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Abstract: A design of a novel model predictive controller is presented. The
proposed Sliding Mode Predictive Control (SMPC) algorithm combines the design
technique of Sliding-Mode Control (SMC) with Model based Predictive Control
(MPC). The SMPC showed a considerable robustness improvement with respect
to MPC in the presence of time delay, and showed an enhanced ability to handle
set point changes in a nonlinear process. Its robustness was evaluated using a
robustness plot, its performance was judged using a single input single output
nonlinear mixing tank process with variable time delay. Copyright c©2005 IFAC
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1. INTRODUCTION

Time delay is a common phenomenon in industrial
processes. It can be produced by the transport
time required for a fluid to flow through a pipe
or by the measurement and analysis lag. The
presence of a time delay complicates significantly
the analysis and the design of feedback controllers.
It generally has awful consequences in the con-
trol loop performance, due to the introduction of
an unstable behaviour, making more difficult to
achieve a satisfactory control. Time delay limits
the value of proportional controller gain at which
the phase angle crosses -180◦ and the system be-
came unstable, thus smaller controller gains are
required as consequence sluggish response in a
controlled variable is obtained (Ogunnaike and
Ray, 1994). With a time delay the control action
is based on delayed, hence obsolete, process in-
formation usually not representative of the cur-
rent process output. Special care should be taken

when the process time delay-time constant ratio is
bigger than one, because PID controller can be in-
adequate, and therefore others control structures
could be required. The control problem of time
delay systems has received considerable attention
over the last years (Richard, 2003),

Model Based Predictive Control (MPC) has be-
come one of the most popular control methodolo-
gies for both industry and academia. It has been
successfully implemented in many industrial ap-
plications, showing good performance. The basic
idea of MPC is to calculate a sequence of future
control signals in such a way that it minimizes a
multistage cost function defined over a prediction
horizon. The performance index to be optimised
is the expectation of a quadratic function mea-
suring the distance between the predictive system
output and a predictive reference sequence over
the horizon, plus a quadratic function measuring
control effort. In order to implement an MPC,



a model of the plant is used to predict the fu-
ture plant outputs. This prediction is based on
past and current values of the input and the
output of the plant. Time delay is inherently con-
sidered in the prediction model of MPC. Thus,
this control strategy is adequate for process with
time delay. The advantages to apply MPC to
time delay systems have been reported in liter-
ature (Maciejowski, 2001; Camacho and Bordóns,
1999; Levine, 1996; Soeterboek, 1991; Bitmead et

al., 1990).

On the other hand, Sliding Mode Control (SMC)
is a technique derived from Variable Structure
Control (VSC) which was studied originally by
Utkin (Utkin, 1981). For a broad class of sys-
tems, this kind of control is particularly appeal-
ing due to its ability to deal with nonlinearities,
time-variance, as well as uncertainties and distur-
bances, in a direct manner in the face of mod-
elling errors. In VSC, the control can modify its
structure. The design problem consists of selecting
the parameters of each structure and defining the
traveling logic. The first step in SMC is to define
a sliding surface, S(t), along which the process
can slide to find its desired final value. In gen-
eral, the switching surface represents the system
behaviour during the transient period, therefore,
it must be designed to represent a desired system
dynamics. The structure of the control system is
intentionally altered as its state crosses the sliding
surface in accordance with a prescribed control
law. The second step is to design the control
law in such a way that any state outside the
sliding surface is driven to reach the surface in
finite time and stay on it. SMC involving time-
delay systems has received increasing attention
(Gouaisbaut and Richard, 2002; Yuanqing and
Yingmin, 2003; Niu Y. and X., 2004)

An algorithm based on variable structure control
and generalized predictive control was proposed
in (Corradini and Orlando, 1997). The sliding
surface prediction was made only with past values
of input and it did not consider the future control
values. A dual mode control scheme combining
nonlinear MPC and SMC was presented in (Zhou
et al., 2001). MPC was used to force the state into
a terminal region within a finite horizon while it
is outside the terminal region and a sliding mode
variable structure controller is used while the state
is inside the terminal region.

The proposed single input single output controller
is based on the idea of a combination of MPC and
SMC that also has the future control movements
for predicting the sliding surface, this results in
more precise predictions and allows the process to
be controlled with time delay; the other part of the
control law is also simple and with fewer parame-
ters and they have a clear meaning for tuning. The

SMPC is a single mode controller, the main idea
is to introduce the prediction of the sliding surface
into the control objective. SMPC has been applied
to non minimum phase systems (Garćıa-Gab́ın
and Camacho, 2003). It showed that an appro-
priate choice of the tuning parameters of SMPC
avoids the instability problems of MPC when it
is applied to non minimum phase systems. When
MPC is used the controller achieves the optimal
output by cancelling the plant zeros, including the
unstable zeros, which leads to a loss of internal
stability of the feedback system. SMPC shows a
considerable robustness improvement with respect
to MPC in the presence of modelling uncertainties
and disturbances, while enhanced its ability to
handle set point changes in a nonlinear process
with inverse response.

This article is organized as follows: Section 2
presents the development of SMPC. Section 3
shows the controller robustness. Section 4 shows
the application SMPC for a mixing tank. This
is a nonlinear process with variable time delay.
Finally, the conclusions are presented.

2. SLIDING MODE PREDICTIVE CONTROL

Most SISO plants when considering operation
around a particular set-point and after lineariza-
tion can be described by:

A(z−1)y(t) = z−dB(z−1)u(t− 1) + C(z−1)
ξ(t)

∆
(1)

Where: y(t) is the process output signal, u(t) is
the process input signal, ∆ : 1 − z−1, d : is the
delay, ξ(t) is the zero mean white noise, A(z−1)
and C(z−1) are monic polynomials, and B(z−1)
is a polynomial that has the zeros of the model.
This model is known as the CARIMA Model
(Controller Auto-Regressive Integrated Moving-
Average). This model can be used for open-
loop stable, open-loop unstable, integrating, or
nonminimum phase systems It has been argued
that for many industrial applications in which
disturbances are non-stationary CARIMA model
is more appropriate (Clarke et al., 1987). The
most usual case C(z−1) = 1 has been used be-
cause in practice the colouring polynomial are
very difficult to estimate with sufficient accuracy
(Camacho and Bordóns, 1999).
The following new predictive sliding surface is
proposed to develop the controller:

St+j|t = Ps(z
−1)(y(t+ j | t)− w(t+ j)) +

Qs(z
−1)∆uC(t+ j − 1− d) (2)

where w(t) is trajectory reference, Ps(z
−1) and

Qs(z
−1) are polynomials of degree np and nq

respectively, given by,



Ps(z
−1) = ps0 + ps1z

−1 + ...+ psnp
z−np (3)

Qs(z
−1) = qs0 + qs1z

−1 + ...+ qsnq
z−nq (4)

The switching surface represents the system be-
haviour during the transient period, therefore, it
must be designed to represent a desired system
dynamics. Small roots of Ps(z

−1) produce a fast
dynamic in the sliding surface.

A predictive sliding surface is also presented in
(Corradini and Orlando, 1997), however, it does
not use the future control signals ∆u(t− 1+ j) to
predict the future sliding surface values St+j|t, as
is done here. Notice that using the future control
deviations allows better predictions of the future
values of the sliding surface, especially for control
process with time delay. The general aim is that
the future predictive surface (2) on the considered
horizon should be zero and at the same time, the
control effort ∆uC necessary for doing so should
be penalized. The expression for the objective
function is given by,

J =

N2
∑

j=N1

[Ŝ(t+ j | t)]2 +

Nu
∑

j=1

λ(j)[∆uC(t+ j − 1)]2 (5)

where Ŝ(t+ j | t) is an optimum j-step prediction
of the sliding surface on data up to time t, N1

andN2 are the minimum and maximum predictive
horizons, Nu is the control horizon, and λ(j) are
weighting sequences. The objective of the con-
troller is to compute the future control sequence in
such way that the future surface S(t+ j) is driven
close to zero. The minimization of the objective
function J(N1, N2, Nu) produces ∆uC(t),∆uC(t+
1), · · · ,∆uC(t+Nu). The final objective of control
is to ensure that the controlled variable is close to
its reference value w(t + j) at all times, meaning
that e(t) must be zero. The problem of tracking a
reference value can be reduced to keeping S(t) at
zero. The closed-loop dynamic is chosen with the
parameters of polynomials Ps(z

−1) and Qs(z
−1).

Once the sliding surface has been selected, at-
tention must be turned to designing the control
law that satisfies S(t) = 0. The control law,
∆u(t), consists of two additive parts, ∆uC(t), and
∆uD(t). That is,

∆u(t) = ∆uC(t) + ∆uD(t) (6)

The control signal ∆uC(t) is given by a Model
Based Predictive Control algorithm using (5).
uD(t), incorporates a nonlinear predictive element
that includes the switching element of the control
law. This control sequence is given by,

uD(t+ j) = KD

S(t+ j|t)

| S(t+ j|t) | + ρ
(7)

where KD is a gain which is the tuning parameter
responsible for the reaching mode, and ρ is a
tuning parameter used to reduce the chattering
problem (Zinober, 1994). In order to minimize
(5), the j-step ahead output prediction Ŝ(t+ j|t)
for j = N1, · · · , N2 has been computed based on
the information known at time t and the future
values of the control increments. The following
Diophantine equation is considered,

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (8)

The polynomial Ej(z
−1) and Fj(z

−1) are uniquely
defined with degrees j − 1 and na respectively,
Ã(z−1) = ∆A(z−1). Using the plant model and a
Diophantine equation the follow prediction output
equation can be obtained,

ŷ(t+ j) =Ej(z
−1)B(z−1)∆uC(t+ j − 1− d)

+Fj(z
−1)y(t) (9)

In this expression ŷ(t+j) is a function of a known
signal value at time t and also of future control
inputs which have not yet been computed . Using
a second Diophantine equation (10) to distinguish
past and future control values,

Ej(z
−1)B(z−1) = Gj(z

−1) + z−jΓj(z
−1) (10)

The polynomial Gj contains the first j step re-
sponse parameters of the plant model. The fol-
lowing expression of the prediction is obtained,

ŷ(t+ j) =Gj(z
−1)∆uC(t+ j − 1− d)

+ŷ(t+ j|t) (11)

where ŷ(t+ j|t) is the free response prediction of
ŷ(t + j) assuming that future control increments
after time t− 1 will be zero,

ŷ(t+ j|t) = Γj(z
−1)∆uC(t− 1− d)

+Fj(z
−1)y(t) (12)

Substituting Ej(z
−1) of (8) into (10) , this yields

B(z−1) = z−jÃ(z−1)Γj(z
−1) + z−jFj(z

−1)B(z−1)

+Ã(z−1)Gj(z
−1) (13)

Define the vector f(t), composed of the free re-
sponse predictions,

f(t) = [ŷ(t+ 1 + d|t), · · · , ŷ(t+N2 + d|t)]T(14)

the vector of future control increments,

∆uC(t) = [∆uC(t), · · · ,∆uC(t+Nu − 1)]T (15)

From prediction (11) the predicted input-output
relationship of the plant can be written as,

ŷ(t) = G∆uC(t) + f(t) (16)



where matrix G is composed of gk step response
parameters of the SISO plant model.

G =











g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...
gN2−1 gN2−2 · · · gN2−Nu











(17)

The prediction of the sliding surface is obtained
substituting (16) into (2),

Ŝ(t) = (PsG+Qs)∆uC(t) +Ps(fs(t)− w(t))(18)

Where the free response of the sliding surface fs
is given by,

fs(t) = F(z−1)y(t) + Γ(z−1)∆uC(t− 1)+
Ps

−1Ps

∗e(t) +Ps

−1Qs

∗∆uC(t− 1)
(19)

with the matrices defined as,

Ps =











ps0 0 · · · 0
ps1 ps0 · · · 0
...

...
. . .

...
0 psnp

· · · ps0











(20)

P∗
s
=











ps1 · · · psnp−1
psnp

ps2 · · · psnp
0

...
...

...
. . .

0 0 · · · 0











(21)

Qs =











qs0 0 · · · 0
qs1 qs0 · · · 0
...

...
. . .

...
0 qsnq

· · · qs0











(22)

Q∗
s
=











qs1 · · · qsnq−1
qsnq

qs2 · · · qsnq
0

...
...

...
. . .

0 0 · · · 0











(23)

The objective function (5) can be rewritten as,

J =

N2
∑

j=N1

[PsGuC +Ps(f +P∗
s
+Q∗

s
uC)−Psw

+QsuC ]
2 +

Nu
∑

j=1

λ(j)[∆uC(t+ j − 1)]2 (24)

The quadratic minimization of (24) becomes a
direct problem of linear algebra, assuming there
are no constraints on the control signal, which
leads to,

∆uC(t) =KSMPC(w(t)− fs(t))

KSMPC = [(PsG+Qs)
T (PsG+Qs) + λI]−1

(PsG+Qs)
TPs (25)

and

∆uD(t) =

[

KDŜ(t+ d)

| Ŝ(t+ d) | + ρ
, · · · ]

[
KDŜ(t+Nu + d− 1)

| Ŝ(t+Nu + d− 1) | + ρ

]

(26)

finally, the control signal is given by,

∆u(t) = KSMPC(w(t)− fs(t)) + ∆uD(t) (27)

To summarize, the SMPC has two parts. ∆uD(t),
and responsible for guiding the system to the slid-
ing surface, and ∆uC(t) developed like an MPC,
which is responsible for keeping the controlled
variable on the reference value. Note that choosing
Ps(z

−1) = 1, Qs(z
−1) = 0, the objective function

is reduced

J =

N2
∑

j=N1

[ŷ(t+ j | t)− w(t+ j)]2 +

Nu
∑

j=1

λ(j)[∆uC(t+ j − 1)]2 (28)

and the K matrix gain is the usual linear MPC,

KMPC = (GTG+ λI)−1GT (29)

3. CONTROLLER ROBUSTNESS

This section compared the robustness of the con-
troller proposed against a MPC. This is evaluated
using a robustness plot (Shinskey, 1990). In the
robustness plot the stability limit for a closed loop
is plotted on logarithmic coordinates when the
process time delay and gain change. The axes of
this plot are the delay ratio (the process time de-
lay over the process time delay the controller was
tuned) and the gain ratio (the process gain over
the process gain the controller was tuned). All
combination of delay ratio and gain ratio within
a factor of two in either direction are enclosed
within a robustness window. If the stability limit
for a closed loop stays outside of this window, that
loop is considered to be robust. To plot the stabil-
ity limit, a controller is first tuned for a base set
of process parameters, represented by the middle
point (1,1) on the coordinates. The process time
delay is then changed in ratio to the base time
delay until uniform oscillations are produced; this
is the delay ratio at the limit of stability. Similarly,
the process gain is changed in ratio to the base
gain until the limit of stability can be reached. Or
both can be changed simultaneously. The locus of
such points represents the stability envelope for
that particular combination of process, controller
and tuning.

The robustness plot was constructed initially tun-
ing both controllers to have similar settling time
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Fig. 1. Robustness plot

using the follows model, ( Note that controllability
ratio is one ( to

τ
= 1))

Gp =
1

s+ 1
e−1s (30)

From Figure 1 the following values of Robust-
ness Index (RI) were obtained (MPC = 0.78 and
SMPC = 1.41). The results shown in this sec-
tion demonstrated that the proposed SMPC has
a more robust behaviour than the MPC.

4. SIMULATION EXAMPLE

In order to compare the SMPC and MPC per-
formances a nonlinear model of a mixing tank
process (Camacho and Smith, 2000), has been
considered. the mixing tank receives two streams:
a hot stream, W1(t), and a cold stream W2(t)
(Figure 2). The outlet temperature is measured
at a point 125 ft downstream from the tank,
this produces a variable time delay. The following
assumptions are taken: The liquid volume in the
tank is considered constant, the tank contents are
well mixed, the tank and the pipe are well insu-
lated. The temperature transmitter is calibrated
for a range of 100 to 200 ◦F .

Hot flow Cold flow

TT

Reference

W1(t) W2(t)

T3(t) T4(t)

T1(t) T2(t)

TC

Fig. 2. Mixing tank

The SMPC and MPC were tuned initially to have
similar settling time when perturbations around
the operating point were simulated. The following

tuning parameters were obtained: MPC: N1 = 40;
N2 = 90; Nu = 25 y λ = 20, SMPC: N1 = 40;
N2 = 90; Nu = 20; λ = 2; Ps = 1− 0.9z−1; Qs =
0.1z−1; KD = −0.2 y ρ = 0.3, both predictive
controllers use the same prediction model:

Gp =
−0.95

2.52s+ 1
e−4s (31)

In this operating point the process has a control-
lability ratio bigger than one ( to

τ
= 1.6). It is

well known that this produces control difficulties
(Smith and Corripio, 1997).

Figure 3 shows time delay changes when the
hot stream was modified. The flow of hot water
changes from 250 lb/min to 225 lb/min, then to
200 lb/min, and finally to 175 lb/min. Time delay
was increased a 20 % with these variations of the
hot stream.
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Fig. 3. Time delay changes vs hot stream varia-
tions W1(t)

The response of the temperature (controlled vari-
able) is shown in Figure 4. The output time
courses clearly shown that as the operating con-
ditions change, the performance of the MPC con-
troller degraded, while the SMPC maintains its
performance and stability. In this case, as the
flow of hot water decreases, with a corresponding
decrease in cold water, the time delay between
the tank and the temperature sensor increases.
This increment in time delay certainly adversely
affects the performance of the MPC controller. In
the Figure 5 the proposed controller is compared
with a standard PI plus Smith Predictor (PI+SP),
both controller have been tunning initially with
the same settling time. When time-delay was
increased SMPC shows better performance that
PI+SP, also SMPC can use the future setpoint
knowledge and can incorporate constraints.

5. CONCLUSIONS

The proposed single input single output SMPC
algorithm combines the design technique of SMC
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Fig. 5. SMPC and PI+SP performance for W1(t)
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and MPC. It is shown that mixing both control
techniques results in a new predictive control with
a better robustness than a classic MPC. The ro-
bustness index quantitatively demonstrated that
SMPC is more robust than classic MPC. The
controller performance using a nonlinear process
with variable time delay shows a considerable
improvement in robustness with respect to MPC
in the presence of modelling uncertainties, and
disturbances and enhanced its ability for han-
dling set point changes. The SMPC acquires the
main advantages of the two control methods, the
robustness features of sliding mode control and
the good performance of model predictive control.
The SMPC improves the closed loop behaviour of
MPC avoiding the strong control movements of
SMC. The computational requirements of SMPC
are similar to those needed for MPC. It does not
require more powerful hardware to be applied in
whatever process where a classic MPC is being
applied.
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