study on the passivity of

one degree-of-freedom RMFS system under the

symmetric bilateral control conåguration. A dis-

tributed parameter model of RMFS system is de-

rived by using Hamilton's principle, which consist

of a couple of ordinary diãerential equations of

master and slave angles and a partial diãeren-

tial equation with the boundary conditions of the

bending vibration of a slave arm. The passivity of

the RMFS system is proven in cases of both the

positioning and the pushing operation by using

Lyapunov method.

2. DISTRIBUTED PARAMETER MODEL

The one o.d.f master-slave system treated in this

paper is shown in Fig.1 and Fig.2. Each arm ro-

tates on the horizontal plain. The slave system has

a long arm, hence it causes elastic deformation.

A human operates the slave arm by handling the

master arm while watching the movement of the

slave arm. It is assumed that the communication

time lag does not exist in this system.

Let Om-XmYm denotes an inertial Cartesian co-

ordinate frame of a master arm. Jm denotes the

moment of inertia of the rotor of the motor and

the master arm. ím(t) and úm(t) are the angle
of rotation of the master motor and the torque

developed by the master motor, respectively. úh(t)
denotes the torque applied by the human opera-

tor.

Let Os-XsYs denote an inertial Cartesian coordi-

nate frame of a slave arm. The motor actuating

Fig. 1. Master Manipulator

Fig. 2. Slave Manipulator

a slave arm has the moment of inertia Js around
the shaft of the rotor. The slave arm of length

L, having uniform mass density öper unit length

and uniform bending rigidity EI, is åxed at the
rotor of the motor. Let ís(t) and ús(t) be the

angles of rotation of the slave arm and the torque

developed by the slave motor, respectively. w(t; r)

denotes the bending displacement at time t and
at a spatial point r (0 î r î L). fe(t) denotes

the reaction force received from an environment

at the tip of the slave arm, and úe(t) denotes
the reaction torque corresponding to the force

fe(t), úe(t) = Lfe(t). The positive direction of the
variables are indicated with arrows in Fig.1 and

Fig.2.

The total kinetic energy T and the potential

energy U are given by

T = Tm + TsÄmotor + TsÄarm; (1)

Tm =
1

2
Jm _í

2
m(t); (2)

TsÄmotor =
1

2
Js _í

2
s(t); (3)

TsÄarm =
1

2

LZ
0

ö
Ä
r _ís(t)Ä _w(t; r)

Å2
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0

EI
Ä
w00(t; r)

Å2
dr; (5)

where wL(t) = w(t; L), w0L(t) = w0(t; L), Tm is

the rotational kinetic energy of the master arm,

TsÄmotor is the rotational kinetic energy of the
slave motor, TsÄarm is the translational kinetic

energy of the slave arm, and U is the bending



strain energy of the slave arm. (_) and ( 0 ) denote
the time derivative and the derivative with respect

to the spatial variable r, respectively. The virtual
work éW by external torques is given by

éW =úm(t)éím(t) +ús(t)éís(t)

+úh(t)éím(t) +úe(t)
à
Ä
Ä
éís Ä (1=L)éwL(t)

Åâ
:

(6)

By applying Hamilton's principle, the equations

of motion are derived as follows:

Equation of the master arm:

Jm°ím(t) = úm(t) +úh(t); (7)

Equation of the rotation of the slave arm:

Js°ís + EIw
00
0 =ús Äö

LZ
0

(2wr _wr _ís + w
2
r
°ís)dr

+ö_í2s

LZ
0

rwrdr; (8)

Equation of the bending vibration of the slave

arm:

°w(t; r) +
EI

ö
w0000(t; r)Ä r°ís(t)Ä _í2swr = 0;(9)

EIw000L (t) = Äúe(t)=L; (10)

w00L(t) = w(t; 0) = w
0(t; 0) = 0: (11)

3. PASSIVITY OF THE RMFS SYSTEM

The passivity is deeply related to a input-output

relation of a system. Moreover, in the master-

slave system, the control conåguration should be

pre-determined because both arms are connected

through the control system. In general, the input

is an operator input torque. Therefore key points

proving the passivity are how to determine a out-

put and a control conåguration. In the following

sections, we prove the passivity for both the posi-

tioning operation and pushing operation under a

certain control conåguration.

3.1 Passivity in positioning operation

The control purpose of the positioning operation

is to operate a master arm so that the angle of

the slave arm ís(t) reaches the desired angle íd
in the steady state. Therefore, in this case, we

discuss the passivity of the RMFS system under

the condition úe(t) = 0.

[Theorem 1] Assume that the symmetric bilat-
eral control is used, whose control torques are

represented as

úm(t) = km(ís(t)Äím(t)); (12)

ús(t) = ks(ím(t)Äís(t)); (13)

where km and ks are proportional gains.

Then the following input-output relation of the

RMFS system is passive.

tZ
0

_ím(ú)úh(ú)dúï Äç
2 (14)

where ç is a positive constant.

(Proof)

Deåne the following modiåed energy function.

V (x(t; r)) = k1Tm + k2
Ä
TsÄmotor + TsÄarm + U

Å
+
1

2
k3(ím(t)Äís(t))

2 (15)

where k1, k2, and k3 are positive constants,

and x(t; r)=[ ím(t), _ím(t), ís(t), _ís(t), w(t; r),
_w(t; r) ]T . The årst term of the right hand side in

(15) implies the energy of the master manipulator

weighted by k1, and the second term the total en-

ergy of the slave manipulator weighted by k2. The

last term is added as a pseudo-energy to insure

that steady state condition. Since the conditions

of the steady states are expressed as _ím(t)=0,
_ís(t)=0, _w(t; r)=0, the desired state xd=[ íd, 0,

íd; 0; 0; 0 ]T is a unique minimum of V . It is

straightforward to check that the positiveness of

the constants k1, k2, and k3 in (15) guarantees

V (x(t; r)) ï 0 and that the global minimum of

V (x(t; r)) = 0 is attained only at the desired state

xd. This implies that V (x(t; r)) is a Lyapunov

function candidate.

By diãerentiating (15) with respect to t along the

equations of motion (8) ò(11), we obtain ;

the årst term:

_Tm = Jm _ím°ím = (Jm°ím) _ím = (úm +úh) _ím;(16)

the second term:

_TsÄmotor + _TsÄarm + _U

= _ís
à
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2
r
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+ö_í2s

LZ
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â
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à
ö
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0

(2wr _wr _ís + w
2
r
°ís)dr
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LZ
0

_w0000r wrdr = _ísús; (17)

and the last term:

d

dt

ö
1

2
(ím Äís)

2

õ
= (ím Äís)( _ím Ä _ís)

= _ím(ím Äís)Ä _ís(ím Äís):

(18)

As the result, we have the following equation.

_V (x(t; r)) = k1 _Tm + k2( _TsÄmotor + _TsÄarm + _U)

+k3
d

dt

ö
1

2
(ím Äís)

2

õ
= k1(úm +úh) _ím + k2 _ísús

+k3 _ím(ím Äís)Ä k3 _ís(ím Äís)

= _ím
à
k1(úm +úh) + k3(ím Äís)

â
+ _ís

à
k2ús Ä k3(ím Äís)

â
(19)

By substituting (12) and (13) into (19) and setting

km = k3=k1 and ks = k3=k2, we have

dV (x(t; r))

dt
= k1 _ím(t)úh(t): (20)

Equation (20) yields the product of the human

operator torque úh(t) and the angular velocity of

the master arm ím(t). Therefore, it is concluded
that the passivity between the input and the

output is proven as follows:

tZ
0

dV (x(ú; r))

dt
dú= V (x(t; r))Ä V (x(0; r))

ïÄV (x(0; r)) ï Äç2; (21)

(Q.E.D.)

3.2 Passivity in pushing operation

We consider the passivity in the case of the push-

ing operation using the RMFS system with the

symmetric bilateral control. The control purpose

in this case is to operate a master arm so as to

push the environment with a desired torque úde
using the slave arm.

First of all, we consider steady states of the

RMFS system when a tip of slave arm pushes an

environment with a desired torque.

[Lemma 1]
Applied the symmetric bilateral control, the

RMFS system in pushing operation with a desired

torque úde has the steady state as follows:

ím(t) = í
d
m; ís(t) = í

d
s ; w(t; r) = w

d(r); (22)

where,

ídm =

í
1

ks
+

L

3EI

ì
úde ; íds =

L

3EI
úde

wd(r) =
úde
6EIL

(3Lr2 Ä r3);

Moreover, the steady operator input torque údh is
given by

údh =
km
ks
úde (23)

(Proof)

The conditions that the RMFS system is the

steady state are _ím(t)=0, _ís(t)=0, _w(t; r)=0. It is
assumed that the reaction torque of the slave arm

úe is given by the desired torqueúde . By integrating
(9) with boundary conditions (10) and (11), we

have

w00(r) = c1r + c2 ë w00
d
(r); (24)

where

c1 = Ä
úde
EIL

; c2 =
úde
EI
:

By integrating again the above equation with the

boundary condition (11), we obtain

w(r) ë wd(r) =
1

6
c1r

3 +
1

2
c2r

2: (25)

From the above equations,

wd(L) =
L2

3EI
úde ; w00d(0) =

úde
EI
: (26)

Since the relation ís = w(L)=L holds,

íds =
wd(L)

L
=

L

3EI
úde (27)

By substituting ús = ks(ím Ä ís) to the steady

state relation of (8), and using the relations (26)

and (27), we conclude

ídm =
úde
ks
+íds =

í
1

ks
+

L

3EI
úde

ì
(28)

Moreover since úm = km(ís Äím) and úh = Äúm
in the steady state, the above equation yields

údh =
km
ks
úde (29)



(Q.E.D.)

This lemma explains that the symmetric bilateral

control enables an operator to perform the push-

ing operation while receiving steadily the torque

at the tip of the slave arm from the environment.

Now we consider the passivity of the RMFS sys-

tem for small deviations from the steady states.

By linearlizing (7)ò(11) around the desired states,

the linear equations in the neighborhood of the

desired state are obtained as follows:

Jmé°ím(t) = éúm(t) +éúh(t); (30)

Jsé°ís(t) + EIéw
00(t; 0) = éús(t); (31)

é°w(t; r) +
EI

ö
éw0000(t; r) = ré°ís(t); (32)

EIéw000(t; L) = Äéúe=L; (33)

éw00(t; L) = éw(t; 0) = éw0(t; 0) = 0: (34)

Then we obtain the following result.

[Theorem 2]

The following input-output relation of the RMFS

system in the pushing operation is passive under

the symmetric bilateral control.

tZ
0

Ç
k1é_ím(t);Äk2é_ís(t)

Éîéúh(t)
éúe(t)

ï
dt ï Äç2;(35)

where ç is positive constant.

(Proof)

Deåne the following Lyapunov function candidate:

V (éx(t; r)) = k1éTm + k2(éTsÄmotor +éTsÄarm +éU
Å

+
1

2
k3(éím(t)Äéís(t))

2; (36)

where k1, k2, and k3 are positive constants, and

éTm, éTsÄmotor, éTsÄarm, and éU are the devia-
tions of the energies from the equilibrium states,

which are expressed as follows:

éTm =
1

2
Jmé_í

2
m(t); (37)

éTsÄmotor =
1

2
Jsé_í

2
s(t); (38)

éTsÄarm =
1

2

LZ
0

ö
Ä
ré_ís(t)Äé_w(t; r)

Å2
dr;(39)

éU =
1

2

LZ
0

EI
Ä
éw00(t; r)

Å2
dr: (40)

The deviation of state variable is expressed as

éx(t; r)=[ éím(t), é_ím(t), éís(t), é_ís(t), éw(t; r),

é_w(t; r) ]T . It is straightforward to check that the
positiveness of the constants k1, k2, and k3 in
(36) guarantees V (éx) ï 0 and that the global

minimum of V (éx) = 0 is attained only at the

desired states éxd = 0.

In the same manner as Theorem 1, by diãeren-

tiating (36) with respect to t, employing the lin-
earized equations of motion (30)ò(34), and using

the approximating relation that w(t; L) ú L, we
obtain

dV (éx(t; r))

dt
= é_ím(t)fk1

Ä
éúm(t) +éúh(t)

Å
+k3(éím(t)Äéís(t))g+é_ís(t)fk2(éús(t)Äéúe(t))

Äk3(éím(t)Äéís(t)g: (41)

By substituting (12) and (13) into (41) and setting

km = k3=k1 and ks = k3=k2, we ånally obtain

dV (éx(t; r))

dt
=

Ç
k1é_ím(t);Äk2é_ís(t)

Éîéúh(t)
éúe(t)

ï
;(42)

where the minus sign ofé_ís is due to setting the di-

rection of the slave angular velocity _ís(t) opposite

against to the reaction torque úe(t). Equation (42)
yields the product of the vectors [éúh(t) éúe(t)]

T

and
h
k1é_ím(t) Ä k2é_ís(t)

iT
. Therefore, it is con-

cluded that the passivity between the input and

the output is proven as follows:

tZ
0

dV (éx(t; r))

dt
dt = V (éx(t; r))Ä V (éx(0))

ï ÄV (éx(0)) ï Äç2: (43)

(Q.E.D.)

The feedback control given by (12) and (13) is

called the "symmetric bilateral control"(Anderson

and Spong, 1989). It was shown that in a rigid

master-slave system the "symmetric bilateral con-

trol" gives the passivity(Burnett, 1957; Yokoko-

hji, 1993). These two theorems show the general

extension of this well-known result;that is, even

if the slave arm has çexibility, the a master- slave

system with symmetric bilateral control is passive.

4. NUMERICAL SIMULATIONS

In order to verify the passivity of RMFS using the

symmetric bilateral control some numerical simu-

lation results are shown in case of the positioning

operation. Fig.1 shows the transient responses of

the angles of the master arm and the slave arm,

and Fig.2 the transient response of the bending



moment of slave arm. In this case, it is assumed

that the anglar velosity of the master arm _ím
is fedback to the operator torque úh under the

assumption that a human operator is represented

as a suitable impedance model. It is found that all

state variables converge to desired states stablely.

In the similar manner, we can show the stability

of the whole system in case of the pussing oper-

ation under the suitable impedance model of an

environment.

Fig. 3. Transient responses of the angles

(ídm:solid line, ím(t):dotted line, and

ís(t):dashed line)

Fig. 4. Transient response of the bending moment

5. CONCLUSION

We investigated the passivity of the RMFS system

in cases of both the positioning and the pushing

operations.

As mentioned before, it is diécult to discuss the

stability of a master-slave system. The situation

in case of çexible system is same. However, the

obtained results guarantee that the discussions for

the stability of a master-slave system is similar

to the case of rigid system. This gives beneåt to

further discussions for the control design based on

the passivity. Of course, it is indispensable to con-

sider the suppression control for elastic vibrations

of slave arms. However, it is very important for the

control design that the passivity result is based

on the inherent kinetic structure of a considered

system.

In the future work we apply these results to design

methods of a new bilateral control based on the

passivity considering the absorption of the elastic

vibration.
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