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Abstract: In this paper, we survey a planning, control, and verification approach
in terms of sampling-based tools, such as Rapidly-exploring Random Trees
(RRTs) and Probabilistic RoadMaps (PRMs). We review RRTs and PRMs for
motion planning and show how to use them to solve standard nonlinear control
problems. We extend them to the case of hybrid systems and describe our
modifications to LaValle’s Motion Strategy Library to allow for hybrid planning
and verification. Finally, we extend them to purely discrete spaces (replacing
distance metrics with cost-to-go heuristic estimates and substituting local planners
for straight-line connectivity) and provide computational experiments comparing
them to conventional methods, such as A*. We also review our work on the
coverage, optimality properties, and computational complexity of sampling-based
techniques. Copyright c© 2005 IFAC
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1. INTRODUCTION AND OVERVIEW

In this paper, we review a planning, control, and
verification approach applicable to complex con-
trol systems, including those that are nonlinear,
nonholonomic, hybrid, or purely discrete. In gen-
eral, complete algorithms for planning, control,
and verification of such systems are exponential
in the state-space and control dimensions.

Attempts to fight this curse of dimensionality,
have led to the introduction of randomized (or
Monte Carlo or sampling-based) approaches that
are capable of solving many challenging problems
efficiently, at the expense of being able to guar-
antee that a solution will be found in finite time.
See (LaValle and Branicky, 2002) for a review.
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Two sampling-based methods that have achieved
considerable success in the robotics motion plan-
ning literature are Rapidly-exploring Random
Trees (RRTs) and Probabilistic Roadmaps (PRMs).
The methods have been shown to solve challeng-
ing planning problems that involve high state-
space dimension. (Citations given in Section 2.)

Over the past several years we have adapted these
algorithms for use in solving nonlinear control
problems and multi-agent coordination (Branicky
and Curtiss, 2002; Curtiss, 2002); hybrid-systems
planning, control, and verification (Branicky et
al., 2003; Levine, 2003); as well as planning in
completely discrete spaces (Morgan and Bran-
icky, 2004; Morgan, 2004). Finally, we have also
been involved in de-randomizing these algorithms
(Branicky et al., 2001) and in proving their com-
plexity (LaValle and Branicky, 2002).



In this paper, we review this work and place the
algorithms in a broader context. In particular,
herein, we advocate a sampling-based approach
to all reachability-based problems, including plan-
ning, control, and verification, by solving:

Sampling-Based Reachability Algorithm.

SampledReachSet := I n i t i a l S e t

loop :

xr = random suc c e s s o r o f SampledReachSet

SampledReachSet = SampledReachSet ∪ xr

Search can be terminated after a fixed number of
iterations, if a goal point is reached, etc. Extra
information can be stored using a tree/graph/for-
est structure, with edges labeled by the control
action taking a parent to a successor. Search can
also proceed backwards from a final set. Through-
out the paper, we will examine algorithms which
instantiate this general pattern.

2. SAMPLING-BASED BACKGROUND

RRTs are a probabilistic exploration method de-
veloped for searching the high-dimensional con-
tinuous spaces encountered in motion planning
and control problems (LaValle, 1998; LaValle and
Kuffner, 2000). The RRT algorithm begins with
an initial configuration qstart as the tree. At each
step, it selects a random configuration qrand from
the configuration space, then finds the nearest
configuration already in the tree, qnear, using some
definition of nearness (often Euclidean distance).
From qnear, it moves some distance ε toward qrand,
and adds that new configuration to the tree. These
steps are repeated until some qgoal (which may
be a specific goal state or an element of a set
of goal states) is reached, or until the tree has
reached a certain size. RRTs have been shown to
be probabilistically complete, and to have good
space-filling properties in that their growth is bi-
ased toward the largest unexplored regions in the
space (LaValle, 1998).

In addition to growing a tree from the start-
ing state, many RRT implementations are “dual-
tree,” where one grows a second tree from the goal
state and stops when the two merge.

PRMs constitute another sampling-based method
for solving planning problems in high-dimensional
spaces, especially multiple query path planning
(Bekris et al., 2003). The PRM algorithm operates
by repeatedly selecting a random node qrandand
adding it to a set of nodes. The algorithm then
attempts to connect qrandto any other nodes in the
set that are within some distance δ of qrand.The
connections are made by a local planner; in the
simple case of holonomic planning,the local plan-
ner is often simply a straight-line generator with

obstacle checking. This process is repeated until
the PRM reaches a set size, or until most or all of
the PRM is connected. Path planning queries are
then solved by using a local planner to connect
qstart and qgoal to the PRM, then finding a path
between the connection points through the pre-
planned roadmap.

Like RRTs, PRMs are probabilistically complete
using uniform sampling. Unlike RRTs, which ex-
pand out from one point, the nodes in a PRM
follow the sampling distribution exactly, but do
not create a connected graph until some threshold
point density is reached.

3. NONLINEAR CONTROL VIA SAMPLING

Other researchers have applied RRTs to planning
problems of various types including path-steering,
manipulation planning for digital actors, varieties
of holonomic planning, and kinodynamic planning
(LaValle and Kuffner, 1999). To our knowledge,
we are the first experimenters to test RRTs on
standard control problems (Branicky and Cur-
tiss, 2002; Curtiss, 2002). It is our hope that by
studying the RRT’s performance in these common
problems, we will be able to gauge the strengths
and weaknesses of RRT’s compared to other ap-
proaches.

3.1 Pendulum Swing-Up

The first experiment we conducted was applying
the RRT to the swing-up problem for a nonlinear
pendulum (Branicky and Curtiss, 2002):

• Equation: θ̈ = −3g/(2l) sin θ − 3τ/(ml2);
• Motor torques: τ ∈ {−1, 0, 1};
• Initial state of θ = 0 (down) and θ̇ = 0;
• Goal state of θ = π (up) and θ̇ = 0.

The goal for the planner is to find a series of
torque-time pairs that get the pendulum to the
goal state. In all but the most trivial cases, the
motor is unable to lift the pendulum to the goal
state in one smooth motion. The pendulum there-
fore must be swung back and forth until it achieves
sufficient velocity to reach the goal configuration.
Our first try at solving the problem, a single-tree
RRT using the straightforward Euclidean metric,

ρ =
√

(∆θ)2 + (∆θ̇)2, proved to be quite success-

ful. Usually finding a solution in less than 10,000
iterations (only a few seconds of computation
on most modern computers), our implementation
showed that the RRT algorithm is both fast and
adaptable to many problem domains. See Figure
1 (left).

The dual-tree solution to the same problem was
also impressive, sometimes finding a path to the



goal state in close to half the time of its single-
tree relative. One interesting characteristic of the
solution trees is how clearly it demonstrates the
dynamics of the system. See Figure 1 (right).

Fig. 1. Single- and Dual-RRT Solutions to the
Pendulum Swing-Up Problem. The x-axis
corresponds to θ and the y-axis to θ̇. The
left image shows a single-tree RRT solution
for the pendulum problem after 5600 itera-
tions. The right image shows a dual-tree RRT
search after 3300 iterations (solution in dark).

3.2 Acrobot

One can also apply this approach to more complex
control problems, including the Acrobot (Sutton
and Barto, 1998; Spong, 1994). See (Curtiss, 2002)
for details.

3.3 Multi-Aircraft Planning

We also investigated prioritized RRT algorithms
to plan for multiple aircraft in two-dimensions,
traveling among six airports, with simple flight
dynamics (Curtiss, 2002). We were able to gener-
ate plans for up to 800 holonomic agents in the
air at one time. We also generated plans for tens
of nonholonomic agents (with unicycle dynamics)
in the air at one time.

4. HYBRID SAMPLING-BASED TOOLS

4.1 Hybrid Systems

Researchers in the computer science and control
theory communities have produced many models
for describing the dynamics of hybrid systems
(Branicky, 1995; Branicky et al., 1998). For the
purpose of the discussion in this document, we
consider a simple illustrative case, in which the
constituent continuous state and input spaces (in
each mode) are the same. Thus, we have a hybrid
system of the form

ẋ = f(x, u, q), x 6∈ J(x, u, q)
(x, q)+ = D(x, u, q), x ∈ J(x, u, q).

(1)

Here, x ∈ X is the continuous state, u ∈ U is the
input, and q ∈ Q ' {1, 2, . . . , N} is the discrete
state or mode. Also, f(·, ·, q) is the continuous
dynamics, J(·, ·, q) is the jump set, and D(·, ·, q)
is the discrete transition map, all for mode q.
The map D relates the post-jump hybrid state
(x, q)+ from the pre-jump hybrid state (x, q).
The input u, which can include both continuous
and discrete components, allows the introduction
of non-determinism in the model, and can be
used to represent the action of control algorithms
and the effect of environmental disturbances. The
evolution of the discrete state q models switches
in the control laws and discrete events in the
environment, such as failures.

Briefly, the dynamics are as follows: the system
starts at hybrid state (x(t0), q0) and evolves ac-
cording to f(·, ·, q0), until the set J(·, ·, q0) is
reached. At this time, say t1, the continuous
and/or discrete state instantaneously jump to the
hybrid state (x(t+1 ), q1) = D(x(t1), u(t1), q0), from
which the evolution continues. While terse, the
above model encompasses both autonomous and
controlled switching and jumps, and allows model-
ing of a large class of embedded systems, including
ground, air and space vehicles and robots; see
(Branicky, 1995; Branicky et al., 1998) for more
details. Below, we describe an approach to hybrid
planning, control, and verification based on RRTs.

4.2 Hybrid RRTs

A general, hybrid RRT (Branicky and Curtiss,
2002) can be achieved in various ways, depend-
ing on the underlying hybrid systems model and
specifics of the continuous and discrete dynamics
(and symmetries therein). We now wish to give a
taste of the way a hybrid RRT might work for the
model (1). A planning/control problem will have
a target set T ⊂ X × Q.

The simplest algorithm one might envision would
explore reachable space by growing a forest of
RRTs, one in each mode, with jump points among
various trees in the forest identified. In the more
general case, evolution will start from a set of
seeds in a start set S ⊂ X ×Q, encompassing one
or more modes, and proceed from there according
the hybrid-RRT algorithm outlined below. One
may think of the resulting tree as (a) growing in
the hybrid state space, X × Q, or (b) as growing
in X, with nodes and arcs colored/labeled by the
current mode.

Even under this setup, there are several cases to
consider:

(1) General specifications; S, T , J , and D are
arbitrary.



(2) Homogeneous specifications: S = B × Q and
T = G×Q. i.e., the start and target sets are
independent of mode.

(3) Homogeneous switching: J(x, q) ≡ J(x) and
D(x, q) ≡ D(x), independent of q.

(4) Unrestricted switching: J(·, q) = X for all q
and D(x, q) = x for all x, q.

While the above is not exhaustive, it provides a
sense of a few types of symmetries in the discrete
dynamics that can be exploited by the algorithm.

In the case of unrestricted switching, the hybrid-

RRT algorithm is exactly the same as outlined
above, except that the control set is augmented to
allow mode changes: U 7→ U ×Q. The other cases
are non-trivial. In the case of homogeneous speci-
fications, xrand lives, and distances are measured
in, the continuous state space X; in the general
case, xrand lives, and distances are measured in,
the hybrid state space X×Q. The latter brings up
the issue of designing metrics for combined contin-
uous and discrete space, which is a topic of current
research. In either case, the NEW-STATE func-
tion must respect the hybrid dynamics. Typically,
for purely continuous RRTs, the states examined
come from extending the state xnear according
to the dynamics f(x, ·) for a fixed time and for
various (sampled) u ∈ U . In the hybrid case, this
continues to hold for (xnear, qnear) if there are
no intersections with the jump set J(·, qnear). If
there are, evolution continues from the destination
point(s), using the same or different u, until the
desired amount of time elapses.

In Figure 2 we give an example of a hybrid RRT.
Pictured from left to right in each row are four
square floors, 1 through 4. Stairs (jumps) are given
by triangles, with destinations given by inverted
triangles in the next highest floor. The tree started
in the gray square in the center of floor 1, and the
target set is the gray square on floor 4. Successive
rows represent different stages in the expansion
process. The hybrid state is s = (x, y, q) ∈
[−20, 20]× [−20, 20]×{1, 2, 3, 4}. The metric used
is ρ(s1, s2) =

√

(x1 − x2)2 + (y1 − y2)2 + 20|q1 −
q2|.

4.3 Computational Tool for Hybrid Systems

We have built a visual tool for manipulating
and studying hybrid systems; Our tool builds on
the Motion Strategy Library (MSL) developed by
Steve LaValle et al. (2003).

Details of our software implementation appear
in (Branicky et al., 2003) and (Levine, 2003).
The former reference also showed two- and three-
dimensional stair climbers solved using the tool.
Later, the tool was used to solve other exam-
ples, including stair-climbing with obstacles and

Fig. 2. Stair Climbing: an example hybrid RRT.

a bouncing ball—which incorporates impulsive
jumps. Most significantly, we have augmented the
tool to allow planning, verification, and testing for
rectangular hybrid automata (RHA). To control
state transitions, we made use of MSL’s built-in
collision detection algorithms: for each guarding
condition, a polygonal region was constructed to
represent the guard. The RRT Extend() algorithm
was modified so that before the new state is added,
a check is done to see if the new state will col-
lide with this region. If so, the tool performs a
reset using the EdgeReset() function, and adds
this reset state instead of the original new state
calculated previously. One other feature necessary
to implement here was the concept of a “multi-
state view.” To this end, the Render object was
modified to be able to draw all states at the same
time, on top of each other, using different colors
depending on which mode it is in. See Figure 4,
which shows trajectories for the RHA of Figure
3. There, the colors pink, brown, green, yellow ,
and cyan are used to represent discrete states 0–4,
resp. The white lines represent state resets. Figure
4 also shows an example of using RRTs for the
verification of hybrid systems, as explained in the
caption.

ẋ ∈ [1, 3]
ẏ ∈ [1, 3]

0

ẋ ∈ [3, 4]
ẏ ∈ [0, 2]

1

ẋ ∈ [4, 7]
ẏ ∈ [−5,−2]

3

ẋ ∈ [2, 3]
ẏ ∈ [−4,−1]

2

ẋ ∈ [1, 3]
ẏ ∈ [−5,−2]

4

x = 5
y ≤ 9 x = 10

x← −5

x = 0

x = 5
y > 9

x = 10

y = 5

x← −5
y ← 15

y = 9

y = 9

Fig. 3. A Rectangular Hybrid Automata.



Fig. 4. Sampling-Based Verification. Four screen
shots from our software tool. The upper left
screen shows an RRT for the RHA grown
using “multi-action” growth. The remaining
three show hybrid traces from initial hybrid
state (x, y; q) = (1, 1; 0) to goal (2.5, 15;
0). The RHA was designed to accomplish
this while cycling through discrete modes 0-
1-3-2-2-4-3-0, as verified in the upper right
diagram. Our software also found that the
goal could be reached by cycling through 0-
2-4-3-0 and 0-1-3-0 (bottom left and right,
resp.)—specification violations.

5. DISCRETE SAMPLING-BASED TOOLS

In general a discrete planning problem exists in
a discrete space consisting of a countable set
of states S, and a corresponding set of discrete
dynamics that define, for each state q, a transition
rule ∆ : S → 2S, where ∆(q) = Q′ ⊆ S is
the (finite) set of possible successors to q. The
planning problem gives us a start state qstart and
a set of goal states G, and asks us to find a path
from qstart to some qgoal ∈ G. This solution path
must consist of a sequence of states qstart = q0 →
q1 → q2 → · · · → qn = qgoal with each transition
to a new state obeying the transition rule for the
previous state (i.e., for each transition qi → qi+1,
it must be true that qi+1 ∈ ∆(qi)).

In discrete planning, it is often useful to consider
the transition rules for states as corresponding to
a small set of universal or near-universal opera-
tors, each of which map q → q′ in a predictable
way. For example, in planning an agent’s motion
in a grid world, where each state corresponds to
an (x, y) pair, the operators are the four possible
moves to adjacent squares: oup(x, y) → (x, y + 1),
odown(x, y) → (x, y − 1), oleft(x, y) → (x − 1, y),
and oright(x + 1, y) → (x, y) (with the constraint
that an operator cannot be applied to a state if
its resultant state would collide with an obstacle).

Although a variety of informed search algorithms
exist for such problems, they generally either
become infeasible as the problem size grows (as

in the case of A∗) or have poor performance in
spaces where “obstacles” are not predicted by the
heuristic, whether the obstacles are explicit or due
to behavior of the system which is not predicted
by the simplified heuristic (as in the case of best-
first search).

5.1 Discrete RRTs

We have also introduced a discretization of the
RRT algorithm, which replaces the distance met-
ric used for determining nearness with a heuristic
estimate of the cost-to-go of the same type that
is used in general informed search methods, e.g.,
A∗. As in the original RRT, the discrete algorithm
begins with an initial state qstart. At each step,
we select a random state qrand from the state
space(making sure that the state selected is not
already in the tree). We find the nearest state in
the tree, qnear, based on a heuristic estimate of the
cost-to-go from each state to qrand. Considering
each possible operator on qnear, we select the one
which yields the successor state qnew that is closest
to qrand but is not already in the tree, and add
qnew to the tree with an edge from qnear to it. If
qnear has no successors which are not in the tree,
no new node is added during this iteration.

A new algorithm that mitigates the issue of sub-
optimal steps is the Rapidly-Exploring Random
Leafy Tree (RRLT). The RRLT algorithm keeps
an open list of all states reachable in one step
from the current tree: the “leaves” of the tree
nodes. When qrand is selected, the nearest leaf is
located directly and added to the tree, and all of
its successors are added to the open list (except
those that are already tree or leaf nodes).The
RRLT algorithm prevents the possibility of a
failed ExtendRRT step, since every leaf is a state
which does not exist in the tree, and is therefore
a valid candidate qnew.

5.2 Experiments and Results

We have tested our discrete sample-based algo-
rithms on a number of problems, including bench-
marks such as the 8-puzzle, 24-puzzle, and k × k
Knight-Swapping puzzles (Branicky et al., 2003).
In those experiments, our algorithms performed
well with respect to traditional algorithms such as
A∗, particularly when there were obstacles present
that were not captured by the heuristic. In later
work, we used discrete RRTs to plan for multi-
ple agents in discrete grid worlds with obstacles
(Morgan and Branicky, 2004; Morgan, 2004). We
were able to plan the paths of 300 airplanes, with
several hundred in the air at any given time, in
2–3 seconds on a 2 GHz G5 (2GB RAM), using
simple single-directional RRLT search.



5.3 Properties of Sampling-Based Algorithms in
Discrete Space

In order to better understand the adaptation of
sampling-based planning to discrete space, we
have directly examined the Voronoi regions that
determine their properties, as well as the result-
ing coverage and optimality effects (Morgan and
Branicky, 2004; Morgan, 2004).

The fundamental difference between Voronoi re-
gions in discrete and continuous spaces is the in-
troduction of overlap in discrete space. Although
the definition of a Voronoi region guarantees non-
overlapping regions in continuous space, discrete
space heuristics generally cannot guarantee that
there will not be ties. It is of course possible
to modify any heuristic to prevent ties by in-
troducing arbitrary tie-breaking rules, but doing
so will introduce an equally arbitrary bias in the
exploration of the RRT algorithm, which is gen-
erally undesirable. Thus, discrete RRT algorithms
should expect the occurrence of ties. See Figure 5.

Fig. 5. Discrete Voronoi Regions.
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