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Abstract:  This paper develops a new approach by integrating hard and soft control 
strategies for Guidance, Navigation, and Control of Uninhabited Aerial Vehicles (UAVs).  
The desired features from both soft and hard control are incorporated in the development 
of a navigation controller and UAV autopilot.  The navigation controller is responsible 
for the generation of flyable trajectories based on desired GPS waypoint destinations.  
The UAV autopilot is responsible for steering the UAV along these desired trajectories 
while maintaining stable control.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

Uninhabited aerial vehicles including those with 
combat capabilities have become a topic of research 
in recent years for both governmental agencies and 
the commercial sector (Naidu, et al. 1997; Wilson 
2003).  UAV’s are capable of carrying out various 
missions including surveillance and intelligence, 
search and rescue, atmospheric data collection, and 
agricultural data collection.  Even more recently, 
research has been conducted to study the viability of 
using UAV’s in combat situations where the 
uninhabited combat aerial vehicle (UCAV) would 
not only be used for surveillance, but also engage in 
enemy targets while avoiding pop-up threats.  The 
latter research requires the UCAV to compute online 
trajectory generation for several different 
coordinates, detect pop-up threats, and regenerate 
feasible trajectories in real time to avoid such threats.  
It has been shown that real time trajectory generation 
is feasible for future UCAV development (Rathbun 
and Capozzi, 2002; Prasanth, et al. 2001).  

The current paper entails the development of an 
intelligent autopilot used to control and stabilize the 
UAV, and a navigation controller to generate 
appropriate heading and altitude trajectories for the 
autopilot to follow based on desired geographical 
destinations or enemy targets.  The navigation 
controller uses the advantages of fuzzy logic to 
generate flyable trajectories for the UAV.  The UAV 
autopilot uses the advantages of fuzzy logic as well 
as adaptive control to steer the UAV along such 
trajectories while maintaining complete control.  It 
should be noted that the navigation controller in the 
present paper has been developed for the purpose of 
testing the UAV autopilot only.  The navigation 
controller and autopilot are tested on two different 
airframes, the Aerosonde from Aerosonde Pty Ltd., 
and the North American Navion from North 
American Aviation.  The autopilot developed in this 
paper has the ability to adapt to the airframe under 
control with little or no modification.  Simulation 
results are shown for both of the above listed 
airframes. 



 

 

2. NAVIGATION CONTROLLER 
 

As mentioned previously, the navigation controller at 
the time of this paper has been developed for the 
testing of the autopilot only, and has not been 
optimized.  The current navigation controller consists 
of two main parts, a waypoint generator, and a 
trajectory generator.   
 
The waypoint generator (WG) simply updates the 
current waypoint to the next waypoint to be 
achieved.  The entire waypoint set is generated by 
the UAV user and stored in a list.  Once a waypoint 
has been reached, the WG updates the list and the 
UAV is steered to the next waypoint.  It should be 
noted that the waypoint does not have to be reached 
explicitly, but rather a sphere has been developed 
around the waypoints center in which if the UAV 
reaches the “tolerance” sphere, the waypoint is 
considered reached and the WG updates to the next 
waypoint.  The size of the sphere used in the current 
simulations has a diameter of 4m. 
 
The second part of the navigation controller is to 
generate desired trajectories for the UAV to track in 
terms of UAV heading ( UAVψ ) and UAV altitude 
( UAVH ).  The trajectories are generated based on a 
desired set of coordinates to be reached by the 
UAV, [ ]dddd HLonLatC = , where Latd, Lond, 
and Hd are the desired latitude, longitude, and 
altitude respectively.  Once the UAV reaches the 
current coordinate vector Cd within the tolerance 
sphere, the vector is updated and new reference 
trajectories are generated.   
 
The trajectories of the navigation controller are 
generated based on the current UAV position and the 
desired UAV position.  The first signal generated is 
the altitude trajectory in which the altitude error is 
computed as UAVdH HHe −= , from this error, a 
desired altitude trajectory is generated as 
 
                                           ,                       (1) 
 
where )( Hefφ is defined by fuzzy set theory. 
 
The second signal generated by the navigation 
controller is the desired heading trajectory in which 
the heading error is calculated based on the current 
UAV position, the desired UAV position, and the 
current UAV heading.  A triangulation method has 
been used to compute the error in the lat/lon plane 
(Hoover, 2004).  The error is calculated as  
 
                                                      ,                         (2)  
 
where  
 
                                                                 ,              (3) 

 
and 

                                                        .                       (4) 
 

In Eq. 3, wpψ is the waypoint heading with respect 
to the UAV position updated continuously as the 
UAV travels in the latitude/longitude plane, and 
κ and σ are defined as 
 
                                                                            .   (5) 

 
In Eq. 4, the actual UAV heading is calculated as the 
current UAV heading UAVψ  with the addition of any 
UAV sideslip β  (Stevens and Lewis, 2003).  From 
Eq. 2, the new heading trajectory can be generated as 
 
                                                              ,                 (6) 

 
where )( ψψ ef is defined by fuzzy set theory.  The 
complete navigation portion of the controller can be 
seen in Fig. 1.  The blocks labeled FNS are defined 
as the fuzzy navigation system and are discussed in 
detail in the next section.   
 

3. FUZZY NAVIGATION SYSTEM 
DESIGN 
 

The fuzzy navigation system is based on a Mamdani 
fuzzy system using a centroid of area (COA) 
defuzzification scheme defined as (Jang, et al. 1997) 

 
 
                                                          ,                     (7) 

 
 
 

where )(zCµ is the output membership function 
(MF) of the Mamdani fuzzy system, and z is the MF 
input.  The MFs used are a combination of Gaussian 
MFs on the input layer, and triangular MFs on the 
output layer. 
 
The FNS for the altitude portion of the navigation 
system is a single-input, single-output (SISO) fuzzy 
logic controller (FLC).  The input to the FLC is the 
altitude error, and the output is the incremental step 
change in UAV altitude.  The output of the FLC is 
then summed with the current UAV altitude to 
generate smooth flyable trajectories for the UAV 
autopilot to track Fig 2. The FLC consists of the 
following five rules: 
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Fig. 2.  Desired altitude trajectory for UAV to track 

for a change from 50m to 100m 
 
  If eH  is PL then Nφ is PL: large positive errors 
  If eH  is PM then Nφ is PM: medium positive errors 
  If eH  is Z then Nφ is Z: errors near zero 
  If eH is NM then Nφ is NM: medium negative errors 
  If eH  is NL then Nφ is NL: large negative errors 
 
The FNS for the heading portion of the navigation 
system is a SISO system defined by an FLC.  The 
system input is the heading error ψe with respect to 
the desired waypoint, and the output is the 
incremental change in heading.  The output of the 
FLC is then summed with the current UAV heading 

UAVψ  to generate the desired heading change Nψ .  
A sample 6-point heading error minimization 
trajectory is shown in Fig 3.  The FLC consists of the 
following five rules: 
  If ψe is PL then Nψ is PL: large positive errors 
  If ψe  is PM then Nψ is PS: small positive errors 
  If ψe  is Z then Nψ is Z: errors near zero 
  If ψe  is NM then Nψ is NS: small negative errors 
  If ψe  is NL then Nψ is NL: large negative errors 
 

4. UAV AUTOPILOT 
 

The UAV autopilot is designed to accept heading and 
altitude reference trajectories from the navigation 
system previously discussed.  The autopilot will then 
steer the UAV along these trajectories while 
maintaining stable control of the airframe.  The main 
controller consists of five sub-controllers that control  
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Fig. 3.  Sample heading error minimization trajectory 

the UAV attitude, roll, and velocity to achieve near 
perfect tracking.  The controller design is also 
adaptive and has been shown to adapt to the given 
airframe without the need for major parameter 
adjustments.  The five sub-controllers are heading, 
velocity, altitude-to-pitch, pitch-to-elevator, and 
bank-to-aileron. All five controllers utilize benefits 
from fuzzy set theory, as well as adaptive control 
theory to achieve the desired results.  The entire 
block diagram is shown in Fig. 4. 
 
The heading controller is a single-input, multi-output 
(SIMO) adaptive fuzzy logic controller (AFLC).  The 
heading controller input is the error between the 
reference signal generated from the navigation 
system denoted by Nψ , and λ , where λ is defined 
by Eq. 4.  The controller then generates appropriate 
commands to control the bank angle and rudder 
actuator.  Since the only real direct measurement of 
rudder actuation is measured in the UAV sideslip β , 
there is no direct feedback needed to achieve 
appropriate tracking, i.e. the heading controller 
directly controls the rudder actuator.  The bank angle 
however is directly measured and direct feedback can 
be applied, therefore, the heading controller 
generates appropriate bank angle commands, and 
delivers them as inputs to the bank-to-aileron 
controller.  The bank-to-aileron controller, as well as 
the additional four sub controllers, is a SISO AFLC.  
The input to the controller is the error between the 
bank angle reference command dθ  generated from 
heading controller, and the actual UAV bank angle 

UAVθ .  The output of the bank-to-aileron controller is 
the input signal for the aileron actuators.  The output 
of the controller is limited to 4/π± to decrease the 
risk of actuator saturation.   
 
The altitude-to-pitch controller is responsible for 
generating appropriate pitch reference trajectories for 
the pitch-to-elevator controller to track based upon 
the current UAV altitude, and the desired UAV 
altitude. The input signal to the altitude-to-pitch 
controller is error between the altitude reference 
trajectory generated from the navigation controller 
denoted here as Nφ , and the actual UAV altitude 

UAVH .  The pitch-to-elevator controller is 
responsible for driving the elevator actuator in an 
attempt to achieve perfect pitch tracking.  The input 
signal to the pitch-to-elevator controller is the error 
between the pitch angle reference signal dφ  
generated from the altitude controller, and the actual 
UAV pitch angle UAVφ .  The output of the controller 
is limited to 4/π± to decrease the risk of actuator 
saturation.   
 
The velocity controller acts as a velocity hold 
controller in which the user determines the desired 
airspeed.  The input to the controller is the error 
between a desired reference value dV , and the actual 
UAV airspeed UAVV .  The velocity reference value is 
set to a specified value based upon the airframe
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Fig.  4.  UAV autopilot block diagram 
 
under control.  For the simulations performed in this 
paper, this value is approximately 75% of the UAV 
maximum airspeed.  The output of the velocity 
controller drives the UAV throttle directly. 
 

5. UAV AUTOPILOT DESIGN 
 

The UAV autopilot design is based on a Mamdani 
fuzzy system using a COA defuzzification scheme 
defined by Eq. 7.  The autopilot also utilizes benefits 
from adaptive control theory to compensate for 
unknown parameters.  A similar approach was 
developed by Kim and Yuh (2002) in which an 
adaptive fuzzy controller was able to steer an 
autonomous underwater vehicle along a desired path.  
The adaptive capabilities are needed here to reduce 
any error between a desired reference input and the 
actual UAV output.  All five of the sub-controllers 
have the same basic structure, the MFs used are a 
combination of Gaussian MFs on the input layer, and 
triangular MFs on the output layer.  The differences 
in each controller are based on the position of the 
MFs, and the parameters determining there shape 
(Hoover, 2004), i.e. a Gaussian MF has the form 
 
                                                               ,                 (8) 
 
where c determines the center of the MF, and 
σ determines the shape.  The output MFs are 
triangular in shape and again have different center 
and shape characteristics based on controller design.   
 
As mentioned previously, all five controllers have 
adaptive capabilities built into there design.  The 
adaptive portion of the controller adjusts the centers 
of the output MFs to minimize tracking error.  The 
adaptive feature is necessary in the development of 
the fuzzy control design since exact actuator 
displacement cannot be determined prior to UAV 
flight.  For example, Fig. 5 shows the input/output 

characteristics of the pitch-to-elevator controller.  
From the output surface it can be seen that when the 
error is zero, the elevator input is also zero.  This is 
due to the centering of the output MFs about the zero 
reference.  The problem with this is if the pitch 
reference signal calls for a pitch angle of 10 (deg), 
the elevator input would need to be greater than zero 
to allow for perfect tracking. Since the exact elevator 
input needed to achieve perfect tracking is 
considered to be an unknown parameter, the output 
MFs are updated to generate the appropriate elevator 
actuator signal.   
 
The adaptation law utilized in this paper is an 
extension to the Lyapunov rule for model reference 
adaptive control (MRAC) design.  Since perfect 
tracking of input reference signal is required, the 
adaptive control design could be thought of as a 
MRAC with the reference model being unity.  This is 
due to the fact that in general terms the adaptation 
scheme used in MRAC evaluates the error between 
the system output, and the output of a reference 
model that has been developed by the control 
designer to achieve desired performance.  The  
 

 
Fig.  5.  Input/Output characteristics of the Pitch-to-

Elevator AFLC.  Error vs. Elevator input. 
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controller parameters are then updated based on this 
error.  In the case of perfect tracking however, 
 
                                                              ,                  (9) 

 
where my is the model output, ry is the reference 
signal input, and UAVy is the output of the UAV in 
generic terms.  Based on Eq. 9, a reference model is 
no longer needed when trying to achieve perfect 
tracking performance.   
 
The adaptation scheme utilized is as follows: 
  
Consider the instantaneous error between the desired 
the actual output of the UAV.  The derivative of the 
square of this error is (Farinwata, et al. 2000) 
 

 
                                                                ,              (10) 

 
 
where i

kΦ is the output weights of the ith MF, and k is 
the discrete time interval based upon the sample time 
of the system.  From this, it can be seen that the 
output weight of the ith rule should be adjusted as 
(Farinwata, et al. 2000) 
 
                                                                   ,           (11) 

 
 

where γ is considered to be the adaptation rate.  The 
adaptation law in Eq. 11 is used in all five sub-
controllers with the difference being in the parameter 
vector Φ , and the adaptation rate γ . 
 
Since all five sub-controllers are designed in a 
similar fashion with only the MF parameters making 
them different, a general outline of their design will 
be presented here.  The sub-controllers, with the 
exception of the heading controller, are all SISO 
AFLC.  The input to each controller is the error 
between the reference signal, and the actual signal 
measured from the UAV.  The output of each 
controller is either a reference trajectory for the input 
of a lower level controller, or a signal to drive an 
actuators control surface.  Each controller uses five 
Gaussian MFs on the input layer, and five triangular 
MFs on the output layer.  The output layer 
parameters are then adapted based upon the learning 
rate γ , and the input error.  Each controller is 
designed using Mamdani max/min relations, COA 
defuzzification, and five rules.  The rules for each 
controller are of the form 
  If xe is PL then yΦ is PL: large positive errors 
  If xe  is PM then yΦ is PS: small positive errors 
  If xe  is Z then yΦ is Z: errors near zero 
  If xe  is NM then yΦ is NS: small negative errors 
  If xe  is NL then yΦ is NL: large negative errors 
where xe  is the error between the reference signal 
and its respective output, and yΦ is the output 
weight response for the AFLC.  The output weights 

are then updated according to the error minimization 
process.   
 
The heading controller is a SIMO AFLC system in 
which the bank angle output is a reference signal for 
the bank-to-aileron controller to track, and the rudder 
output drives the rudder actuator control surface 
directly.  Mamdani max/min relations are used with 
the COA defuzzification scheme, and five rules for 
each signal being generated.  The rules for the 
heading controller are of the form 
  If xe is PL then yΘ is PL and Rδ  is PL 
  If xe  is PM then yΘ is PS and Rδ  is SL 
  If xe  is Z then yΘ is Z and Rδ  is Z 
  If xe  is NM then yΘ is NS and Rδ  is NS 
  If xe  is NL then yΘ is NL and Rδ  is NL 
where xe is the error between the navigation control 
reference trajectory, and λ defined by Eq. 4,  yΘ  is 
the output weight response for the AFLC, and Rδ  is 
the rudder actuator deflection.   
 

6. SIMULATION RESULTS 
 

The fuzzy navigation controller and adaptive fuzzy 
autopilot are tested using two fully nonlinear aircraft 
models.  The first model is the Aerosonde UAV that 
has been used to carry out several missions with a 
variety of objectives.  The second model is the North 
American Navion that is a bottom wing design and 
has been used by the USAF for reconnaissance and 
light cargo carrying.  Both aircraft mathematical 
models were developed by Unmanned Dynamics and 
are included in their AeroSim blockset for use with 
Matlab/Simulink.  The first simulation is a nonplanar 
trajectory in which the Aerosonde UAV is started at 
waypoint W1, and is to be driven to waypoints W2 
through W7.  The trajectory flown verifies that the 
UAVs navigation controller and autopilot can 
generate flyable trajectories in all four quadrants of 
the latitude, longitude plane. The UAV trajectory 
with desired waypoints are shown in Fig. 6, with the 
bank angle and pitch angle tracking references in 
Figs. 7 and 8 respectively. 
 
The second simulation is of the same nonplanar 
trajectory but the airframe under control has changed 
to the North American Navion.  As shown in Fig. 9, 
the Navion is able to fly the trajectory hitting every 
waypoint at the prescribe altitude, latitude, and 
longitude.  It should be noted that the Aerosonde and 
the Navion are two very different airframes with 
different flight characteristics, but the AFLC 
autopilot is able to adapt to control each airframe 
with no human intervention.  It can also be seen from 
Figs. 7,8, and 10, that the low level controllers that 
drive the control surface actuators are able to track 
almost perfectly the reference inputs generated by the 
mid level controllers.  Although no simulation results 
have been presented here, the UAV autopilot has also 
shown very promising results in the event of 
atmospheric disturbances. 
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Fig. 6.   Aerosonde UAV trajectory with desired 7-

waypoint crossing 

 
Fig. 7.   UAV bank angle, reference input generated 

by the heading AFLC, aileron actuator 
input, and error 

 
Fig. 8.   UAV pitch angle, reference input generated 

by the Alt-to-Pitch AFLC, elevator actuator 
input, and error 

 

 
Fig. 9.   North American Navion flying the same 7-

waypoint trajectory as the Aerosonde 

 
Fig.  10.  North American Navion pitch angle and 

reference input for 7-waypoint trajectory 
 

7. CONCLUSION 
 

This paper presents a navigation controller and 
autopilot design for uninhabited aerial vehicles that 
draws benefits from both hard and soft control 
techniques. The navigation controller incorporates 
the use of fuzzy logic to generate heading and 
altitude trajectories based on desired waypoint 
destinations.  The UAV autopilot utilizes fuzzy logic 
as well as adaptive control to steer the UAV along 
these reference trajectories while maintaining 
complete control of the UAV.  It has been shown that 
the autopilots adaptive capabilities can control 
multiple aircraft configurations without the need to 
adjust major controller parameters. Future research 
will focus on the feasibility of producing optimal 
reference trajectories with improved performance 
characteristics, and updating the velocity controller 
to allow more extensive UAV maneuvers. 
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